Review Article Transcatheter arterial chemoembolization in combination with stereotactic body radiation therapy in primary liver carcinoma: a systematic review and meta-analysis

Jiazhi Li¹, Zhiyong Dong², Xinjing Zhang³, Chenyu Huang³, Jing Xu¹

¹Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; ²Department of Surgery, The Affiliated Hospital of Putian University, Putian, Fujian, China; ³Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, China

Received June 22, 2016; Accepted November 29, 2016; Epub February 15, 2017; Published February 28, 2017

Abstract: Objective: Recent studies show that transcatheter arterial chemoembolization (TACE) combined with stereotactic body radiation therapy (SBRT), also referred to as Gamma Knife therapy, might have a synergistic effect on the treatment of primary liver carcinoma (PLC), however, the reports on the effects of the combined therapy appear not to be totally consistent. This meta-analysis aims to assess the effectiveness and safety of TACE combined with SBRT for PLC, compared with TACE alone. Methods: Electronic databases were searched for relevant studies, evaluating the survival benefit and the response to therapy in patients with PLC. The primary outcomes were the survival rate and the total effective rate; secondary outcomes were the tumor recurrence rate and side effects. Results: Twenty-two relevant clinical studies with a total of 2137 participants were included in this meta-analysis. TACE combined with SBRT significantly improved both the overall survival rate after 0.5 years, 1-year, 2 years, 3 years and the total effective rate (TER) respectively, compared with that of TACE alone [odds ratio (OR) 0.5 years = 5.88, 95% confidence interval (CI) 2.70-12.82, P < 0.00001], (OR 1-year = 2.91, 95% CI 2.34-3.62, P < 0.00001), (OR 2 years = 2.09, 95% CI 1.60-2.74, P < 0.00001), (OR 3 years = 2.30, 95% CI 1.23-4.32, P = 0.009) and (OR TER = 3.23, 95% Cl 2.65-3.94, P < 0.00001). Sensitivity analysis also showed significant benefits of TACE combined with SBRT in terms of the overall survival rate after 0.5 years, 1-year, 2 years, 3 years and for the total effective rate. The funnel plot indicated a low publication bias. Conclusions: TACE combined with SBRT improves the overall survival rate and the response to therapy for PLC. But more RCTs are needed to provide firm evidence.

Keywords: Meta-analysis, primary liver carcinoma, stereotactic body radiation therapy, transcatheter arterial chemoembolization

Introduction

Primary liver carcinoma (PLC) is the most common hepatic cancer. The increasing incidence in the past decade has made it become the sixth most common cancer worldwide and the third main cause of cancer-related death [1, 2]. It is widely known that surgical resection or liver transplantation is the first-line therapeutic choice for patients with early-stage PLC, however, only a small proportion of patients is eligible for these radical options [3-5]. Radical options are also not the only or the first strategy of therapy for patients with advanced PLC. So palliative therapies for advanced PLC such as ethanol injection, radiofrequency thermal ablation, transcatheter arterial embolization and transcatheter arterial chemoembolization (TACE) are often performed to improve quality of life for advanced PLC patients [6]. It has been proven that TACE might improve the survival of the patients with advanced PLC, and it was recommended to be the main therapy for inoperable PLC [7-9]. The technique of stereotactic body radiation therapy (SBRT), also named Gamma Knife therapy, works as follows [10]: Patients were immobilized in the stereotactic frame, the target outlines are delineated by computed tomography (CT) or Magnetic Resonance (MRI) images. Then different coplanar or non-coplanar fields were defined, within which a homogeneous dose of gamma rays was maintained and the amount of normal liver irradiation quantified. In the past decade, SBRT has also been shown to be highly effective in treating advanced PLC, resulting in increased response rates and survival [11, 12].

Usually, TACE is applied through a catheter in the hepatic artery, which is introduced using the Seldinger technique under local anesthesia. The rationale is that it induces embolization in the cancer-feeding arteries and increases the local concentration of chemotherapeutic drugs, resulting in tumor necrosis and tumor control [13, 14]. Complete tumor tissue necrosis, however, is generally difficult to achieve by TACE monotherapy, because of the dual and complex blood inflow supply system into the liver. The blood supply from collateral circulation or recanalization of the initially embolized artery may increase the viability of residual tumors after TACE, which thus may result in recurrence [15, 16]. It was reported that a necrosis rate of greater than 95% after TACE was only achieved in 44% of the cases reported, when HCCs were 3 cm or larger, especially in non-encapsulated tumors [17].

Recent evidence indicates that TACE, combined with SBRT may have a synergistic effect in the treatment of PLC. Honda et al reported that both the tumor response to therapy and the overall survival rate in patients treated with TACE combined with SBRT were superior to TACE alone [18]. However, there has been no consensus for the efficacy of the combined therapy.

This meta-analysis aims to assess the effectiveness and safety of TACE combined with SBRT, compared with TACE alone for patients with advanced PLC.

Materials and methods

Search strategy and inclusion criteria

Trials were identified by searching PubMed, Springer Link, the China National Knowledge Infrastructure Database (CNKI), VIP Journal Integration Platform (http://www.cqvip.com) (VIP) and WanFang data (WangFang). All searches included studies established prior to December 2015, using ("transcatheter arterial chemoembolization" or "TACE" or "chemoembolization") AND ("hepatocellular carcinoma" or "primary liver carcinoma" or "HCC") AND ("Gamma Knife" or "gamma rays"). Searches were performed for all types of publications but limited to original articles in English or Chinese. We also screened the relevant references of retrieved articles or published clinical trials.

Types of studies

All published studies evaluating the effects of TACE combined with Gamma Knife versus TACE alone were included.

Types of participants

The participants in the selected studies were over 18 years of age, with advanced PLC, no previous treatment for PLC, and no contraindication for neither TACE nor SBRT.

Types of intervention

The types of intervention included in this analysis were divided into two groups. The treatment group was composed of patients accepting SBRT after TACE. The control group was composed of patients accepting merely TACE monotherapy.

Types of outcome measures

The resulting outcomes were divided into two types of variables. The primary variables include the survival rate and the total effective rate of advanced PLC patients under combination therapy versus monotherapy. The secondary variables include the side effects and tumor recurrence rate. Studies have to report at least one of the above variables to be included in this analysis. The following definition was applied: The total effective rate = (CR+PR)/total participants × 100% (CR: Tumor completely subsided and no re-occurrence of new tumors for at least 4 weeks; PR: tumor size shrunk more than 50% and no re-occurrence of new tumors for at least 4 weeks; i.e. applying the WHO standards).

