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Abstract: This study evaluated the effects of electro-acupuncture (EA) on neuroplasticity associated with expression 
changes of neurotrophic factors (NTFs) and their receptors in rats subjected to spinal cord transection (SCT) at 
T10-T11 vertebral levels. Behavior evaluation showed that EA gave rise to a significant recovery in hindlimb locomotor 
(indicated by the scores of Basso, Beattie, Bresnahan) and sensory functions (assessed by the recording of cortical 
sensory evoked potential stimulation). The results of RT-PCR showed that mRNA expressions of CNTF, FGF-2 and 
TrkB were significantly upregulated, while these of NGF, PDGF, TGF-β1, IGF-1, TrkA, TrkC were concomitantly down-
regulated in the spinal segments caudal (CSS) to the site of transection following EA. Immunohistochemistry (IHC) 
staining demonstrated an increased number of CGRP fibers, GAP-43 fibers and Synaptophysin fibers in the CSS in 
EA rats. At the same time, few corticospinal fibers indicated by axonal tracing after injection of biotinylated dextran 
amine into the precentral gyrus, were found in the CSS in EA group. Together, our findings demonstrated that EA 
plays an important role in neuroplasticity in rats subjected to SCT. This could be attributed to the establishment of 
local circuits that may depend on the systematic regulation of NTFs and their receptors after longer EA treatment.
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Introduction

Functional recovery of neurons in the spinal 
cord after physical injury is essentially abortive 
in clinical cases. Spinal cord injury (SCI) often 
results in cell death, inflammation, tissue deg-
radation and the formation of a number of 
inhibitory molecules and extracellular matrix. 
The failure of axonal regeneration following SCI 
has been attributed to the non-permissive envi-
ronment and lack of neurotrophic support. 
Numerous therapeutic strategies attempt to 
overcome these negative factors and promote 
axon regeneration, including administration of 
growth factors [1, 2], tissue bridges [3, 4], vari-
ous cells types [5-8], artificial scaffolds [9, 10] 
and other various combinational treatments 
[11-15]. However, there is still a lack of effec-
tive treatments for spinal cord injuries.

Acupuncture has been practiced in China for 
thousands of years, which is availabe to treat 
patients suffering from SCI [16, 17], apoplexy 
[18, 19], ischemia [20] and inflammatory dis-
eases [21, 22]. Electro-acupuncture (EA) as an 
effective treatment method, has been shown to 
bring about functional recovery in patients with 
nervous system injury [23-25]. It was reported 
that EA could increase the number of synaptic 
terminals in lamina II of the spinal cord and 
nucleus dorsalis of the spinal cord in experi-
mental animals [26, 27], but the underlying 
mechanisms are largely unknown.

Many factors are known to influence neuronal 
plasticity following nerve injury. These include 
neurotrophic factors (NTFs) [28-35], pro- or 
anti-apoptotic factors [36], AMPA receptor acti-
vation [37], NMDA receptor activation [38], Nogo 
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restoration of motor functions by scores of 
Basso, Beattie, Bresnahan (BBB), sensory func-
tions by cortical somato-sensory evoked po- 
tentials (CSEP) at 14, 21, 28 days post opera-
tion (dpo). Then all animals were perfused with 
4% paraformaldehyde and morphological 
changes were investigated by BDA and IHC to 
evaluate the axonal regeneration and synaptic 
formation. 

Surgical procedures

Rats were deeply anaesthetized with 3.6% 
chloral hydrate (1 ml/100 g). A midline incision 
was made on the back and the muscles retract-
ed. T10 vertebral lamina was removed, and the 
spinal dura mater incised. The spinal cord 
between T10-T11 vertebral levels was then tran-
sected with a pair of micro scissors, and the 
incision was sutured. Procedures for sham-
operation were similar to that of spinal cord 
transection except that the spinal cord was 
untouched. All operated animals were allowed 
to recover without the administration of any 
drugs and thereafter housed in individual 
cages. During the postoperative time period, 
the bladders of the animals were manually void-
ed three times daily. 

