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Abstract: Alzheimer’s disease (AD) is a progressive, and often fatal, brain disease that causes neurodegeneration, 
resulting in memory loss as well as other cognitive and behavioral problems. Here, we propose a novel multimodal  
method combining independent components from MRI measures and clinical assessments to distinguish  
Alzheimer’s patients or mild cognitive impairment (MCI) subjects from healthy elderly controls. 70 AD subjects 
(mean age: 77.15 ± 6.2 years), 98 MCI subjects (mean age: 76.91 ± 5.7 years), and 150 HC subjects (mean  
age: 75.69 ± 3.8 years) were analyzed. Our method includes the following steps: pre-processing, estimating the 
number of independent components from the MR image data, extracting effective voxels for classification, and 
classification using a support vector machine (SVM)-based classifier. As a result, with regards to classifying AD from 
healthy controls, we achieved a classification accuracy of 97.7%, sensitivity of 99.2%, and specificity of 96.7%; for 
differentiating MCI from healthy controls, we achieved a classification accuracy of 87.8%, a sensitivity of 86.0%, and 
a specificity of 89.6; these results are better than those obtained with clinical measurements alone (accuracy of 
79.5%, sensitivity of 74.0%, and specificity of 85.1%). We found that (1) both AD patients and MCI subjects showed 
brain tissue loss, but the volumes of gray matter loss in MCI subjects was far less, supporting the notion that MCI 
is a prodromal stage of AD; and (2) combining gray matter features from MRI and three commonly used measures 
of mental status, cognitive function improved classification accuracy, sensitivity, and specificity compared with  
classification using only independent components or clinical measurements. 

Keywords: Alzheimer’s disease, mild cognitive impairment, structural MRI, source-based morphometry, indepen-
dent component analysis, support vector machine

Introduction

The most common form of dementia, accoun- 
ting for 50% to 80% of dementia cases, is 
Alzheimer’s disease (AD). AD is a progressive, 
and often fatal, brain disease that causes neu-
rodegeneration, resulting in memory loss as 
well as other cognitive and behavioral prob- 
lems that are often severe enough to affect  
all aspects of a person’s life. Effective and va- 
lid early diagnosis is vital for the slowing and, 
ultimately, the prevention of disease progres-

sion. A variety of biomedical imaging techni- 
ques such as structural or functional magne- 
tic resonance imaging (sMRI/fMRI) [1-10] and 
positron emission tomography (PET) [11-14]  
are being used to assess AD patients. sMRI is  
a noninvasive and efficient technology, and 
plays an important role in the diagnosis of AD. 
Many studies have manually or semi-automati-
cally measured various a priori brain regions of 
interest (ROI) [3, 15-20], because compared to 
healthy controls (HC), AD patients have sub-
stantial cerebral atrophy. ROI analysis focuses 
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on specific brain regions, especially the hippo-
campus and entorhinal cortex [21-24]. By com-
paring regional volumes of ROIs across diag-
nostic groups, researchers have uncovered va- 
luable information about the patterns of mor-
phometric differences, and have laid the foun-
dation for subsequent studies for which voxel-
based morphometry (VBM) [25, 26] and ten- 
sor-based morphometry (TBM) [27] are widely 
used methods to calculate tissue changes with 
mathematically complex voxel-wise modeling 
[28, 29]. ROI-based analyses falls short in sev-
eral respects: first, they typically only consider 
a spatially limited region of the subject’s brain, 
neglecting much of the available information, 
which may be important [30]. Second, when 
univariate analyses are used, they are incapa-
ble of including the joint information among 
voxels in a 3D image and are often less effec-
tive at analyzing individual subjects. Although 
largely prevalent in univariate tests, some 
multi-ROI studies have been done. 

By contrast, multivariate methods consider the 
relationship among voxels; they may also con-
sider volumes of several prior regions of inter-
est, segmented manually or automatically. Vo- 
xels with a similar attribute may be aggregated 
into one group, and all of these voxels make up 
a source. Inspired by the source concept, so- 
urce-based morphometry (SBM) [31, 32] was 
developed from VBM with four key steps: pre-
processing, ICA, statistical analysis, and sta- 
tistical mapping. Before we actually perform 
ICA as a requirement of SBM, we need to esti-
mate the number of independent components. 
This involves testing the eigenvalues of a sa- 
mple covariance matrix in order to estimate  
the number of the equal smallest eigenvalues 
of the true covariance matrix that is based on 
the information theoretic criterion (ITC) [33]. 

Classifying patients as AD versus normal is 
also a major goal in the diagnosis of AD. We 
begin by describing how to extract features 
from different groups of subjects. In diverse 
applications across various fields, support ve- 
ctor machines (SVMs) turn out to be one of  
the most effective feature extraction methods  
[34-38] that can be mathematically simplified 
using optimization techniques [39]. 

In this paper, we first describe the methods 
used in our experiments and the cohort studied 
in the Methods section. Results of our analyses 
are detailed in the results section, followed by a 
discussion and conclusion.

Materials and methods

Magnetic resonance images

Data used in the preparation of this article 
were obtained from the Alzheimer’s Disease 
NeuroimagingInitiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 
as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The pri- 
mary goal of ADNI has been to test whether se- 
rial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), otherbiologi-
cal markers, and clinical and neuropsychologi-
cal assessment can be combined to measure 
the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD).

The MRI data used in this paper is from the 
Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), which has recruited over 800 adults, 
aged 55 to 90, from 55 initially planned sites 
across the United States and Canada [40] (la- 
ter extended to 59 sites) [41]. In the initial  
stage of the study, approximately 200 cogni-
tively normal individuals were followed for th- 
ree years; 400 subjects with MCI were fol- 
lowed for three years; and 200 patients with 
early AD were followed for two years. Later on, 
these time periods were extended and more 
subjects were added [42]. Quality control pro-
cedures were applied to ensure that the cor- 
rect scan protocol, orientation, and angula- 
tions were used [40]. ADNI data has been  
classified using SVMs in the past [43].