Exclusion criteria

Studies were excluded if they: (1) did not meet the above criteria; (2) involved i.v. or p.o. or portal vein chemotherapy; (3) had metastatic or recurrent liver carcinoma; (4) involved non-con-

TACE and SBRT for PLC

trolled clinical trials; (5) involved other regional therapies or used three intervention procedures (TACE versus TACE combined SBRT versus SBRT); (6) were repeat studies or overlapping cases; (7) had no comparative data of primary or secondary variables.

Studies and data extraction

Two of the authors independently assessed eligibility of potential studies based on the selection criteria and the extracted data, including general information on the studies (e.g. author, year of publication, participants' characteristics and study methods), characteristics of interventions (e.g. drugs, dose and time) and outcomes with a data extraction form. The concordance rate of two reviewers was 96%. Disagreements were resolved by consensus.

Quality assessment

The quality of the retrieved trials was evaluated by two reviewers independently and according to the randomized method, judging allocation concealment, blinding tests, lack to follow up and reporting of dropouts in the clinical studies [19]. Disagreements were discussed and consensus was reached after discussion. It was regarded to be a high-quality trial if it reported both the randomized method in detail and the allocation concealment; a moderate-quality trial if it just reported the randomized method in detail or the allocation concealment; a lowquality trial if it neither reported randomized method in detail nor allocation concealment, and a very low-quality trial if it reported none of the items.

Statistical analysis

All data for this meta-analysis were analyzed using the Review Manager Software (Rev-Man Version 5.2, The Cochrane Collaboration; The Nordic Cochrane Center, Copenhagen, Denmark). Odds ratios (OR) with 95% confidence intervals (CI) were calculated to express therapeutic effects. For the overall effect, it was considered to be statistically significant if P values < 0.05. The I² statistic and associated P values were used to evaluate the heterogeneity among trials [20, 21]. Homogeneity (I2value < 25%), low heterogeneity (I²-value between 25% and 50%), moderate heterogeneity (I²-value between 50% and 75%) and high heterogeneity (I²-value > 75%) were used to measure inconsistency across studies. Furthermore, statistically substantial heterogeneity was considered to exist in the studies included if *P* values < 0.1, then a random-effects model

Study	Total number	Male vs female	Combination vs TACE	KPS	Child-Pugh stage (A vs B vs C)	Aetiology (viral vs other)	Tumor size (huge vs nodule)
Li 2005	45	29 vs 16	15 vs 30	ND	ND	ND	36 vs 14
Yang 2006	36	27 vs 19	16 vs 20	≥70	A or B	ND	Mean: 8.8 cm
Jiang 2009	52	32 vs 20	22 vs 30	≥60	ND	ND	Mean: 8.5 cm
Zhang 2010	72	42 vs 30	36 vs 36	ND	ND	ND	ND
Ji 2010	120	90 vs 30	62 vs 58	≥70	A or B	ND	98 vs 22
Liu 2011	62	55 vs 7	30 vs 32	ND	32 vs 30 vs 0	ND	32 vs 30
Zhou 2011	56	45 vs 11	34 vs 22	≥70	A or B	ND	Huge or nodule
Chen 2011	250	184 vs 64	125 vs 125	≥70	A or B	ND	ND
Li 2012	136	93 vs 43	34 vs 102	≥70	39 vs 91 vs 6	ND	110 vs 26
Kong 2012	120	76 vs 44	60 vs 60	≥60	A or B	ND	62 vs 58
Zhang 2012	259	204 vs 55	135 vs 124	ND	A or B	ND	2.2-16.4 cm
Li 2012	108	76 vs 34	54 vs 54	≥60	88 vs 20	ND	97 vs 11
Wang 2013	80	56 vs 24	40 vs 40	≥70	A or B	ND	ND
Sha 2013	105	77 vs 28	52 vs 53	≥60	A or B	ND	ND
Cao 2013	76	62 vs 14	38 vs 38	ND	65 vs 11 vs 0	ND	59 vs 17
Sun 2014	62	43 vs 19	32 vs 30	ND	54 vs 8 vs 0	ND	46 vs 16
Liu 2014	86	47 vs 39	43 vs 43	ND	ND	32 vs 54	ND
Meng 2015	90	50 vs 40	45 vs 45	ND	78 vs 12 vs 0	ND	69 vs 21
Luo 2015	74	42 vs 32	38 vs 36	ND	31 vs 43 vs 0	ND	39 vs 35
Tang 2015	78	48 vs 30	39 vs 39	≥70	31 vs 47 vs 0	78 vs 0	ND
Huang 2015	86	52 vs 34	43 vs 43	ND	60 vs 26 vs 0	ND	ND
Pan 2015	84	61 vs 23	47 vs 37	≥70	54 vs 30 vs 0	ND	Mean: 8.3 cm

Table 1. Baseline characteristics of studies included in the meta-analysis

KPS: Karnofsky scores; ND: Not described; huge: Tumor diameter > 5 cm or described in paper; vs: Versus; TACE: Transcatheter arterial chemoembolizaton.

instead of the fixed-effects model was used to analyze the result. The causes were also explored, including the TNM staging and size of tumor, differences of interventions and hepatic function. Potential publication bias was assessed by symmetry of funnel plot and the visual symmetrical plot indicated that the publication bias among studies is low [22].

Results

Identification and characteristics of included studies

After the initial screening, 120 potentially relevant clinical trials of PLC were identified. Fifty-five studies were excluded after screening their titles, because they were duplication (**Figure 1**). In case of the duplicated studies, the last or the most complete data were extracted. After full assessment for eligibility by the two independent reviewers, forty-three studies were excluded: (1) thirty-four studies lacked a comparison

(TACE or TACE plus SBRT); (2) three studies involved three treatment groups such as TACE versus SBRT versus TACE plus SBRT; (3) two studies were meta-analysis; (4) two studies were associated with metastatic liver carcinoma; (5) one study was a meeting article; (6) one study involved other treatments. In the end, we included 22 studies with total 2137 patients comparing the therapeutic effect of TACE combined with SBRT in the treatment of PLC with those of TACE alone for the current meta-analysis [23-44]. Among the studies included, three trials were randomized-controlled trials (RCTs) [36, 42, 43], the others were nonrandomized concurrent controlled clinical trials. All studies were performed in China. Participants were diagnosed with PLC according to investigations and/or pathology or the standards for the diagnosis and treatment of primary liver cancer (Chinese Clinical Oncology, 2011). Three studies just reported effective rate [31, 35, 43], the others reported both survival rate and effective rate.