Electro-acupuncture

The acupoints of Zusanli-Xuanzhong and Futu-
Sanyinjiao were selected, known to lie in L6 
dermatome. Zusanli is located 5 mm caudal to 
the anterior end of the fibular head; Xuanzhong, 
10 mm rostral to the anterior end of the lateral 
malleolus; Futu, 1.5 cm rostral to the lower end 
of the patella; and Sanyinjiao, 10 mm rostral to 
the posterior end of the medial malleolus. The 
acupoints were stimulated in pairs (Zusanli and 
Xuanzhong, or Futu and Sanyingjiao). And each 
pair was stimulated on alternate days at a fre-
quency of 98 HZ for 30 minutes every day. The 
stimulating electrodes were changed reversed-
ly after 15 min.

Reverse transcription polymerase chain reac-
tion (RT-PCR)

RT-PCR was used to determine the expression 
of NTFs and their receptors in each group. 
According to the manufacturer’s instruction, 
total RNA was extracted from each sample 
(weighing 100 mg) with Trizol reagent (Molecular 
Research Center, Inc, Cincinnati, USA). The con-

and Nogo receptor activation [39] and GAP-43 
expression [40]. The changes induced by EA to 
the central nervous system (CNS) is based on 
the changes in one or more of the above fac-
tors. A number of evidences were proposed 
that EA could alter the expression of endoge-
nous NTFs [41], proteins involved in the apop-
totic pathway [42] and inflammation factors 
[43], which might enhance neuroplasticity.

Although previous studies have shown that EA 
could induce the expression of NTFs and 
enhance spinal neuroplasticity after SCI [44, 
45], they often focused on the effects of one or 
two NTFs. No systematic analyses of NTFs after 
spinal cord transection (SCT) have been stud-
ied, especially using EA. The present study was 
therefore designed to investigate whether EA 
could induce systematic regulation of multiple 
NTFs and their partial receptors in the spinal 
segments caudal (CSS) to the site of transec-
tion in rats, the possible link to the recovery of 
sensory, motor functions and neuroplasticity 
was also investigated.

Materials and methods

Animals

Sprague-Dawley rats (approximately 200 g ea- 
ch) were obtained from the Laboratory Animal 
Center of Sichuan University. All experimental 
procedures complied with the Guidelines for 
the care and use of animals stipulated by the 
National Institute of Health (NIH), USA. The ani-
mals were divided into three groups. Group I 
rats served as sham-operated controls. Group 
II rats as SCT group were subjected to surgical 
spinal cord transection between the T10-T11 ver-
tebral levels. Group III rats as EA group were 
received SCT as above and EA treatment was 
administrated at the acupoints of zusanli, xuan-
zhong, futu and sanyinjiao, all located in the 
lower limb.

Rats in Group I was subjected to in situ hybrid-
ization (ISH) and immunohistochemistry (n = 8) 
to get the data of location of NTFs and their 
receptor. Another rats were divied into four sub-
groups consisting of 8 rats each in respective 
time point (1, 3, 7, 14 days), respectively, and 
then performed reverse transcription poly-
merase chain reaction (RT-PCR) to determine 
the mRNA expression level of gene.

Other animals consisting of sham, SCT, EA rats 
(n = 8 for each group) were used to evaluate the 
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centration was measured by using a Nano- 
drop spectrophotometer (ND-1000, VanoDrop, 
Wilmington, USA). Reverse transcription was 
performed using the Revert Aid First Strand 
cDNA Synthesis Kit (Fermentas, Lithuania, EU). 
This was followed by further PCR amplification 

probes of NTFs at 37°C for 12-16 hr in a moist 
chamber, followed by washing in decreasing 
concentrations of SSC, from 4× SSC (pH 7.0) at 
37°C for 20 min, 2× SSC (pH 7.0) at 42°C for 
20 min, 1× SSC (pH 7.0) at 48°C for 20 min and 
ending with 0.5× SSC (pH 7.0) at 50°C for 20 