In our study we chose the 1.5 T T1-weighted 
MRI screening scans that can be used as ba- 
seline scans for our following research sub- 
jects with the MRIs in which extreme detect- 
ed deformations were excluded. We randomly 
picked MRIs and constructed three groups of 
MRIs: group AD included 70 MRI images of AD 
patients, group MCI was composed of 98 sub-
jects with MCI, and 150 cognitively normal indi-
viduals’ MRIs were included in group HC. Each 
group of MRI gray matter images, segmented 
from the MRI data [35], shared a similar num-
ber of voxels that could clearly be distinguish- 
ed from an MRI viewer like MRIcro [44], which 
offers a mean image after preprocessing. Tho- 
se images with a largely deviated number of 
voxels were abandoned in advance to improve 
classification. The final smoothed gray matter 
images with voxel dimensions of 3 × 3 × 3 mm3 
had all gone through a series of preprocessing 
of normalization, interpolation, and smoothing 
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Table 1. Simulation results of MDL and MIC
k 1 2 3 4 5 6
Test 1: q = 2
MDL 34.738 35.7737 43.8276 52.3569 58.3623 62.1698
MIC 43.6486 42.4132 47.3038 52.3559 57.6437 63.4953
Test 2: q = 2 (The position of sources were changed)
MDL 150.1347 38.6703 45.7595 53.2579 59.0382 62.1698
MIC 150.1087 43.3698 47.6558 52.913 58.326 63.4953
Test 3: q = 3
MDL 499.7452 78.2846 47.6271 53.5419 58.8385 62.1698
MIC 483.2545 76.4261 47.7218 52.38 57.8054 63.4953

using the SPM8 toolbox that we will discuss 
later in the preprocessing section. Our goal was 
to compare AD images with HC ones, and MCI 
images with HC images, respectively, and draw 
out features from these comparisons. A brief 
summary of the participants’ demographics 
and dementia status is listed in Table 2. This 
table demonstrates the participants’ statistical 
gender, age, education, socioeconomic, and 
clinical dementia rating information. The num-
ber of participants in each group is listed in col-
umn Num. Corresponding columns show the 
mean value of the mini-mental state examina-
tion (MMSE), the age and weight of these three 
groups, and the number of people with the spe-
cific scale value of GDS total score (GDSCALE), 
CDR, Modified HachinskiIschaemic scale 
(HMSCORE), and sex.

Overview

Information theory criteria overview: We intend-
ed to use SBM to study MR image data, which 
involves the procedure of ICA; however, to avoid 
choosing the number of independent compo-
nents randomly and arbitrarily, we calculated 
the number by a principle method. A commonly 
used ITC for order selection [45], AIC [46], is 
developed based on the minimization of the 
Kullback-Leibler divergence between the true 
model and the fitted model. AIC is extended by 
Cavanaugh as the Kullback-Leibler information 
criterion (KIC) [47] using a symmetric Kullback-
Leibler divergence between the true and fitted 
models. MDL criterion is developed based on 
the minimum code length.

Although these two approaches have similar 
structures, each of them has their own special-
ties [48-50]. AIC has the advantage of perform-
ing well for those “difficult” problems when 
large eigenvalues are not much bigger than the 

smallest eigenvalues, but is 
inconsistent and tends to overes-
timate the model order for the 
easier cases. MDL on the other 
hand, performs with extreme reli-
ability for most cases but falls 
short of AIC’s performance for 
difficult cases [51]. Here, we 
come up with a question: is there 
any approach that can leverage 
both criterions’ advantages with-
out also absorbing their disad- 
vantages?

The minimum probability of error criterion 
(introduced by Douglas B. Williams [48]) based 
on the theory of multiple hypothesis tests, per-
forms better than either AIC or MDL. Here, we 
call this approach modified ITC, and symbolize 
it as MIC. The equation for MIC can be summa-
rized as equation 1:
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multivariate gamma function. To testify the 
availability of MIC compared to MDL, we make 
use of the resulting eigenvalues of Mati Wax 
and Thomas Kailarth’s simulation [33] in which 
seven sensors specifically receive data sent by 
several sources in different directions and are 
independently distributed. A hundred samples 
are extracted from each sensor so that N=100. 
The number of signal sources (the value of q) is 
changed to see whether or not MDL and MIC 
can correctly offer a corresponding estimation 
of the source number. The results of these 
tests are displayed in Table 1.

From Test 1, MIC reached a minimal value when 
k was 2, while MDL was smallest when k was 1. 
The reason why MDL, in this case, missed the 
right source number, is that this case is what 
we called a “difficult case” and it is one, like we 
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of findings pertaining to some particular ca- 
ses,a number of morphometric features may 
be more difficult to quantify by inspection. 
While the VBM approach is not biased to one 
particular structure, it even-handedly and com-
prehensively assesses anatomical differences 
throughout the brain.

Compared to VBM, which involves the process 
of pre-processing, statistical analysis, and sta-
tistical maps, SBM [31] derived from VBM also 
includes ICA between the pre-processing step 
and the statistical analysis step as shown in 
Figure 1.

With VBM, the procedure is quite straightfor-
ward and generally involves the following two 
steps: first, in the pre-processing step it spa-
tially normalizes high-resolution images from 
all the subjects into the same stereotactic 
space that is followed by segmenting the gray 
matter from the spatially normalized images 
and smoothing the gray-matter segments. 
Second, to do the statistical analysis, voxel-
wise parametric statistical tests comparing  
the smoothed gray matter images from the 
groups are performed. Corrections for multiple 
comparisons are made using the theory of 
Gaussian random fields.

Identical to VBM, SBM applies the same pro-
cess in the pre-processing step and the stati- 
stical analysis step with the only difference 
being that it carries out ICA. ICA is a statistical 
and computational technique for revealing hid-
den factors that underlie sets of random vari-
ables, measurements, or signals, before per-
forming statistical analysis. ICA defines a ge- 
nerative model for the observed multivariate 
data that is typically given a large database of 
samples and, in the model, the data variables 
are assumed to be linear or a nonlinear mixture 
of some unknown latent variables; the mixing 
system is also unknown. The latent variables, 
called the independent components, sources, 
or factors, are assumed non-Gaussian and 
mutually independent, and can be found by 
ICA. As a result, ICA performed here can identi-

mentioned above, with which MDL is ineffec-
tive. In Test 2, the position of those two sources 
was regulated and both criterions received the 
correct number of 2. In Test 3, one more source 
was added and after the same calculation.