|--|

Study	Drugs and dosage of TACE	Time and dosage of Gamma Knife
Li 2005	5-fluorouracil (1000 mg), hydroxycamptothecine (20 mg~30 mg), Lipiodol (10 ml~20 ml) et al	After TACE, total 40.0~45.0 Gy
Yang 2006	5-fluorouracil (800~1200 mg), epirubicin (50~100 mg), 40% Lipiodol (10~50 ml) et al	After TACE, total 36.0~42.0 Gy
Jiang 2009	5-fluorouracil (500~100 mg), cisplatin (40~80 mg), 40% Lipiodol (5~20 ml) et al	After TACE, total 45.0~60.0 Gy
Zhang 2010	Hydroxycamptothecine (10~20 mg), 5-fluorouracil (1000 mg), Lipiodol (10~20 mL) et al	After TACE, total 40.0~50.0 Gy
Ji 2010	5-fluorouracil (1000 mg), epirubicin (50~100 mg) , Lipiodol (10~15 ml) et al	After TACE, total 32.0~46.0 Gy
Liu 2011	5-fluorouracil (750~1250 mg), epirubicin (40~60 mg), 38% Lipiodol (10~20 mL) et al	After TACE, total 25.0~40.0 Gy
Zhou 2011	5-fluorouracil (1000 mg), Mitomycin (10~20 mg), Lipiodol (10~20 ml) et al	After TACE, total 45.0~52.0 Gy
Chen 2011	Cisplatin, mitomycin et al, gelatin sponge, Lipiodol (10~15 ml)	After TACE, 3.5~4.5 Gy/time, 10~12 times
Li 2012	5-fluorouracil, hydroxycamptothecine (30 mg), Lipiodol (10~20 ml) et al	After TACE, 4.0~5.0 Gy/time, 10 times
Kong 2012	Docetaxel (40 mg), gemcitabine (1200 mg), Lipiodol (10 mL) et al	After TACE, total 30.0~60.0 Gy
Zhang 2012	5-fluorouracil (500~1000 mg), epirubicin (30~50 mg), Lipiodol (5~20 ml) et al	After TACE, total 36.0~50.0 Gy
Li 2012	Docetaxel (60 mg), gemcitabine (1200~1600 mg), Lipiodol (5~20 ml) et al	After TACE, total 38.4~44.8 Gy
Wang 2013	Mitomycin, cisplatin et al, Lipiodol (10~15 ml), gelatin sponge	After TACE, 3.5~4.5 Gy/time, 10~12 times
Sha 2013	5-fluorouracil (1000 mg), pirarubicin (40~60 mg), Lipiodol (10 ml~20 ml) et al	After TACE, total 40.0~45.0 Gy
Cao 2013	5-fluorouracil, oxaliplatin, epirubicin, gelatin sponge, Lipiodol	After TACE, total 25.0~40.0 Gy
Sun 2014	5-fluorouracil, oxaliplatin, epirubicin, gelatin sponge, Lipiodol	After TACE, total 25.0~40.0 Gy
Liu 2014	Pirarubicin (10~20 mg), mitomycin (10 mg), Lipiodol et al	After TACE, total 25.0~40.0 Gy
Meng 2015	5-fluorouracil (1.0 mg/m²), mitomycin (10 mg/m²), Lipiodol (10 ml) et al	After TACE, total 25.0~40.0 Gy
Luo 2015	5-fluorouracil, oxaliplatin, epirubicin, gelatin sponge, Lipiodol	After TACE, total 25.0~40.0 Gy
Tang 2015	5-fluorouracil (750~1000 mg), mitomycin (10~20 mg), 40% Lipiodol (5~20 mL) et al	After TACE, total 30.0~60.0 Gy
Huang 2015	Pirarubicin (20 mg), carboplatin (1000 mg), gelatin sponge, gelatin sponge	After TACE, total 45.0~50.0 Gy
Pan 2015	5-fluorouracil (750~1000 mg), mitomycin (8~10 mg), 40% Lipiodol (5~20 ml) et al	After TACE, total 40.0~60.0 Gy

TACE: Transcatheter arterial chemoembolizaton.

In **Tables 1** and **2**, the demographics, characteristics and authors of the studies are summarized. They include Karnofsky scores (KPS), Child-Pugh stage, number and size of the tumors, aetiology (virus or other) and interventions applied. The demographic data among groups were reported to be well matched in 17 of the 22 studies included [23, 29-44].

Methodological quality of included studies

The quality of the studies included in this metaanalysis is shown in **Table 3**. Three trials reported the randomized method in detail, the others did not [36, 42, 43]. Neither allocation concealment nor blind tests were mentioned in all of the trials. Only seven trials reported the number of losses to follow up [23, 24, 31-34, 44], however, none of the trials included reported the number of dropouts. Eleven trials were considered to be of very low quality, mentioning no characteristics of the study such as randomized method or allocation concealment [25-30, 35, 37, 38, 40, 41].

Results of meta-analysis

0.5-year survival: Most studies, except for three trials [31, 35, 43], confirmed combina-

tion therapy could improve survival rate compared with monotherapy. Five studies (492 patients) assessed the rate of 0.5-year survival with meta-analysis (OR = 5.88, 95% CI 2.70-12.82, P < 0.00001), suggesting that combination therapy improved 0.5-year survival in comparison with monotherapy. Heterogeneity between trials was not significant (P = 0.45, $I^2 =$ 0%) (**Figure 2**).

1-year survival: Nineteen studies (1835 patients) reported the 1-year survival rate. The 1-year survival was statistically significant in favor of combination therapy over monotherapy according to the pooled result (OR = 2.91, 95% CI 2.34-3.62, P < 0.00001). There was no statistical heterogeneity among the studies (P = 0.92, I² = 0%) (**Figure 3**).

2-year survival: Nine studies (941 patients) reported the 2-year survival rate. The 2-year survival supported a favorable outcome for the combination therapy over the monotherapy according to the pooled result (OR = 2.09, 95% Cl 1.60-2.74, P < 0.00001) and no statistical heterogeneity among studies was found (P = 0.92, I² = 0%) (**Figure 4**).