Table 1. Primers for RT-PCR

Gene Primers Production 
(bp)

Annealing 
temparature 

(°C)
β-actin Sense: 5’GTAAAGACCTCTATGCCAACA3’

Antisense: 5’GGACTCATCGTACTCCTGCT3’
227 52.5

NGF Sense: 5’AAGCCCACTGGACTAAACT3’
Antisense: 5’ACCTCCTTGCCCTTGATG3’

370 51

BDNF Sense: 5’TCCCTGGCTGACACTTTT3’
Antisense: 5’ATTGGGTAGTTCGGCATT3’

466 50

NT-3 Sense: 5’CGTCCCTGGAAATAGTCATACGG3’
Antisense: 5’GACAGATGCCAATTCATGTTCTT3’

857 54

PDGF Sense: 5’CTGCTGCTACCTGCGTCTGG3’
Antisense: 5’GCACTGCACATTGCGGTTATT3’

391 55

TGF-β1 Sense: 5’GTGAGCACTGAAGCGAAAGC3’
Antisense: 5’TAATGGTGGACCGCAACAAC3’

332 54

CNTF Sense: 5’CTTTCGCAGAGCAAACACCT3’
Antisense: 5’CATCCCATCAGCCTCATTTT3’

422 52

IGF-1 Sense: 5’GGCACTCTGCTTGCTCACCTT3’
Antisense: 5’GCCTGTGGGCTTGTTGAAGTAAAA3’

130 57

FGF-2 Sense: 5’TCCCAAGCGGCTCTACT3’
Antisense: 5’ACTCCAGGCGTTCAAAGA3’

301 51

TrkA Sense: 5’GCTGGGAGCAGGAGGATTT3’
Antisense: 5’GATGCTGTTCCACGGCTTT3’

417 54

TrkB Sense: 5’GGTTCTACAACGGAGCCATAC3’
Antisense: 5’GTCTTCATAGAGGACTTCAGGGT3’

248 56

TrkC Sense: 5’AAGCCCACCCACTACAACAAT3’
Antisense: 5’AAAGAGGACCACCAGAAGGAC3’

252 54

Table 2. Probes of NTFs and receptor for In situ hybrid-
ization

NTFs Probes Length 
(bp)

NGF 5’GCTGTGATCAGAGTGTAGAACAACATGGAC3’ 30
BDNF 5’CCCAATGAAGAAAACAATAAGGACGCA3’ 27
NT-3 5’ATTACCAGAGCACCCTGCCCAAAGC3’ 25
PDGF 5’CCACACCAGGAAGTTGGCATTG3’ 22
TGF-β1 5’TAGATTGCGTTGTTGCGGTCCACCATTAGC3’ 30
CNTF 5’TCTCTTGGAGTCGCTCTGCCTCAGTCATCT3’ 30
IGF-1 5’AACGATCAGAGTAGTGGTATTTCACC3’ 26
FGF-2 5’CGGGAAGGCGCCGCTGCCGCC3’ 30
TrkA 5’CCTCCCACACGGTAATAGAT3’ 20
TrkB 5’CTTGGCTATTAGTGAGTCCCCATTGTTCA3’ 29
TrkC 5’CCTTGAGATGTCCGTGATGTTGATACTGGCGT3’ 32

of each cDNA sample 
using rat specific prim-
ers as shown in Table 1. 
The PCR reaction prod-
ucts were run on 1% 
agarose gels, and the 
size of the reaction pro- 
ducts determined by 
ethidium bromide stain-
ing. β-actin mRNA PCR 
product was used as an 
internal control.