From the results of the three simulations, MIC 
could correctly identify the right number of 
sources that we set. MDL failed in Test 1 to 
expose a shortcoming that needs to be avoid-
ed. Although we cannot directly conclude that 
MIC performs better than AIC in these three 
simulations, we can say that MIC and MDL 
share more similarity than MIC and AIC, and 
that this similarity will guarantee that MIC, like 
MDL, performs more stably over most cases 
that would be certified in the following experi-
ment with the subject data. As a result, we 
decided to use MIC during our study to esti-
mate the independent components before we 
actually carried out ICA.

SBM overview

Deformation-based morphometry (DBM) and 
TBM are two computational neuro-anatomical 
methods for studying brain shapes based on 
deformation fields obtained by the nonlinear 
registration of brain images. When comparing 
groups, DBM uses deformation fields to identify 
differences in the relative positions of struc-
tures within subjects’ brains. TBM can refer to 
those methods that localize the differences in 
the local shapes of brain structures and can be 
used to produce statistical parametric maps of 
regional shape differences.

VBM is another class of techniques that can  
be applied to some scalar function of the nor-
malized image. When VBM is compared with 
TBM at small scales that need to compute very 
high resolution deformation fields, it is sim- 
ple and pragmatic in addressing small-scale 
differences [28, 29]. Simply speaking, VBM 
involves a voxel-wise comparison of the local 
concentration of gray matter between two 
groups of subjects. Although these earlier mor-
phometric measurements resulted in a wealth 

Table 2. The summary of participants’ clinical status

Group Num. MMSE GDSCALE 
(0/1/2/3/4/5/6)

CDR 
(0/0.5/1)

HMSCORE 
(0/1/2/3/4) Age Weight Sex 

(F/M)
AD 70 22.96 ± 1.9 15/20/15/8/9/2/1 0/24/46 26/38/3/3/0 77.15 ± 6.2 72.32 ± 12.0 30/40
MCI 98 26.95 ± 1.5 16/32/21/14/9/6/0 0/98/0 37/52/4/4/1 76.91 ± 5.7 76.35 ± 11.9 39/59
HC 150 29.17 ± 0.7 79/41/17/8/4/1/0 150/0/0 84/59/3/4/0 75.69 ± 3.8 75.63 ± 12.7 67/83
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fy the potentially natural implicit groupings in 
the data that possess the target of our study  
to determine the significantly differentiating 
natures among groups.

Procedure

The whole procedure of the analysis is sum- 
marized in Figure 1. Following the procedure 
described above, we performed the analysis of 
the MRI data. All the gray matter images of 70 
AD patients, 98 MCI subjects, and 150 healthy 
subjects were divided into three different gr- 
oups, labeled AD, MCI and HC, respectively. 

Preprocessing

As we discussed before, pre-processing is the 
basis of our subsequent analysis and calcu- 
lation [52]. We conducted pre-processing using  
Matlab toolbox SPM8 [53] that, on one hand, is 
used to realize the unification of brain volume 
in order to locate a specific voxel of different 
images in the same spatial position. On the 
other hand, it is used to increase the SNR of the 

data and eliminate the nuances among differ-
ent subjects’ brain structures. First, we reali- 
gned all images using a least squares approach 
and a six-parameter (rigid body) spatial trans-
formation. Then we spatially normalized MRI 
images into a standard space defined by the T1 
template image that conforms to the space 
defined by the ICBM, NIH P-20 project and is 
approximate to that space described in the 
atlas of Talairach and Tournoux [54]. After the 
rough normalization, all the images were 
smoothed with a Gaussian kernel to suppress 
anatomical noise and affects. Lastly, we ex- 
tracted gray matter images by segmentation. 
All the subsequent processes were applied to 
the gray matter images segmented from the 
MRI data [35].

Independent component estimation

Since we have pre-processed the images into 
gray matter images, we came to the next pro-
cessing stage: ICA. Here we separate the ICA 
processing step into two parts [55]. One is  

Figure 1. The framework of the whole processing. First, all MR images are normalized into a template, then seg-
mented and smoothed. Next, the normalized gray matter images are analyzed using ICA. Finally, features extracted 
based on ICA are fed into a SVM-based classifier for the diagnosis of individuals as AD, MCI, or HC subjects.
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the independent components estimation that 
should be carried out beforehand, and the 
other is the specific ICA that we usually mean 
when we speak of ICA [56]. There is another 
MATLAB toolbox, called GIFT [31, 57], that we 
found to be quite useful in our analysis. It is 
often used to perform Group ICA of functional 
MRI images. With plenty of reliable and useful 
programs integrated into it, GIFT is an excellent 
reference library.

To estimate the number of independent com- 
ponents, we used the modified MIC that was 
described in the analysis above. We sub-sam-
pled the data matrix of gray matter images to 
generate an independently and identically dis-
tributed (IID) image set for the component esti-
mation. The judgment of whether the dataset 
meets the IID requirement is made by calculat-
ing the entropy rate and comparing it to the 
entropy rate of an IID Gaussian random pro-
cess of the same variance and data length. 
Once the entropy rate reaches that threshold 
value, the data can be viewed to meet the IID 
requirements. Then the MIC can be applied.

We used the estimated number of independent 
components as one input parameter of ICA. 
Here, we realize that it is necessary to have a 
simple, but clear, understanding of ICA.

Independent components analysis 

ICA defines a generative model for the observed 
multivariate data [58-60] in which the data 
variables are assumed to be a linear or nonlin-
ear mixture of some unknown latent variables, 
and the mixing system is also unknown. The 

latent variables are assumed non-Gaussian 
and mutually independent, and they are called 
the independent components of the observed 
data. ICA is typically modeled as Equation 2.

X = A × S                                                                (2)

The model is also demonstrated in Figure 2 in 
which X represents the observed multivariate 
data. Each row of X is resized from one image 
so that the number of columns is equal to the 
number of voxels in one image. X is decom-
posed into mixing matrix A and source matrix S. 
Each row of A consists of all the independent 
components in one image, while each column 
of A is equivalent to one component of all imag-
es. The source matrix S, which contains the 
information of voxels, can be used to recon-
struct images.