3-year survival: Four studies (531 patients) reported the 3-year survival rate. The 3-year

Study	Design	Method	Allocation concealment	Blinding	Loss to follow up (Combination vs TACE)	Number of dropouts	Quality
Li 2005	NRCCT	ND	ND	Not used	1 vs 2	ND	Low
Yang 2006	NRCCT	ND	ND	Not used	0 vs 0	0	Low
Jiang 2009	NRCCT	ND	ND	Not used	ND	ND	Very low
Zhang 2010	NRCCT	ND	ND	Not used	ND	ND	Very low
Ji 2010	NRCCT	ND	ND	Not used	ND	ND	Very low
Liu 2011	NRCCT	ND	ND	Not used	ND	ND	Very low
Zhou 2011	NRCCT	ND	ND	Not used	ND	ND	Very low
Chen 2011	NRCCT	ND	ND	Not used	ND	ND	Very low
Li 2012	NRCCT	WP	ND	Not used	0 vs 0	ND	Low
Kong 2012	NRCCT	ND	ND	Not used	3 vs 3	ND	Low
Zhang 2012	NRCCT	ND	ND	Not used	0 vs 0	0	Low
Li 2012	NRCCT	ND	ND	Not used	0 vs 0	0	Low
Wang 2013	NRCCT	ND	ND	Not used	ND	ND	Very low
Sha 2013	RCT	DL	ND	Not used	ND	ND	Moderate
Cao 2013	NRCCT	ND	ND	Not used	ND	ND	Very low
Sun 2014	NRCCT	ND	ND	Not used	ND	ND	Very low
Liu 2014	NRCCT	WP	ND	Not used	ND	ND	Very low
Meng 2015	NRCCT	ND	ND	Not used	ND	ND	Very low
Luo 2015	NRCCT	ND	ND	Not used	ND	ND	Very low
Tang 2015	RCT	RN	ND	Not used	ND	ND	Moderate
Huang 2015	RCT	ND	ND	Not used	ND	ND	Moderate
Pan 2015	NRCCT	ND	ND	Not used	Total: 9	ND	Low

Table 3. Quality assessment of included studies

ND: Not described; WP: Will of patients; NRCCT: Nonrandomized concurrent controlled clinical trial; DL: Drawing of lost; RN: Random number; RCT: Randomized controlled trial; TACE: Transcatheter arterial chemoembolizaton.

	TACE+SBRT		TACE monotherapy		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95%	CI M-H, Fixed, 95% CI
Jiang et al 2009	22	22	30	30		Not estimable	le
Li et al 2005	13	15	23	30	30.1%	1.98 [0.36, 10.96	6]
Liu et al 2011	30	30	26	32	6.1%	14.96 [0.80, 278.30	0]
Luo et al 2015	38	38	29	36	5.7%	19.58 [1.07, 356.71	1]
Zhang et al 2012	130	135	102	124	58.0%	5.61 [2.05, 15.32	2] —
Total (95% CI)		240		252	100.0%	5.88 [2.70, 12.82	2]
Total events	233		210				
Heterogeneity: Chi ² = 2.62, df = 3 (P = 0.45); l ² = 0%							
Test for overall effect: 2	Z = 4.46 (F	< 0.000	001)				Favours [experimental] Favours [control]

Figure 2. Meta-analysis of the 0.5-year survival rate in 5 studies comparing TACE plus SBRT with TACE monotherapy for primary liver carcinoma. CI: Confidence interval; M-H: Mantel-Haenszel's method; Fixed: Fixed-effects model; SBRT: Stereotactic body radiation; TACE: Transcatheter arterial chemoembolization.

survival showed the combination therapy to be superior to that of monotherapy with statistical significance (OR = 2.30, 95% CI 1.23-4.32, P = 0.009), but there was potential heterogeneity among studies (P = 0.08, $I^2 = 56\%$) (**Figure 5**).

Total effective rate

All studies (2137 patients) reported the total effective rate. The combination therapy showed

a significant benefit compared with monotherapy according to the result of this meta-analysis (OR = 3.23, 95% Cl 2.65-3.94, P < 0.00001) and no statistical heterogeneity among studies was found (P = 0.99, $l^2 = 0\%$) (**Figure 6**).

Sensitivity analysis

In order to avoid potential bias of the studies included, a sensitivity analysis with a fixed-

TACE and SBRT for PLC

	TACE+SBRT		TACE monotherapy		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fix	ed. 95% Cl	
Cao et al 2013	30	38	22	38	4.8%	2.73 [0.99, 7.50]		— —	
Chen et al 2011	88	125	58	125	17.6%	2.75 [1.63, 4.62]			
Ji et al 2010	45	62	39	58	11.3%	1.29 [0.59, 2.82]	-	† ■−−	
Jiang et al 2009	21	22	20	30	0.8%	10.50 [1.23, 89.68]			
Kong et al 2012	46	60	30	60	7.2%	3.29 [1.50, 7.19]		——	
Li et al 2005	11	15	19	30	3.5%	1.59 [0.41, 6.23]		 	
Li song-wei et al 2012	53	54	46	54	0.9%	9.22 [1.11, 76.49]		· · · ·	
Liu et al 2011	26	30	20	32	2.6%	3.90 [1.09, 13.93]			
Liu et al 2014	35	43	29	43	5.5%	2.11 [0.78, 5.73]		—	
Luo et al 2015	33	38	20	36	2.8%	5.28 [1.68, 16.63]		——	
Meng et al 2015	30	45	21	45	7.2%	2.29 [0.97, 5.36]		<u> </u>	
Pan et al 2015	35	47	17	37	5.0%	3.43 [1.37, 8.62]			
Sha et al 2013	46	52	38	53	4.5%	3.03 [1.07, 8.56]			
Sun et al 2014	25	32	17	30	3.9%	2.73 [0.90, 8.26]		<u> </u>	
Tang et al 2015	36	39	30	39	2.4%	3.60 [0.89, 14.51]		<u> </u>	
Yang et al 2006	15	16	14	20	0.8%	6.43 [0.69, 60.31]	-	· · ·	
Zhang et al 2010	29	36	21	36	4.2%	2.96 [1.03, 8.53]		— —	
Zhang et al 2012	116	135	81	124	12.2%	3.24 [1.76, 5.96]			
Zhou et al 2011	28	34	13	22	2.9%	3.23 [0.95, 10.99]		<u> </u>	
Total (95% CI)		923		912	100.0%	2.91 [2.34, 3.62]		•	
Total events	748		555			• • •			
Heterogeneity: Chi ² = 10	.38, df = 1	B (P = 0	.92); l ² = 0%						
Test for overall effect: Z	= 9.59 (P <	0.0000)1)			_	0.01 0.1	1 10	100
			,			F	avours [experimental]	Favours [cont	rolj

Figure 3. Meta-analysis of the 1-year survival rate in 19 studies comparing TACE plus SBRT with TACE monotherapy for primary liver carcinoma. CI: Confidence interval; M-H: Mantel-Haenszel's method; Fixed: Fixed-effects model; SBRT: Stereotactic body radiation; TACE: Transcatheter arterial chemoembolization.