In situ hybridization 

To determine the loca-
tion of mRNA expres-
sion of NTFs, the spinal 
cords in the sham oper-
ated rats was harvest-
ed, and 20 μm thick-
nesses frozen sections 
were got in cryostat 
microtome (Leica CM- 
1900, Germany). In situ 
hybridization was per-
formed at room temper-
ature unless otherwise 
indicated. The sections 
were fixed in 4% para- 

formaldehyde in 0.1 M PBS, pH 7.2, then 
further treated with 0.3% TritonX-100 
solution for 10 min and proteinase K (5 
μg/ml) at 37°C for 25 min. They were 
then re-fixed with 4% paraformaldehyde 
for 5 min, then immersed in 0.1 M PBS, 
and acetylated with 0.25% acetic anhy-
dride in 0.1 M triethanolamine (pH 8.0) 
to prevent non-specific binding of the 
probes. This was followed by washing in 
2× SSC (pH 7.0), then prehybridized in a 
hybridization solution (50% formamide, 
10% dextran sulfate, 1× Denhardt’s so- 
lution, 0.2 mg/ml Herring sperm DNA, 
and 10 mM dithiothreitol) without pro- 
bes at 37°C for 2 hr before hybridiza-
tion. They were then hybridized in 100 μl 
hybridization solution containing 1 μl 
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min. Sections were incubated at 37°C in 1% 
blocking buffer (Roche) for 1 hr, and reacted in 
1:1,000 sheep anti-digoxygenin-alkaline phos-
phatase (AP) antibody in 1% blocking buffer at 
4°C overnight. The AP activity was detected 
using nitroblue tetrazolium (NBT)/5-bromo-4-
chloro-3-indolyl phosphate (BCIP) substrate 
(Roche). The reaction productions were visual-
ized with blue and purple sedimentation and 
observed with a light microscope (Table 2). 

Immunohistochemistry

Sections in CSS were processed for immuno-
histochemistry as described previously [45]. 
They were subsequently incubated at 4°C over-
night with 2% goat serum containing rabbit 
polyclonal antibodies, ascribed as Table 3. This 
was followed by incubation in Reagents I and II 
from the PV-9000 Reagent Kit (Chemicon, Anti-
Rabbit/Mouse Poly-HRP IHC Detection Kit, 
USA). Finally, sections were detected by DAB 
staining. Negative control was performed by 
replacing the primary antibody with 2% goat 
serum to ascertain the specificity of antibody 
staining. Immunoreactive (IR) products were 
observed and photographed with a light micro-
scope (Leica, DMIRB, Germany) coupled with a 
computer assisted video camera.

BDA tracing

Animals were anesthetized at 4 weeks postop-
eration, and biotinylated dextran amine (BDA: 

Molecular Probes: 10% wt/vol solution in ster-
ile saline) was stereotaxically injected through 
craniotomy holes at depths of 1.5 mm below 
the cortical surface at 4 points distributed over 
the bilateral sensorimotor cortex (0.5 μl per 
injection). The animals were sacrificed after 2 
weeks and prepared for histology staining. The 
spinal cord was removed and post-fixed for 1 
day in 4% paraformaldehyde in 0.1 M PBS (pH 
7.2). Transverse sections (30 μm) were made 
on the injured site and spinal segments rostral 
and caudal to the lesion. Some of the sections 
were processed by strep-avidin-cy3 secondary 
antibody to detect the possible presence of 
BDA-labeled regenerating corticospinal tract. 
The remaining sections were used for immun- 
ohistochemistry.

Functional evaluation

Hindlimb locomotor functions: Hindlimb loco-
motor function was evaluated using the Basso, 
Beattie, Bresnahan (BBB) rat rating scale [46]. 
Motor performance of each animal was evalu-
ated during free movement in an open-field 
arena placed 90 cm above the ground to aid 
close observations of the rats. Assessments 
were performed at 1, 2, 3, and 4 weeks after 
injury. All the behavior evaluations were per-
formed at 8-9 am. Bladder expression was 
done, before commencing the testing. Scoring 
was done by three investigators who were 
trained professionally and had no knowledge of 
the operative procedure and survival time. At 
last the scores were averaged. 