Component analysis

We run the two-sample t-test the way we had 
conceived above, and we get the components 
that we need. The p-value we set in order to 
determine the choice of components was 0.05, 
which is a typical threshold value in a two-sam-
ple t-test [61-63]. As mentioned before, matrix 
S holds the related information between voxels 
and components, so it can be used to realize 
the visualization of those components we have 
extracted. To do it, every row of source matrix 
was reshaped into a 3D image, scaled to the 
unit standard deviation, and fit in a threshold at 
|z| > 3.0. Then, the images of the components 
that we have chosen were overlaid on the nor-
malized template image [64]. We could also 
transform the coordinates of the significant 

Figure 2. A model of ICA. Each row of matrix X represents the voxel values from one MRI and after the decomposition 
mixing matrix A and source matrix S come into being. Each column of A can be figured as one component composite 
of information of all MRIs, and each row of S with the same number of voxels in one specific MRI can be used to 
realize the visualization of the component.
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Figure 3. Independent components discovered after ICA. Different colors represent different sources. Red, compo-
nent 1; blue, component 2; green, component 4; pink, component 11; orange, component 14.

components from the MNI coordinate system 
to the coordinates of the standard space  
of Talairach and Tournoux [57]. The trans-
formed coordinates were then inputted into  
the TalairachClient, a Java application for find-
ing individual and batch labels, which was creat- 
ed and developed by Jack Lancaster and Pet- 
er Fox at the Research Imaging Center at the 
University of Texas Health Science Center, San 

Antonio, which is available at http://www.talai-
rach.org/. The output of the TalairachClient  
displayed summarized labels of the compo-
nents we needed.

Classification

To perform classification, we first needed to 
determine the appropriate data matrix for train-
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Table 3. Talairach labels for regions of significant sources (AD-HC)

Source name Brodmann area
Volume (mm3)
Left Right

Source 1: Component 4
Postcentral Gyrus 3, 2, 1, 5, 40, 43 54 37
Superior Temporal Gyrus 22, 21, 41, 38 106 88
Insula 13, 22 121 108
Rectal Gyrus 11 12 13
Sub-Gyral 20, 21, 10, 6, Hip 198 171
Middle Frontal Gyrus 6, 11, 8, 47, 9 69 77
Lingual Gyrus 18, 19 44 54
Extra-Nuclear 13, CC, AC 105 89
Middle Temporal Gyrus 21, 22, 38, 39 38 57
Inferior Parietal Lobule 40 69 60
Thalamus Pul, AN, VLN, MDN 55 66
Precuneus 7, 31, 23, 19 84 49
Parahippocampal Gyrus 19, 30, 35, 34, 37, Hip, Amy 40 69
Medial Frontal Gyrus 9, 10, 6, 11 144 129
Cingulate Gyrus 32, 24, 31, 23 121 93
Caudate CH, CB, CT 15 20
Anterior Cingulate 25, 32, 24, 10 57 61
Precentral Gyrus 4, 44, 6, 9 49 51
Superior Parietal Lobule 7 14 13
Supramarginal Gyrus 40 8 10
Cuneus 18, 30, 19, 17, 23, 30 73 51
Inferior Frontal Gyrus 47, 45, 11, 44, 46, 9, 13 122 120
Paracentral Lobule 31, 5, 6, 7 25 18
Superior Frontal Gyrus 8, 9, 6, 11 87 93
Inferior Temporal Gyrus 37, 20, 21 20 14
Transverse Temporal Gyrus 42, 41 11 5
Posterior Cingulate 30, 31, 29 35 12
Uncus 28, 20, 36, Amy 8 21
Subcallosal Gyrus 25, 47 8 1
Fusiform Gyrus 37, 19, 20 33 27
Middle Occipital Gyrus 19, 18 17 11
Orbital Gyrus 11, 47 13 12
Lentiform Nucleus Pu 4 15
Inferior Occipital Gyrus 18 8 3
Superior Occipital Gyrus 19 4 3
Source 2: Component 2
Inferior Parietal Lobule 40, 39 72 99
Superior Temporal Gyrus 42, 38, 22, 13, 41, 21, 39 195 175
Postcentral Gyrus 43, 5, 3, 40 65 106
Insula 13, 40, 41 84 101
Inferior Frontal Gyrus 44, 47, 9, 45, 10, 11 58 88
Supramarginal Gyrus 40 29 21
Fusiform Gyrus 37, 19 8 22
Middle Occipital Gyrus 19, 18, 37 78 70
Lingual Gyrus 19, 18, 17 93 76