	TACE+SBRT		TACE monotherapy		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Ji et al 2010	26	62	20	58	16.1%	1.37 [0.65, 2.88]	- +
Jiang et al 2009	10	22	10	30	6.2%	1.67 [0.54, 5.17]	
Kong et al 2012	33	60	22	60	13.3%	2.11 [1.02, 4.39]	
Liu et al 2011	20	30	13	22	6.7%	1.38 [0.44, 4.33]	
Liu et al 2014	27	43	19	43	9.5%	2.13 [0.90, 5.05]	+
Luo et al 2015	24	38	15	36	7.6%	2.40 [0.94, 6.11]	
Meng et al 2015	20	45	12	45	8.9%	2.20 [0.91, 5.33]	+
Tang et al 2015	32	39	22	39	5.3%	3.53 [1.26, 9.94]	
Zhang et al 2012	73	135	41	124	26.3%	2.38 [1.44, 3.95]	
Total (95% CI)		474		457	100.0%	2.09 [1.60, 2.74]	•
Total events	265		174				
Heterogeneity: Chi ² = 3	3.25, df = 8	(P = 0.9)	92); l² = 0%				
Test for overall effect:	Z = 5.42 (F	< 0.000	001)			Fa	vours [experimental] Favours [control]

Figure 4. Meta-analysis of the 2-year survival rate in 9 studies comparing TACE plus SBRT with TACE monotherapy for primary liver carcinoma. CI: Confidence interval; M-H: Mantel-Haenszel's method; Fixed: Fixed-effects model; SBRT: Stereotactic body radiation; TACE: Transcatheter arterial chemoembolization.

	TACE+SBRT		TACE monotherapy		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Rand	om, 95% Cl	
Chen et al 2011	54	125	18	125	31.8%	4.52 [2.45, 8.34]			
Ji et al 2010	14	62	11	58	23.9%	1.25 [0.51, 3.02]			
Sha et al 2013	21	52	15	53	25.8%	1.72 [0.76, 3.88]	-	-	
Zhou et al 2011	18	34	7	22	18.6%	2.41 [0.79, 7.40]	-		
Total (95% CI)		273		258	100.0%	2.30 [1.23, 4.32]		◆	
Total events	107		51						
Heterogeneity: Tau ² =	0.23; Chi ²	= 6.79, d	df = 3 (P = 0.08)						
Test for overall effect: 2	Z = 2.61 (F	P = 0.009	9)	Fa	vours [experimental]	Favours [control]]		

Figure 5. Meta-analysis of the 3-year survival rate in 4 studies comparing TACE plus SBRT with TACE monotherapy for primary liver carcinoma. CI: Confidence interval; M-H: Mantel-Haenszel's method; Random: Random-effects model; SBRT: Stereotactic body radiation; TACE: Transcatheter arterial chemoembolization.

TACE and SBRT for PLC

	TACE+SBRT		TACE monotherapy		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed. 95% C	M-H, Fixed, 95% Cl	
Cao et al 2013	22	38	10	38	3.7%	3.85 [1.46, 10.13]		
Chen et al 2011	96	125	66	125	13.5%	2.96 [1.72, 5.10]		
Huang et al 2015	35	43	27	43	4.4%	2.59 [0.97, 6.95]		
Ji et al 2010	49	62	35	58	6.7%	2.48 [1.11, 5.55]		
Jiang et al 2009	19	22	17	30	1.7%	4.84 [1.18, 19.95]		
Kong et al 2012	56	60	47	60	2.8%	3.87 [1.18, 12.68]		
Li et al 2005	12	15	18	30	2.1%	2.67 [0.62, 11.49]		
LI et al 2012	28	34	62	102	4.8%	3.01 [1.14, 7.92]		
Li song-wei et al 2012	40	54	30	54	6.8%	2.29 [1.02, 5.15]		
Liu et al 2011	17	30	8	32	3.0%	3.92 [1.34, 11.53]	———	
Liu et al 2014	21	43	9	43	4.0%	3.61 [1.40, 9.30]	—.—	
Luo et al 2015	26	38	15	36	4.3%	3.03 [1.17, 7.86]		
Meng et al 2015	21	45	14	45	6.6%	1.94 [0.82, 4.58]	+ - -	
Pan et al 2015	38	47	19	37	3.6%	4.00 [1.51, 10.57]		
Sha et al 2013	48	52	36	53	2.4%	5.67 [1.76, 18.29]		
Sun et al 2014	17	32	11	30	4.7%	1.96 [0.71, 5.41]	+	
Tang et al 2015	30	39	17	39	3.4%	4.31 [1.62, 11.46]		
Wang et al 2013	32	40	22	40	3.9%	3.27 [1.21, 8.84]		
Yang et al 2006	13	16	13	20	1.9%	2.33 [0.49, 11.06]		
Zhang et al 2010	13	36	7	36	3.9%	2.34 [0.80, 6.82]	<u>+</u>	
Zhang et al 2012	113	135	63	124	9.4%	4.97 [2.79, 8.85]		
Zhou et al 2011	27	34	11	22	2.4%	3.86 [1.19, 12.54]		
Total (95% CI)		1040		1097	100.0%	3.23 [2.65, 3.94]	◆	
Total events	773		557			- / -		
Heterogeneity: Chi ² = 8.	66, df = 21	(P = 0.9)	$99); I^2 = 0\%$					
Test for overall effect: Z	= 11.68 (P	< 0.000	001)			-	0.01 0.1 1 10 100	
			,			F	avours [experimental] Favours [control]	

Figure 6. Meta-analysis of tumor response to therapy in 22 studies comparing TACE plus SBRT with TACE monotherapy for primary liver carcinoma. CI: Confidence interval; M-H: Mantel-Haenszel's method; Fixed: Fixed-effects model; SBRT: Stereotactic body radiation; TACE: Transcatheter arterial chemoembolization.

Figure 7. Funnel plot of publication bias among studies.

effects model and a random-effects model was performed to assess the therapeutic effects. Analysis on TACE combined with SBRT versus TACE showed that the combination therapy significantly improved the overall survival rates determined after 0.5 years, 1-year, 2 years, 3 years and with the total effective rate of P < 0.00001, P < 0.00001, P < 0.00001, P = 0.009 and P < 0.00001 respectively, with no statistical heterogeneity (P = 0.45, P = 0.92, P = 0.92 and P = 0.99, respectively) beyond that of the overall survival rate after 3 years (P = 0.08 < 0.1), compared with that of the monotherapy.