Measurement of cortical somatosensory 
evoked potentials (CSEP)

The right common peroneal nerve was located 
based on surface landmarks and a stimulating 
electrode place over the nerve. A recording 
electrode was placed over the dura overlying 
the somatosensory cortex through a small cra-
niotomy (2 mm left of the midline and 2 mm 
anterior to the posterior fontanele). The refer-
ence electrode was inserted on the nose, and 
the ground electrode inserted on the tail. CSEP 
was recorded using a keypoint instrument 
(Medtronic, Minnesota, USA). The stimulus in- 
tensity was set high enough to produce a 
marked muscle twitch in the hind limb (ampli-
tude ~ 1.1 mA, duration of stimulation ~ 0.2 
ms, and frequency ~ 3 Hz). The CSEP tracing 
represented the average of 200 responses.

Table 3. Polyclonal antibodies of NTFs for IHC  
Primary antibody Dilution Source Company
NGF 1:1,00 Rabbit Chemicom
BDNF 1:500 Rabbit Santa
NT-3 1:1,000 Rabbit Chemicom
PDGF 1:1,000 Rabbit Chemicom
TGF-β1 1:20,000 Rabbit Chemicom
CNTF 1:2000 Rabbit Santa
IGF-1 1:200 Rabbit Chemicom
FGF-2 1:100 Rabbit Santa
TrkA 1:1000 Rabbit Santa
TrkB 1:500 Rabbit Santa
TrkC 1:800 Rabbit Chemicom
GAP-43 1:10,000 Rabbit Santa
Synaptophysin 1:500 Rabbit Chemicom
5-HT 1:1000 Rabbit RD
CGRP 1:500 Rabbit Chemicom



Systematic regulations of NTFs in SCT rats following EA

2095 Int J Clin Exp Med 2017;10(2):2091-2103

Statistical analysis

Statistical analyses were performed using the 
SPSS software version 17.0 (SPSS Inc., Chi- 
cago, IL., USA). The variables were investigated 
using visual (histograms, line graph) and ana-
lytical methods (Student’s t-test for BBB score, 
One-way ANOVA and LSD-q test for other data). 
Continuous variables were expressed as mean 
± standard deviation. The statistical signifi-
cance was defined as P<0.05. 

Results

Gene expression changes in the CSS 

mRNA expression for NGF, BDNF, NT-3, PDGF, 
CNTF, TGF-β1, IGF-1, FGF, TrkA, TrkB and TrkC 
could be detected in the spinal cord of rats in 
three groups. Following SCT, it showed a signifi-
cant increase in level of BDNF mRNA at 14dpo 
(P<0.05), FGF-2 mRNA at 1dpo (P<0.05), CNTF 
mRNA at 1 and 3dpo (P<0.05), PDGF and TGF-
β1 mRNA at 1, 3, 7 and 14dpo (P<0.05), and 
TrkB mRNA at 1, 7 and 14dpo (P<0.05) in the 
CSS. There was no statistic significance in the 
level of the NGF, NT-3, IGF-1, TrkA and TrkC 

most neurons and part of glia cells in the spi- 
nal cord (Figure 2A-L).

Immunohistochemical findings

Positive staining for NGF, BDNF, NT-3, PDGF, 
TGF-β1, CNTF, IGF-1, FGF-2, TrkA, TrkB and TrkC 
were seen in spinal neurons (Figure 3A-L).

CGRP IR was found that fibers of spinal lamina 
I, II, IV, V in sham group (Figure 5A) were more 
than that of SCT rats in the CSS (Figure 5B). EA 
treatment increased further the number of 
CGRP IR in the CSS (Figure 5C).

GAP-43 and Synaptophysin IR were found in 
the ventral horn of the sham operated rats, 
respectively (Figure 5D, 5G). There were a sig-
nificant increase in the number of GAP-43 and 
Synaptophysin IR following SCT (Figure 5E, 5H). 
Moreover, EA promoted intense GAP-43 and 
Synaptophysin IR in the CSS (Figures 5F, 5I) 
compared in SCT rats.