ing and testing. The num-
ber of independent compo-
nents was estimated, whi- 
ch is represented as N. 
After ICA, we obtained the 
mixing matrix A and source 
matrix S. We figured since 
we had achieved N differ-
ent independent compo-
nents, we had caught N 
independent source areas 
at the same time. Common 
sense dictates that AD and 
MCI patients suffer great- 
er atrophy of inner brain 
structures than do HCs 
[65-68]. As a result, we 
decided to count our sub-
jects’ number of voxels in 
each source region, and 
each subject could obtain 
N different numbers of vo- 
xels in different regions. 
Naturally we get N colu- 
mns of attributes. We also 
noticed that each subject 
of ADNI received a variety 
of clinical examinations, 
which is how a value like 
MMSE was obtained. All 
these values (to some ex- 
tent) differentiate patients 
from HC, and they display  
a significant evaluation pr-
incipal in examining and 
determining the degree of 
dementia and the duration 
of disease [69, 70]. Given 
this consideration, we ex- 
panded the attribute mat- 
rix with another three col-
umns of attributes: MMSE, 
GDTOTAL and HMSCORE. 
Finally, we constructed a 
new attribute matrix to be 
used in the following clas-
sification and assigned 1 
as the label value for one 
group’s components and  
-1 for the other [71]. In con-
sidering the situation that 
attributes in greater nume- 
ric ranges may dominate 
the classification, we sca- 
led the attribute data. As a 
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Precuneus 7, 31, 19, 23 136 104
Cingulate Gyrus 31, 24, 32, 23 59 33
Extra-Nuclear CC 12 24
Posterior Cingulate 30, 31, 29, 23 58 53
Sub-Gyral 21, Hip, CC 38 53
Cuneus 17, 23, 7, 19, 18 147 126
Middle Temporal Gyrus 21, 39, 37, 22, 38, 19 111 194
Superior Parietal Lobule 7 19 19
Precentral Gyrus 4, 6, 9, 44, 43 95 135
Paracentral Lobule 31, 6, 5 17 10
Angular Gyrus 39 12 19
Transverse Temporal Gyrus 42, 41 24 27
Inferior Temporal Gyrus 20, 37, 19 11 16
Anterior Cingulate 32, 24, 25, CC 29 15
Middle Frontal Gyrus 11, 6, 9, 10, 8, 46 51 62
Parahippocampal Gyrus 28, 36, 35, 19, 34, 30, 27, 37 58 61
Superior Occipital Gyrus 19 11 1
Inferior Occipital Gyrus 18, 19 20 8
Uncus 36, 28, 34, 20 5 12
Medial Frontal Gyrus 9, 10, 6, 32, 25, 11 21 35
Superior Frontal Gyrus 10, 8, 6 4 10
Subcallosal Gyrus 34, 25 5 4
Thalamus Pul 2 4
Rectal Gyrus 11 1 3
Lentiform Nucleus Pu 0 2
Source 3: Component 14
Insula 13 66 67
Middle Temporal Gyrus 39, 20, 38, 21, 19 128 127
Inferior Temporal Gyrus 20, 21, 37 32 30
Precuneus 7, 31, 39, 31 34 39
Cingulate Gyrus 24, 23, 31, 32 155 135
Middle Frontal Gyrus 8, 10, 47, 9, 46, 11 298 278
Superior Frontal Gyrus 10, 11, 8, 9 232 259
Medial Frontal Gyrus 9, 10, 25, 11, 6, 25 126 115
Middle Occipital Gyrus 19, 18, 37 30 50
Parahippocampal Gyrus 34, 35, 28, 36, 37, Amy, Hip 48 32
Superior Temporal Gyrus 22, 38, 39, 13 158 182
Precentral Gyrus 6, 4, 9, 44, 13 93 97
Cuneus 19, 18, 17, 23, 30 19 10
Inferior Frontal Gyrus 47, 45, 46, 10, 44, 13, 11, 9 166 138
Sub-Gyral 6, 20, 7, CC 72 86
Extra-Nuclear 13, CC, OT 48 45
Posterior Cingulate 30, 31, 29, 23 35 35
Uncus 36, 28, 34, Amy 40 30
Paracentral Lobule 4, 31, 6 9 4
Orbital Gyrus 11, 47 14 11
Inferior Parietal Lobule 40, 7 58 56
Anterior Cingulate 32, 33, 24, 25, 10 66 67
Lentiform Nucleus Pu 8 15

result, the training matrix 
was comprised of 50% of 
the samples for the follow-
ing processing. Then we 
used the other 50% of the 
attribute matrix as our test-
ing matrix to find out the 
effectiveness of the model 
we had generated from the 
training step. Here, we ca- 
lled on another Matlab tool-
box LIBSVM [34, 72], de- 
veloped by Chih-Jen Lin of 
the National Taiwan Uni- 
versity for help. Two impor-
tant functions of this SVM 
toolbox are the use of tra- 
ining data to generate a 
model and the use of the 
outcome model to predict 
the class-belonging of the 
testing data.

Results

ICA results

We first compared the ima- 
ges between group AD and 
group HC, and then we  
compared the images be- 
tween group MCI and gr- 
oup HC in the same way. 
The results are explained 
below.

AD vs. HC

The number of indepen- 
dent components analyz- 
ed under the previous es- 
timation was 17. After that, 
the two-sample t-test was 
used to detect those sig- 
nificant components, and 
resulted in six independent 
components (out of the 17 
components) being tested 
to show a p-value less th- 
an 0.05. Then, one compo-
nent that implied obvious 
unimportant border infor-
mation was excluded, and 
the coordinates of the five 
remaining components we- 
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Superior Parietal Lobule 7 9 21
Transverse Temporal Gyrus 42, 41 6 18
Supramarginal Gyrus 40 6 20
Thalamus MDN, AN, Pul 11 11
Postcentral Gyrus 2, 3, 43, 40, 5, 1, 7, 4 89 65
Rectal Gyrus 11 23 10
Fusiform Gyrus 20, 19, 37 21 20
Angular Gyrus 39 10 14
Lingual Gyrus 18, 17 7 12
Superior Occipital Gyrus 19 7 6
Inferior Occipital Gyrus 18, 17 5 14
Subcallosal Gyrus 25 2 2
Caudate CH 4 1
Source 4: Component 11
Thalamus Pul, VPLN, MDN, VPLN, VLN, MB 32 37
Superior Temporal Gyrus 38, 22, 42 15 50
Precuneus 7, 23, 31, 39 40 20
Precentral Gyrus 4, 6, 44, 3 54 72
Orbital Gyrus 11, 47 0 5
Middle Temporal Gyrus 39, 37, 22, 38, 21, 20 36 57
Medial Frontal Gyrus 9, 11, 10, 6, 8, 25 29 33
Postcentral Gyrus 3, 43, 4, 5, 40, 2, 1, 7 43 67
Cuneus 18, 30, 19, 17, 7 47 47
Middle Frontal Gyrus 9, 6, 11, 8 22 33
Lentiform Nucleus Pu 5 5
Posterior Cingulate 31, 23, 30 29 13
Cingulate Gyrus 31, 24 35 14
Extra-Nuclear 13 36 44
Superior Frontal Gyrus 11, 9, 6, 8, 10 16 30
Inferior Parietal Lobule 40 25 37
Inferior Frontal Gyrus 47, 11, 45, 44, 9 29 45
Paracentral Lobule 31, 6, 5 7 6
Middle Occipital Gyrus 18 27 24
Uncus 20, 28, Amy 17 17
Lingual Gyrus 18, 19, 17 42 29
Anterior Cingulate 32, 24, 25 18 23
Parahippocampal Gyrus 36, 35, 34, Amy 30 31
Insula 13 8 57
Fusiform Gyrus 20 9 6
Inferior Temporal Gyrus 20, 21, 37 3 10
Caudate CH 2 3
Inferior Occipital Gyrus 19, 18 10 8
Superior Parietal Lobule 7 2 3
Subcallosal Gyrus 47 1 1
Supramarginal Gyrus 40 4 3
Source 5: Component 1
Middle Occipital Gyrus 19, 18, 37 67 88
Superior Frontal Gyrus 11, 10, 6, 9, 8 51 73
Medial Frontal Gyrus 25, 6, 10, 32, 8, 9 36 36

re transformed and their 
Talairach labels summari- 
zed. Also, we made the vi- 
sualization of the five av- 
ailable components, com-
ponent 1, component 2, 
component 4, component 
11 and component 14, as 
is shown in Figure 3. Their 
p-values can be listed as 
1.39 × 10-8, 2.24 × 10-6, 
0.0024, 0.012, 0.017, re- 
spectively, so we can rear-
range the five components 
in ascending order by their 
p-values. As a result, we 
had five sources represent-
ing five different areas that 
significantly decrease in 
the gray matter of AD pa- 
tients’ images when com-
pared to HCs.