Publication bias

The visual symmetrical plot indicated that the publication bias among studies is low (**Figure 7**).

Tumor recurrence and side effects

Only one study reported the tumor recurrence rate [34], which was not enough to perform a meta-analysis because the number of included trials was too small. In addition, sixteen studies described adverse effects after treatment [23-25, 27, 28, 30-36, 39, 40, 42, 44], but that was not applicable to perform a meta-analysis with no unified standard in these studies. The main adverse effects were gastrointestinal reactions (nausea/vomiting), liver function damage and hematologic toxicity (leukopenia).

Discussion

This meta-analysis aimed to assess the effectivity and safety of TACE combined with SBRT in treating PLC on survival and response to therapy. According to this meta-analysis, there was a statistically significant effect on the overall survival rate after 0.5 years, 1-year, 2 years, 3 years and the total effective rate between the two therapeutic schemes. It suggests that TACE combined with SBRT is superior to TACE alone for patients with PLC, with significant survival benefit and high responsiveness to therapies. The sensitivity analysis of this current evidence also demonstrated the same trend for TACE combined with SBRT.

It is recognized that TACE is effective for PLC [45-47]. Additionally, SBRT is also appropriate for PLC [48, 49]. Hence, TACE combined with SBRT can be more effective for PLC and may contribute to the improved outcomes due to the following effects: (1) TACE can block the hepatic arterial flow [6], resulting in decreasing the tumor size, which in turn contributes to the increase in the effective radiological doses of the tumor targets without injuring normal liver tissue excessively [8, 50]; (2) Chemotherapy drugs left in the tumors after TACE may interact with the gamma rays such as to improve the sensitivity of cancer cells to the gamma rays [32, 37]; (3) Lipiodol deposited in the tumor by TACE increased the visibility of target [10]; (4) Gamma rays may improve the effects of anticancer drugs on cancer cells [32]; (5) Gamma rays can be effective in remedying the limitations of TACE, such as incomplete necrosis, due to dual blood supply around the tumor, multiple collateral circulation and recanalization [36, 51, 52].

The sensitivity analysis showed that the studies which reported the 3-year survival rate showed potential heterogeneity (P = 0.08, $l^2 = 56\%$). The imbalance among these studies may be one cause, because not all the characteristics of patients were well matched: Different doses of drugs and gamma rays, different tumor stage and tumor numbers, selection bias, performance biases, publication biases and limited RCTs may be other reasons. It was difficult to

explore the origin of heterogeneity based on the limited number of enrolled patients. Moreover, there was also one clinical control study reporting no statistical difference in the 3-year survival rate between the combination therapy and TACE monotherapy for PLC patients [36]. In this study the following specific characteristics were published: (1) The probability of the side effects, such as nausea/vomiting, liver function damage and leukopenia, was increased after application of the combination therapy; (2) Patients were treated by chemotherapy medications, however, without the most popular drug combinations being used (e.g. doxorubicin, cisplatin, epirubicin and mitomycin). Both of these characteristics can affect the long term outcome. Hence, some higher quality RCTs are required to confirm the superiority of the combination therapy.

Moreover, a tumor recurrence analysis was not performed in this meta-analysis due to lack of sufficient data. Only one non-randomized concurrent controlled clinical trial reported that the combined therapy did decrease 1-year recurrence of tumor in comparison of monotherapy with statistically significance [34]. For side effects after treatment, meta-analysis was not performed due to inconsistencies in the definition within the studies included. Although sixteen studies were integrated to report the adverse effects (e.g. nausea/vomiting, liver function damage and leukopenia), only four studies described the criteria for them [24, 27, 30, 44]. Some studies reported that there was no statistical significance between the two groups [23, 24, 28, 35, 39, 40, 42, 44], and the side effects did not affect further treatment and prognosis after supportive treatment such as liver-protecting drugs and drugs for leucopenia. However, it has also been reported that repeated TACE may result in progressive damage of hepatic function [53, 54]. Chen et al also concluded that a combination of treatment may improve the incident of side effects with statistical significance, compared with monotherapy [30, 36]. The potential reasons for this controversy may be different drugs, dosage and time of interventions used (Table 2). Firstly, different chemotherapeutic drugs may produce different effect for therapy. Lau et al reported that there was no consensus on a golden standard in the therapy of TACE [55]. Ramsey et al reported that doxorubicin, cisplatin and mitomycin C

were recommended as the preferred drug combinations [56]. However, all of the included studies described different drug combinations respectively, such as epirubicin/doxorubicin, mitomycin, and 5-fluorouracil with epirubicin being the most popularly drug combination applied. Secondly, although SBRT was implemented after TACE in the studies included, the time and dosage of the SBRT may also play an important role in the side effects of the treatment and the prognosis [50, 57]. Therefore, well-designed RCTs should be conducted to assess the risk of combination treatment over monotherapy.

In conclusions, this meta-analysis indicates that TACE combined with SBRT improves the overall survival rates and response to therapy compared to TACE alone, but the trend needed to be further confirmed by higher quality RCTs.

Acknowledgements

We thank Yang Zeng and Fred JAK for modifying and editing our manuscript, which substantially improved the quality of the article. This work was supported by the National Natural Science Foundation of China (No. 81360372) grant.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Jing Xu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China. Tel: +86138771-60601; Fax: +860771-5359801; E-mail: jxuapr@aliyun.com

References

- Colombo M. Screening and diagnosis of hepatocellular carcinoma. Liver Int 2009; 29 Suppl 1: 143-147.
- [2] Herszenyi L and Tulassay Z. Epidemiology of gastrointestinal and liver tumors. Eur Rev Med Pharmacol Sci 2010; 14: 249-258.
- [3] Zhou ZH, Liu LM, Chen WW, Men ZQ, Lin JH, Chen Z, Zhang XJ and Jiang GL. Combined therapy of transcatheter arterial chemoembolisation and three-dimensional conformal radiotherapy for hepatocellular carcinoma. Br J Radiol 2007; 80: 194-201.
- [4] Makuuchi M, Donadon M and Torzilli G. Hepatic resection for hepatocellular carcinoma in cirrhosis. Ann Ital Chir 2008; 79: 111-115.