Corticospinal tracts tracing

In rostral and caudal of injured spinal cord of 
sham rats, labeled corticospinal tracts were 

Figure 1. Gene expression changes in the CSS. A. mRNA level of NTFs and ty-
rosine kinase receptors in sham operated rats, SCT rats and EA rats, β-actin 
as the internal control. B. Quantitative analyses for above genes. M, marker; 
Sh, sham operated rats; S1, S3, S7 and S14: 1dpo, 3dpo, 7dpo and 14dpo 
of SCT rats. E1, E3, E7 and E14: 1dpo, 3dpo, 7dpo and 14dpo of EA rats.

mRNA expression after le- 
sion. Comparatively, in EA rats 
(receiving SCT and EA treat-
ment), the results showed the 
most changes. Significant in- 
creases in level of CNTF, 
FGF-2 and TrkB mRNA at 
1dpo (P<0.05), and a signifi-
cant decrease in level of NGF, 
PDGF, TGF-β1 mRNA at 1, 3, 7 
and 14dpo (P<0.05), BDNF 
mRNA at 14dpo (P<0.05), 
NT-3 mRNA at 3dpo (P<0.05), 
TrkA mRNA at 1 and 7dpo 
(P<0.05), TrkC mRNA at 1  
and 3dpo (P<0.05) and IGF-I 
mRNA at 3 and 14dpo (P< 
0.05) were found in CSS of 
rats after EA treatment (Fig- 
ure 1).

In situ hybridization

NGF, BDNF, NT-3, PDGF, TGF-
β1, CNTF, IGF-1, FGF-2, TrkA, 
TrkB and TrkC mRNA were 
detected in cytoplasm of 
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detected in the whole posterior funiculus, fol-
lowing injection of BDA into the sensorimotor 
cortex (Figure 4A-D). However, BDA labeled cor-
ticospinal tract only distributed in rostral but 
not caudal of injured spinal cord of both SCT 
and EA rats in the same regions (Figure 4E, 4F).

Functional recordings

BBB evaluation in hindlimbs: The baseline BBB 
score of sham-operated rats was 21 which was 
much more than that of SCT rats. SCT rats 
showed flaccid paralysis of the hindlimbs in the 
first week after injury. And a gradual slight 
recovery of hindlimb locomotor functions was 
showed from 1-4 weeks after lesion. EA could 
effectively improve the locomotor functional re- 

covery in hindlimbs, indicated by BBB scores. 
And the scores at 3 and 4 weeks after EA were 
significantly better (P<0.05) than those in the 
SCT rats (Figure 6).

CSEP

The mean latencies of P1 and N1 and the 
amplitude of P1-N1 of the acquired curves for 
all the rats in different time points are shown in 
Table 4. The latencies and the amplitude were 
in normal range before operation, but latencies 
of P1 and N1 were infinitely lengthened after 
SCT (no P1 and N1 were detected). However, 
waves of P1 and N1 could be recorded at 14, 
21 and 28dpo in EA rats (bottom line), com-
pared to SCT rats, although it is weaker than 
normal one (Figure 7). 

Figure 2. Location of mRNA for NTFs and tyrosine kinase receptors in situ hybridization. The arrows in (B-L) indicate 
the positive neurons or part of glia cells of NGF, BDNF, NT-3, PDGF, TGF-β1, CNTF, IGF-1, FGF-2, TrkA, TrkB and TrkC, 
respectively. Negative control was shown in (A) 200×, scale bar (shown in A) = 200 μm.
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Discussion

The present study aimed to 
determine the possible effe- 
cts of EA on systematic regu-
lation of multiple gene expres-
sions in rats subjected to SCT. 
Changes in the expression of 

Figure 3. Positive immunostaining profiles for NTFs and tyrosine kinase receptors. Positive immunostaining profiles 
for NGF, BDNF, NT-3, PDGF, TGF-β1, CNTF, IGF-1, FGF-2, TrkA, TrkB and TrkC were showed in spinal motor neurons, 
respectively (B-L). The arrows indicate the positive motor neurons in spinal cord. Negative control was shown in (A). 
200×, scale bar (shown in A) = 200 μm.