The detailed Talairach la- 
bels of these five sources 
are listed in Table 3 in ord- 
er of increasing p values 
(1.39 × 10-8, 2.24 × 10-6, 
0.0024, 0.012, 0.017). The 
areas involved in each so- 
urce with the correspond-
ing Brodmann area were 
arranged in the first two  
columns. The volumes, in 
cubic millimeter, of the tar-
get areas in the left cere-
brum and right cerebrum 
were also displayed in the  
right two columns. 

MCI vs. HC

Using the MIC criteria, the 
estimated independent co-
mponents were found to be 
11. From these 11 compo-
nents, components 5 and 
10 were two significant 
components with p-values 
under 0.05 that could be 
used to differentiate MIC 
subjects from healthy ones. 
The visualization of these 
two components appear in 



SVM classification of ADNI MRI and psychological testing data

16014	 Int J Clin Exp Med 2017;10(12):16004-16026

Precuneus 7, 31, 19, 39 65 80
Middle Temporal Gyrus 21, 22, 19, 37, 39, 38 149 201
Middle Frontal Gyrus 6, 8, 9, 11, 10 83 121
Superior Temporal Gyrus 38, 22, 42, 21, 39 77 116
Angular Gyrus 39 17 29
Inferior Frontal Gyrus 47, 11, 45, 46 29 50
Posterior Cingulate 29, 30, 23 37 33
Parahippocampal Gyrus 36, 19, 30, Hip 12 25
Inferior Parietal Lobule 40, 7 50 28
Inferior Temporal Gyrus 20, 19, 37, 21 43 65
Anterior Cingulate 24, 32 12 12
Thalamus Pul, VPLN, MDN, MB 19 20
Superior Parietal Lobule 7 12 21
Precentral Gyrus 6, 44, 9, 4 42 36
Sub-Gyral 6, 20, 7, 8, Hip, CC 79 99
Extra-Nuclear 13, CC 11 37
Inferior Occipital Gyrus 18, 19 24 9
Lingual Gyrus 18, 17, 19, 30 13 21
Cingulate Gyrus 31, 24, 32 14 9
Supramarginal Gyrus 40 10 18
Uncus 36, 28, 34, Amy 10 30
Fusiform Gyrus 20, 37 23 33
Rectal Gyrus 11 5 2
Paracentral Lobule 5, 31 13 15
Postcentral Gyrus 2, 3, 40,43, 7 19 27
Orbital Gyrus 11, 47 1 7
Insula 13 19 35
Cuneus 18, 17, 18 40 30
Superior Occipital Gyrus 19 4 12
Caudate CT 0 1
Abbreviations: AC = Anterior Commissure, Amy = Amygdala, AN = Anterior Nucleus, CB 
= Caudate Body, CC = Corpus Callusum, CH = Caudate Head, CT = Caudate Tail, Hyp 
= Hpyothalamus, Hip = Hippocampus, LGP = Lateral Globus Pallidus, MB = Mamillary 
Body, MDN = Medial Dorsal Nucleus, OT = Optic Tract, Pu = Putamen, Pul = pulvinar, 
VLN = Ventral Lateral Nucleus, VPLN = Ventral Posterior Lateral Nucleus. 

averaged values of accura-
cy, sensitivity, and speci- 
ficity. The number of true 
positives (TP) denote the 
number of patients correct-
ly classified; TN, the num-
ber of true negatives; FP, 
the number of false po- 
sitives; and FN, the numb- 
er of false negatives, with  
the classification accura- 
cy defined as accuracy =  
(TP+TN)/(TP+FP+TN+FN), in 
which the specificity is de- 
fined as sensitivity = TP/(TP 
+FP), and the sensitivity as 
specificity = TN/(TN+FN).

Discussion

Why ICA?

Our summarized results  
are as follows: first, the vol-
ume of gray matter in bo- 
th MCI subjects and AD pa- 
tients’ brains had declined,  
with the difference being 
that the AD patients’ gr- 
oup had a greater decline. 
Second, the Talairach la- 
bels anatomically implied 
that (compared to healthy 
people) MCI subjects suf-
fered gray matter loss ma- 
inly in the cerebellar tonsil, 
culmen, tuber, declive, infe-
rior semi-lunar lobule, uvu- 
la and fusiform gyrus, whi- 
le AD patients also lost gray 

Figure 4, and the Talairach label of each is  
summarized in Table 4.

Classification results

Since we randomly chose 50% of the sam- 
ples for training, a different dataset consist- 
ing of different subjects may result in diffe- 
rent outcomes. To handle this, we carried out 
the classification multiple times so that we 
could get the statistically averaged value. 
Figure 5 displays the results of our 100 analy-
ses in two sets of comparisons, and in Table  
5, the part of independent components and  
clinical measurements (ICs+CLI) display the  

matter in areas like the parahippocampal 
gyrus, posterior cingulate, temporal gyrus, and 
so on. Our results were consistent using our 
research approaches, but compared to previ-
ous studies. One difference experienced was 
that the lost gray matter in MCI that is, to so- 
me extent, the preliminary stage of AD. Third, 
since we have achieved the detailed Talairach 
labels of the declined areas, it is possible for 
related experts to do more in-depth research  
in the field.