- [5] Arii S, Yamaoka Y, Futagawa S, Inoue K, Kobayashi K, Kojiro M, Makuuchi M, Nakamura Y, Okita K and Yamada R. Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nationwide survey in Japan. The liver cancer study group of Japan. Hepatology 2000; 32: 1224-1229.
- [6] Wang W, Shi J and Xie WF. Transarterial chemoembolization in combination with percutaneous ablation therapy in unresectable hepatocellular carcinoma: a meta-analysis. Liver Int 2010; 30: 741-749.
- [7] Zhong JH and Li LQ. Postoperative adjuvant transarterial chemoembolization for participants with hepatocellular carcinoma: a metaanalysis. Hepatol Res 2010; 40: 943-953.
- [8] Timm S, Sotiropoulos GC, Draier M, Knupffer J, Steger U and Lang H. Selective transarterial chemoembolization of advanced hepatocellular carcinomas: a reasonable palliative option. Transplant Proc 2008; 40: 3179-3181.
- [9] Chung GE, Lee JH, Kim HY, Hwang SY, Kim JS, Chung JW, Yoon JH, Lee HS and Kim YJ. Transarterial chemoembolization can be safely performed in patients with hepatocellular carcinoma invading the main portal vein and may improve the overall survival. Radiology 2011; 258: 627-634.
- [10] Nagata Y, Matsuo Y, Takayama K, Norihisa Y, Mizowaki T, Mitsumori M, Shibuya K, Yano S, Narita Y and Hiraoka M. Current status of stereotactic body radiotherapy for lung cancer. Int J Clin Oncol 2007; 12: 3-7.
- [11] Xi M, Zhang L, Zhao L, Li QQ, Guo SP, Feng ZZ, Deng XW, Huang XY and Liu MZ. Effectiveness of stereotactic body radiotherapy for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombosis. PLoS One 2013; 8: e63864.
- [12] Huertas A, Baumann AS, Saunier-Kubs F, Salleron J, Oldrini G, Croise-Laurent V, Barraud H, Ayav A, Bronowicki JP and Peiffert D. Stereotactic body radiation therapy as an ablative treatment for inoperable hepatocellular carcinoma. Radiother Oncol 2015; 115: 211-216.
- [13] Toyoda H, Nakano S, Kumada T, Takeda I, Sugiyama K, Osada T, Kiriyama S, Suga T and Takahashi M. The efficacy of continuous local arterial infusion of 5-fluorouracil and cisplatin through an implanted reservoir for severe advanced hepatocellular carcinoma. Oncology 1995; 52: 295-299.
- [14] Lau WY, Yu SC, Lai EC and Leung TW. Transarterial chemoembolization for hepatocellular carcinoma. J Am Coll Surg 2006; 202: 155-168.
- [15] Sasaki Y, Imaoka S, Kasugai H, Fujita M, Kawamoto S, Ishiguro S, Kojima J, Ishikawa O,

Ohigashi H, Furukawa H, Koymam H and Lwanaga T. A new approach to chemoembolization therapy for hepatoma using ethiodized oil, cisplatin, and gelatin sponge. Cancer 1987; 60: 1194-1203.

- [16] Yu YQ, Xu DB, Zhou XD, Lu JZ, Tang ZY and Mack P. Experience with liver resection after hepatic arterial chemoembolization for hepatocellular carcinoma. Cancer 1993; 71: 62-65.
- [17] Higuchi T, Kikuchi M and Okazaki M. Hepatocellular carcinoma after transcatheter hepatic arterial embolization. A histopathologic study of 84 resected cases. Cancer 1994; 73: 2259-2267.
- [18] Honda Y, Kimura T, Aikata H, Kobayashi T, Fukuhara T, Masaki K, Nakahara T, Naeshiro N, Ono A, Miyaki D, Nagaoki Y, Kawaoka T, Takaki S, Hiramatsu A, Ishikawa M, Kakizawa H, Kenjo M, Takahashi S, Awai K, Nagata Y and Chayama K. Stereotactic body radiation therapy combined with transcatheter arterial chemoembolization for small hepatocellular carcinoma. J Gastroenterol Hepatol 2013; 28: 530-536.
- [19] Wu T and Liu G. The concepts, design, practice and reports of allocation concealment and blinding. Chin J Evid Based Med 2007; 7: e225.
- [20] Higgins JP and Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539-1558.
- [21] Higgins JP, Thompson SG, Deeks JJ and Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560.
- [22] Egger M, Davey Smith G, Schneider M and Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.
- [23] Li GX, Li ZG and Zhao D. Transcatheter hepatic arterial chemoembolization combined with Gamma Knife in the treatment for 45 cases with liver cancer. J Oncol 2005; 11: 449-451.
- [24] Yang ZX, Wang G, Wang D, Liu JM, Peng B and Liu XH. Body Gamma Knife combined with transcatheter arterial chemoembolization for primary hepatic carcinoma. Chongqing Med 2006; 35: 2221-2223.
- [25] Jiang H, Yuan SG, Yan D, Wang JP, Li YC, Yang Y and Tong YY. The analysis of transcatheter arteral chemoembolization combined with body Gamma Knife for hepatocellular carcinoma. J Clin Radiol 2009; 28: 1440-1443.
- [26] Zhang X, Sha XF, Huang ZY and Ding H. Analysis of transcatheter arterial chemoembolization combined Gamma Knife in treatment of advanced hepatocellular carcinoma. Chin Mod Doctor 2010; 37-38.
- [27] Ji HB, Lu GM, Zhong NB and Chen ZH. Clinical analysis of body Gamma Knife combined with

transcatheter arterial chemoembolization for patients with primary hepatic carcinoma. J Parc Hepatol 2010; 13: 286-287.