Figure 4. Distribution of Corticospinal tract of rostral and caudal to the lesion 
in different groups. BDA labeled corticospinal tracts were detected in the 
dorsal funiculus in the rostral to the lesion and sham operated rats in caudal 
spinal cord to the injury (A-D), but not in the CSS of SCT rats and EA rats 

(E, F). First line, second line rep-
resented the 200× magnification 
image of the rostral and caudal 
spinal cord to the injury, respec-
tively. The BDA tracking in sham 
group, SCT group and EA group 
were showed in1st-3rd row. Scale 
bar (shown in F) = 100 μm.
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NTFs and tyrosine kinase re- 
ceptors were observed in the 
CSS. Parallel to the gene 
changes was the occurrence 
of partial nerve plasticity and 
recovery of functions. 

Effect of EA on the NTF ex-
pressions

The study noted different ch- 
anges in the expressions of 
NTFs and their receptors 
(TrkA, TrkB, TrkC) in the CSS. 
Some of the genes including 
CNTF, FGF-2 and TrkB were 
upregulated, while others like 
NGF, PDGF, TGF-β1, IGF-1, 
TrkA and TrkC were downre- 
gulated after EA treatment. 
These data showed that NTF 
and their receptors played dif-
ferent roles in the CSS of SCT 
rats with EA treatment. The 
present findings suggest that 
EA may induce neural plastic-
ity through systematic upre- 
gulation of NTFs or their re- 
ceptors. BDNF, combined with 
its functional receptor TrkB, 
showed the crucial role in 
inducing neurite outgrowth, 
synaptogenesis, and neuronal 
survival [47-49]. In addition, 
FGF-2 has been shown to pro-

Figure 5. The changes of nerve fibers and synaptogenesis. CGRP IR was 
found in fibers of spinal lamina I, II in the sham operated rats (A), and they 
could be found in the CSS of SCT rats (B). EA increase significantly the num-
ber of CGRP IR in the CSS of transected cord rats (C). Both GAP-43 IR (D) 
and Synaptophysin IR (G) with weak staining were found in the gray matter of 
spinal cord of sham group, respectively. A significant increase in the number 
of GAP-43 (F) and Synaptophysin (I) IR were detected in the EA rats than the 
SCT rats (E, H), respectively. Quantitative analyses for the CGRP, GAP-43 and 
Synaptophysin IR were shown in (J). 200×, scale bar (shown in A) = 100 μm. 
*P<0.05 vs. Sham group or SCT group.

Figure 6. Evaluation of hindlimb locomotor func-
tions. The baseline BBB score of sham-operated 
rats was 21. SCT rats showed flaccid paralysis of the 
hindlimbs in the first week after injury, and a gradual 
slight recovery of hindlimb locomotor functions from 
2-4 weeks post operation was seen, while EA showed 
a significant improvement of BBB score compared 
with those in the SCT rats. **P<0.01 vs. sham group, 
#P<0.05 vs. SCT group.

mote the outgrowth of neurites from ventral 
spinal cord neurons [50] and induced by 
enriched environment enhanced motor func-
tion in chronic hypoxic-ischemic brain injury 
[51]. What’s more, Furukawa S, et al. reported 
that FGF-2 may play roles in nerve regeneration 
in the injured spinal cord [52]. It’s reported that 
CNTF was necessary for a sprouting of inner-
vating motor axons [53]. N.M. Oyesiku, et al. 
also considered that CNTF was identified as a 
potent factor that induces growth of axons from 
sensory and motor neurons of the spinal cord 
[54]. These NTFs and their receptors could be 
important to the recovery of injured spinal cord 
[34, 54-56]. Our data provided the direct evi-
dences to regulate genes map in injured spinal 
cord after EA. It is available to find new strategy 
by NTF synergistic administration for the treat-
ment of SCI in the future clinic trial. 
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Significant decreases of NGF, PDGF, TGF-β1, 
IGF-1, TrkA and TrkC were detected in CSS after 
EA treatment. The implication of these changes 
keeps to be known. We analyzed that downreg-
ulated NTFs may function together with upregu-
lated NTF like FGF-2, depending on systematic 
regulatory mechanism. In addition, PDGF and 
TGF-β1 could be induced by neuroinflammation 
[57], and their increase results in the prolifera-
tion of astrocytes, then leading to scar forma-
tion. It was therefore hypothesized that down-
regulation of PDGF and TGF-β1 after EA could 
be benefit to the recovery of injured spinal cord. 
Effect of EA on neuroplasticity might be result 
from the inhibition of neuroinflammation [58], 
which is associated to the systematic regula-
tion of NTFs according to our findings.