We have made clear that the clinical exami- 
nation value like MMSE is a significant indica- 
tor of the clinical diagnosis of dementia. So the 
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Figure 4. Sources discovered between groups MCI and HC. Red, component 5; blue, component 10.

questions are: how can those results express 
the effect of ICA? Is there a possibility that it  
is those clinical examination gains that have 
highlighted our classification accuracy? The fol-
lowing discussion shows our results. We took 
off the columns of voxel numbers from the at- 
tribute data matrix and re-constructed it wi- 
th just three columns: MMSE, GDTOTAL, and 
HMSCORE [69, 70]. Labeled as it had been 
before, the training matrix was built by random-

ly picking 50% of the rows of attributes from  
the new data matrix. A new model came out 
after training these data, and then the whole 
matrix was entered into the predictive function 
of LIBSVM. Similarly, to get rid of the exception-
al case, depending on single specific predic-
tion, we summed up 100 results and statisti-
cally averaged the value of all these 100 cases 
in Figure 6. This allowed us to come up with the 
average accuracy, specificity, and sensitivity at 
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Table 4. Talairach labels for regions of significant sources (MCI-HC)

Source name Brodmann area
Volume (cmm)
Left Right

Source 1: Component 5
Middle Frontal Gyrus 8, 11, 6, 9, 10, 46, 47 176 139
Inferior Frontal Gyrus 47, 9, 45, 11, 13, 44 124 115
Caudate CT, CB, CH 34 40
Parahippocampal Gyrus 19, 30, 20, 37, 36, Amy, Hip 63 79
Thalamus Pul, AN, MDN, LPN, VAN 63 63
Posterior Cingulate 31, 30, 29 24 25
Postcentral Gyrus 3, 2, 40, 5, 43 63 76
Middle Temporal Gyrus 21, 22, 39, 37 102 127
Cuneus 17, 30, 19 35 51
Fusiform Gyrus 19, 37, 20, 18 75 63
Superior Frontal Gyrus 6, 11, 9, 8, 10 169 123
Paracentral Lobule 5, 31, 6 24 28
Cingulate Gyrus 24, 32, 9, 31 38 30
Inferior Temporal Gyrus 20, 37, 21 50 38
Anterior Cingulate 32, 25, 10, 24 51 48
Extra-Nuclear 13, AC, CC, OT 165 140
Insula 13 138 137
Medial Frontal Gyrus 9, 8, 11, 10, 32, 6, 25 176 199
Rectal Gyrus 11 23 19
Sub-Gyral 21, 20, 6, 10, 13, 8, Hip, CC 264 185
Lingual Gyrus 18, 17, 19 63 37
Superior Temporal Gyrus 22, 38, 42 133 135
Precentral Gyrus 6, 4, 9, 44 112 95
Lentiform Nucleus Pu, LGP 17 27
Transverse Temporal Gyrus 41, 42 12 14
Inferior Parietal Lobule 40, 39 86 93
Precuneus 31, 7, 19 51 55
Middle Occipital Gyrus 19, 37, 18 39 28
Uncus 28, 36, Amy 8 20
Supramarginal Gyrus 40 2 16
Superior Parietal Lobule 7 15 12
Orbital Gyrus 47, 11 19 18
Angular Gyrus 39 4 3
Superior Occipital Gyrus 19 1 4
Inferior Occipital Gyrus 18, 19 6 11
Subcallosal Gyrus 25 5 8
Source 2: Component 10
Cingulate Gyrus 32, 31, 24 61 37
Sub-Gyral 21, 13, CC, Hip 67 78
Anterior Cingulate 32, 25, 24, 10 61 55
Insula 13, 40 81 117
Transverse Temporal Gyrus 41, 42 24 29
Posterior Cingulate 23, 31, 30, 29 53 44
Precuneus 31, 7, 23, 19 99 100
Superior Temporal Gyrus 22, 38, 41, 42, 21, 39 242 179
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Parahippocampal Gyrus 34, 28, 30, 35, 36, 27, 35, 19, Hip, Amy 112 72
Paracentral Lobule 31, 6, 5, 31 18 17
Cuneus 19, 17, 18, 30, 7, 23 101 81
Middle Frontal Gyrus 9, 6, 10, 46, 11, 8 65 61
Fusiform Gyrus 19, 18, 20, 37 29 33
Inferior Frontal Gyrus 47, 9, 44, 47,46, 45, 11 174 122
Middle Temporal Gyrus 22, 21, 19, 39, 38 112 132
Extra-Nuclear CC, AC 60 50
Precentral Gyrus 6, 4, 43, 44, 9 86 97
Superior Frontal Gyrus 10, 8, 11 52 43
Postcentral Gyrus 3, 40, 2, 43, 5 97 78
Medial Frontal Gyrus 9, 10, 6, 11, 8, 25 145 79
Middle Occipital Gyrus 18, 19, 37 19 30
Uncus 34, 28, 36, 20, 36 37 15
Lingual Gyrus 17, 18, 19 70 59
Inferior Parietal Lobule 40 75 50
Thalamus Pul, MDN, LPN, VAN 24 23
Inferior Temporal Gyrus 20, 37 11 17
Subcallosal Gyrus 25, 34 7 6
Caudate CH, CB 16 23
Supramarginal Gyrus 40 32 7
Rectal Gyrus 11 24 21
Orbital Gyrus 11, 47 22 13
Inferior Occipital Gyrus 17, 18 8 25
Lentiform Nucleus Pu, LGP 1 5
Superior Parietal Lobule 7 2 6
Superior Occipital Gyrus 19 1 6
Angular Gyrus 39 1 6

a similarly high level, with sensitivity at almost 
an identical level. The averaged accuracy, sen-
sitivity, and specificity after testing under this 
circumstance turned out to be 96.7%, 96.5%, 
and 96.9% for group AD, and 79.5%, 74.0%, 
85.1% for group MCI using only CLI, compared 
to 97.7%, 99.2%, 96.2% for groups AD and HC, 
and 87.8%, 86.0%, 89.6% for groups MCI  
and HC using both ICs and CLI. The latter’s re- 
lative poorer accuracy implied that classifica-
tion relying on the clinical examination values 
are unilateral and not all-inclusive. The ICA  
section of our trial provided better classifica-
tion capabilities. The averaged results of all 
those 100 experiments can be found in Table  
5 in which classifications between AD and HC, 
as well as MCI and HC, were both displayed. 
According to a different training set, Table 5 
was divided into three parts. In the Only ICs 
part, we showed the classification accuracy 
using only the numbers of voxels in each com-

ponent region based on ICA, while in the sec-
ond part the Only CLI were results of merely 
clinical measurements. The last one, the 
ICs+CLI, resulted from a combination of both 
feature sources. In Figure 7 we displayed the 
accuracy values of these three parts for better 
visualization.