- [28] Liu DX, Ye CP, Chen JW and Lin YH. Effect analysis of sequential therapies of transcatheter arterial chemoembolization combined Gamma Knife in treatment of middle and advanced hepatic carcinoma. J Fujian Med Univ 2011; 45: 274-277.
- [29] Zhou PH, Xiao Y and Wang HB. Clinical study of transcatheter arterial chemoembolization combined with γ-knife for primary hepatic carcinoma. Med J West China 2011; 1284-1286.
- [30] Chen YP, Zhang JL and Luo DF. Observations on therapeutic effects of γ-ray three dimensional conformal radiation therapy combined with intervental therapy or purely intervental therapy for patients with hepatocellular primary carcinoma. Clin Focus 2011; 26: 220-222.
- [31] Li K, Liu HC and Kong T. Clinical analysis of transcatheter arterial chemoembolization combined Gamma Knife in treatment of primary liver cancer. Med Inf 2012; 25.
- [32] Kong P, Wang JP, Tong YY, Yu DP and Sun Y. Treatment of primary liver carcinoma using transcatheter hepatic arterial chemoembolization in combination with Gamma Knife. J Prac Radiol 2012; 921-925+ 939.
- [33] Zhang ZL, Yang XD, Wen AM and Wang JP. Evaluation of TACE combined with gammaknife radiotherapy for primary hepatoceilular carcinoma. J Interv Radiol 2012; 21: 596-599.
- [34] Li SW, Wang JP, Yan D, Li YC, Luo JY, Zhang SQ, Tong YY and Li L. Clinical observation on the treatment of patients with primary hepatocellular carcinoma by using chemoembolization with a mixture of docetaxel and iodized oil combined with Gamma Knife. Radiol Prac 2012; 27: 1378-1381.
- [35] Wang M. Stereotactic body radiation therapy combined with transcatheter arterial chemoembolization (TACE) for primary hepatic carcinoma. J Med Front 2013; 195-195.
- [36] Sha XF, Zhang J, Wei SZ, Yang QM, Zhang C and Shan S. The therapeutic effect of primary hepatic carcinoma patients treated with transcatheter arterial chemoembolization (TACE) combined with Gamma Knife (γ-knife). J Mod Oncol 2013; 21: 2281-2283.
- [37] Cao Y. Effect observation of sequential therapies of transcatheter arterial chemoembolization combined Gamma Knife in treatment of advanced hepatocellular carcinoma. J Henan Med Coll Staff Works 2013; 23-25.
- [38] Sun X. Clinical research of sequential therapies of transcatheter arterial chemoembolization combined Gamma Knife in treatment of advanced hepatocellular carcinoma. Clin Med 2014; 35-36.

- [39] Liu YF. Sequential therapies of transcatheter arterial chemoembolization combined Gamma Knife in treatment of advanced hepatocellular carcinoma. Med Fofum 2014; 18: 1267-1268.
- [40] Meng QL. Clinical analysis of sequential therapies of transcatheter arterial chemoembolization combined Gamma Knife in treatment of advanced hepatocellular carcinoma. Chin J Mod Drug Appl 2015; 53-54.
- [41] Ge RH. Clinical application of sequential therapies of transcatheter arterial chemoembolization combined Gamma Knife in treatment of advanced hepatocellular carcinoma. Chin Prac Med 2015; 96-97.
- [42] Tang F, Bai C, Yang R, Hu FB and Wu SP. Therapeutic effect of hepatic arterial chemoembolization combined with three-dimensional Gamma Knife on hepatitis B virus associated hepatocellular carcinoma and its influence on tumor markers and T lymphocyte subsets. J Lanzhou Univ Med Sci 2015; 41.
- [43] Huang QX. Observation of Gamma Knife combined transcatheter arterial chemoembolization in treatment of advanced primary hepatic carcinoma. J Med Theor Prac 2015; 1905-1906.
- [44] Pan XF, Zheng GB, Xing HY and Yang ZJ. Clinical observation of transcatheter arterial chemoembolization combined with Gamma Knife in treatment of primary liver cancer. J Oncol 2015; 311-315.
- [45] Jaeger HJ, Mehring UM, Castaneda F, Hasse F, Blumhardt G, Loehlein D and Mathias KD. Sequential transarterial chemoembolization for unresectable advanced hepatocellular carcinoma. Cardiovasc Intervent Radiol 1996; 19: 388-396.
- [46] Camma C, Schepis F, Orlando A, Albanese M, Shahied L, Trevisani F, Andreone P, Craxi A and Cottone M. Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. Radiology 2002; 224: 47-54.
- [47] Liao M, Huang J, Zhang T and Wu H. Transarterial chemoembolization in combination with local therapies for hepatocellular carcinoma: a meta-analysis. PLoS One 2013; 8: e68453.
- [48] Kwon JH, Bae SH, Kim JY, Choi BO, Jang HS, Jang JW, Choi JY, Yoon SK and Chung KW. Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer 2010; 10: 475.

- [49] Seo YS, Kim MS, Yoo SY, Cho CK, Choi CW, Kim JH, Han CJ, Park SC, Lee BH, Kim YH and Lee DH. Preliminary result of stereotactic body radiotherapy as a local salvage treatment for inoperable hepatocellular carcinoma. J Surg Oncol 2010; 102: 209-214.
- [50] Kang JK, Kim MS, Cho CK, Yang KM, Yoo HJ, Kim JH, Bae SH, Jung DH, Kim KB, Lee DH, Han CJ, Kim J, Park SC and Kim YH. Stereotactic body radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment after incomplete transarterial chemoembolization. Cancer 2012; 118: 5424-5431.
- [51] Seong J, Keum KC, Han KH, Lee DY, Lee JT, Chon CY, Moon YM, Suh CO and Kim GE. Combined transcatheter arterial chemoembolization and local radiotherapy of unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 1999; 43: 393-397.
- [52] Byfield JE, Lynch M, Kulhanian F and Chan PY. Cellular effects of combined adriamycin and xirradiation in human tumor cells. Int J Cancer 1977; 19: 194-204.
- [53] Izumi R, Shimizu K, Iyobe T, Ii T, Yagi M, Matsui O, Nonomura A and Miyazaki I. Postoperative adjuvant hepatic arterial infusion of Lipiodol containing anticancer drugs in patients with hepatocellular carcinoma. Hepatology 1994; 20: 295-301.
- [54] Yamashita Y, Torashima M, Oguni T, Yamamoto A, Harada M, Miyazaki T and Takahashi M. Liver parenchymal changes after transcatheter arterial embolization therapy for hepatoma: CT evaluation. Abdom Imaging 1993; 18: 352-356.
- [55] Lau WY, Lai EC and Lau SH. The current role of neoadjuvant/adjuvant/chemoprevention therapy in partial hepatectomy for hepatocellular carcinoma: a systematic review. Hepatobiliary Pancreat Dis Int 2009; 8: 124-133.
- [56] Bruix J, Sala M and Llovet JM. Chemoembolization for hepatocellular carcinoma. Gastroenterology 2004; 127: S179-188.
- [57] Cheng JC, Wu JK, Huang CM, Liu HS, Huang DY, Cheng SH, Tsai SY, Jian JJ, Lin YM, Cheng TI, Horng CF and Huang AT. Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication. Int J Radiat Oncol Biol Phys 2002; 54: 156-162.