In this study, we also found that EA treatment 
could increase the number of GAP-43, Syna- 
ptophysin and CGRP IR in CSS, whereas BDA-
labeled corticospinal tract was not detected. 
CGRP has been well known as a marker for sen-
sory axons transmitting pain sensation [59]. 
Increases in the number of CGRP positive 
fibers, GAP-43 and Synaptophysin IR (repre-
senting the regrowth of cone and synaptic  
formation) in the CSS suggests that nerve  
plasticity had occurred in the CSS by EA treat-
ment, which may be available to reconstruct of 
local circuitry for further functional recovery 
[60-62]. 

After SCT, the rats showed flaccid paralysis of 
the hindlimbs immediately, suggesting that the 
SCT model was established successfully. Re- 

cant improvement in sensory function has 
occurred in EA rats.

While endogenous NTFS expression has been 
launched after SCT, regeneration of corticospi-
nal tracts was the result of multiple factors 
[63], coupled with the scar formation following 
injury; it was difficult to detect the labeled corti-
cospinal tracts in CSS. In other words, the cor-
ticospinal tract could not pass through scars to 
re-establish local neural circuits after EA treat-
ment for 28 days. Of course, the local neural 
circuits may be able to rebuild with longer EA 
treatment. As we did not find the regenerating 
corticospinal tracts in CSS at present, it is pos-
sible that there are some subcortical contribu-
tions to the functional recovery, by rearrange-
ment of local spinal circuits and systematic 
regulation of NTFs in SCT rats subjected to EA 
treatment.

Conclusion 

Our data showed that EA could cause differen-
tial expression of NTFs in the CSS, which could 
play a key role in neuroplasticity and functional 
recovery. It’s suggested that EA may be a 
potential therapeutic strategy on SCI in the 
future clinic trial.
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Table 4. The records of CSEP test (M ± SD)

Time point P1 latency 
(ms)

N1 latency 
(ms)

P1-N1 
amplitude 

(μv)
Sham operation 11.10±3.26 22.34±4.03 8.37±4.40
SCT 14dpo - - ---

21dpo - - ---
28dpo - - ---

EA 14dpo 54.40±14.10# 59.30±9.89# 5.37±0.58
21dpo 25.5±10.06#,& 28.00±7.06#,& 5.37±0.58
28dpo 22.17±5.37#,& 26.33±4.41#,& 6.06±0.32

Numbers refer to mean (M) ± standard deviation (SD). -, latencies 
of P1 and N1 infinitely lengthened. ---, no P1 and N1 amplitude. 
#P<0.05 compare to SCT 14dpo, SCT 21dpo, SCT 28dpo, respec-
tively. &P<0.05 compared to EA 14dpo. EA, acupuncture. dpo, days 
post operation.

covery of motor function was also found 
after EA treatment in SCT rats. The BBB 
scores in EA rats were higher than those in 
the SCT rats at 21 and 28dpo. These sug-
gest that EA treatment may have a tenden-
cy to promote the recovery of hindlimb loco-
motor function after SCT. In addition, we 
found that the significant reduce N1 and  
P1 latencies at 2, 3 and 4 weeks post oper-
ation indicated partial recovery of sensory 
functions after EA, compared with those of 
SCT rats. The amplitude of P1-N1 has been 
detected again by CSEP recordings after EA 
treatment, even though they were still lower 
than normal levels. Of these, N1 and P1 
recovered to near normal levels, whereas 
P1 was double that of the normal values at 
28dpo. Hence, the results indicate signifi-
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