We have chosen MIC as our independent  
component estimation criterion. To testify its 
superiority, we also used AIC and MDL to esti-
mate the number of independent components 
between group AD and group HC, and it turn- 
ed out to be 34 of AIC and 17 of MDL. As MDL 
shared the same independent component 
number, the significant components by the  
two sample t-test was also the same, since  
AIC showed great deviation from MIC in the 
resulting numbers. We imposed the same  
post-procedures to analyze the dataset, and 
components 2, 4, 5, 6, 8, 9, 11, 16, 19, 20, 22, 
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Figure 5. The classification accuracy, sensitivity, and specificity of 100 tests.

Table 5. Classification accuracy of AD or MCI 
from healthy controls
Training 
Sets Parameters AD vs. HC 

(mean ± sd)
MCI vs. HC 

(mean ± sd)
Only ICs Accuracy 93.6 ± 2.4 85.3 ± 2.4

Sensitivity 94.3 ± 3.8 82.1 ± 4.8
Specificity 93.0 ± 3.8 88.6 ± 5.0

Only CLI Accuracy 96.7 ± 2.0 79.5 ± 2.5
Sensitivity 96.5 ± 3.8 74.0 ± 4.8
Specificity 96.9 ± 2.4 85.1 ± 6.2

ICs+CLI Accuracy 97.7 ± 0.8 87.8 ± 2.7
Sensitivity 99.2 ± 0.7 86.0 ± 4.5
Specificity 96.2 ± 1.5 89.6 ± 4.4

23, 24, 25, 26, 27, 28, 29 and 33 showed mo- 
re of a difference between the two engaged 
groups. To get a clear visualization, here, we 
showed components 4, 5, 20, 24, and 33, 
which corresponded to the smallest five p val-

ues compared to other components in Figure  
8. Therefore, it was not hard to find that the 
resulting area was mostly compatible in the 
MIC result and in the AIC result. What we co- 
uld draw out was that the AIC result was sug-
gestive of more artifacts, such as showing 
sharp edges (e.g. component 2 with larger p 
value) appearing mainly in regions that do not 
contain gray matter (e.g. white matter or ven-
tricles), and so on.

In using structural MRI images for classifica- 
tion between AD, MCI and HC, researchers like 
Fan [34, 35, 73] extracted voxel-wise tissue 
probability as features for classification. Cor- 
tical thickness [74-76] was another source of 
features and was used in certain research. 
Hippocampal volumes of subjects were calcu-
lated and applied into classification as a fea-
ture by researchers like Gerardin [77, 78]. It  
can be revealed from this research that regi- 
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Figure 6. The classification accuracy, sensitivity, and specificity of 100 tests using only clinical measures.

ons such as the hippocampus, amygdala, ento-
rhinal cortex, uncus, temporal pole and para-
hippocampal regions are the top regions that 
are selected and closely interrelated to AD  
[79-81]. However, in this research, each only 
used partial information of these regions and 
therefore it could be improved upon. Besides, 
with sMRI and other modalities such as PET, 
the CSF also contains complementary infor- 
mation for the diagnosis of AD. Reports of  
combining biomarkers from different modali-
ties have been released. Among them, there 
were some practices concatenating all fea- 
tures from different modalities into a larger  
feature matrix [82, 83]. Researchers like Ye 
and Zhang [24, 84] further developed this 
method by using a kernel combination method 
to construct biomarkers from different modali-
ties into a unified feature matrix. We can see 
that these recent ways, to a certain extent, ta- 

ke into better consideration features that co- 
uld differentiate groups by combining more 
information of different modalities to reveal 
better results. The method we propose here 
considers almost all of the interested regions 
mentioned above that can be discovered from 
the table by way of ICA. Moreover, integrated 
with commonly used clinical measures, this 
method showed more satisfactory results. A 
future consideration is to use amethod that  
can explore the values of voxels and their num-
bers in those interested regions, and modify 
the way we comb values to extract both voxels 
and clinical measures.

Conclusion

In our study, we aimed to find innovative and 
useful information between AD patients and HC 
patients, and between MCI subjects and  
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Figure 7. Comparison among three classifications using different feature matrix. Only ICs: classification accuracy 
using only the numbers of voxels in each component region based on ICA; Only CLI: only clinical measurements were 
used to construct feature matrix; ICs+CLI: accuracy came out of the combination of both feature sources.

HC subjects. To reach this goal, we set up our 
experimental process using the following ste- 
ps: first, the pre-processing stage involved a  
set of conducts being applied to the subject 
dataset in order to make sure that all the data 
in the following steps met the IID requirement. 
Then we extracted the biological characters 
using ICA (or we can call this analyzing me- 
thod SBM). Compared with VBM, it is a multi- 
covariate approach that takes the spatial infor-
mation among coherent voxels into consider-
ation. Before we actually executed ICA, we compar- 
ed several common ITC and chose MIC to per-
form the independent components estimation. 
After all these, we analyzed the specific com- 
ponents that had been drawn out from the 

dataset and obtained visualization and gath-
ered the Talairach labels of all the significant 
sources. Lastly, we extracted features that  
significantly differentiated groups and classi-
fied them. The results we obtained reveal that 
AD patients’ brains change mostly in the are- 
as of the hippocampus, amygdala, and so on, 
as some research has already revealed. MCI 
subjects also experience brain tissue loss, but 
the volume of gray matter lost is far less, indi-
cating that MCI is, to some extent, the previous 
stage of AD. Since we are not professionals in 
psychiatry, the conclusions we can draw are 
limited. What we find gratifying is that our 
results are consistent with already-known re- 
search conclusions and can be additionally 
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Figure 8. Components 4, 5, 20, 24, and 33 using AIC to estimate the number of independent components.

helpful. ICA was brought into morphometry 
analysis, making it multivariate to better con-
sider spatial information among the neighbor-
ing voxels clustered in one source. MIC applied 
in our independent components estimation 
before ICA showed better results in terms of the 
number of independent components.The final 
classification revealed that ICA was a poten-
tially useful approach to analyze MRIs and to 
extract the features we needed.
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