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Abstract: The purpose of this research was to reveal the effects of knockdown of Omi/HtrA2 on rat renal tubular 
epithelial cells (NRK-52E cells) under conditions of hypoxia/reoxygenation. NRK-52E cells were randomized to five 
groups: a conventional culture group and four hypoxia/reoxygenation groups: model group (untransfected cells), HK 
group (cells transfected with the non-silencing recombinant plasmid Pgenesil-1/HK), shRNA1 group (transfected 
with Pgenesil-1/Omi/HtrA2 shRNA1), and shRNA2 group (transfected with Pgenesil-1/Omi/HtrA2 shRNA2). Cells 
were incubated in anaerobic liquid to induce hypoxia/reoxygenation in the experimental models. Apoptosis was 
assessed by DNA Ladder electrophoresis and caspase-3/9 activity assays. Compared with the model group, elec-
trophoretic assessment indicated that DNA damage was decreased after hypoxia/reoxygenation in the shRNA1 and 
shRNA2 groups. Additionally, the activity of caspase-3/9 was significantly decreased in shRNA1 and shRNA2 groups 
compared to the model group. Furthermore, expression of caspase-3/9 and Omi/HtrA2 proteins was significantly 
decreased in shRNA1 and shRNA2 groups compared to the model group. In conclusion, Omi/HtrA2 expression and 
apoptosis are significantly induced in NRK-52E cells by hypoxia/reoxygenation. Depletion of Omi/HtrA2 significantly 
attenuated apoptosis of NRK-52E cells induced by hypoxia/reoxygenation, indicating that therapies targeting Omi/
HtrA2 could be an effective treatment for acute kidney failure.
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Introduction

Acute renal failure (ARF) is a common and 
severe medical condition with a high fatality 
rate of 30%-50% [1]. About three-quarters of 
ARF cases result from renal ischemia [2]. Renal 
ischemia-reperfusion injury (RIRI) is a major 
cause of ARF, and renal tubular epithelial cell 
apoptosis plays an important role in RIRI [3, 4]. 
Finding an effective method to reduce RIRI-
induced renal tubular epithelial cell apoptosis 
is of great importance in developing better 
treatments for ARF.

Apoptosis, or programmed cell death, is a pro-
active and highly orderly cellular death pro- 
cess that involves a series of enzymes and is 
controlled by genes under specific physiological 
or pathological conditions. Characteristics of 
apoptosis include nuclear condensation, DNA 
ladder fragmentation, shrunken cytoplasm and 

formation of apoptotic bodies [5]. The main 
pathways of apoptosis are the caspase-depen-
dent and non-caspase-dependent apoptotic 
pathways [6]. In RIRI, apoptotic pathways are 
activated due to GTP depletion, lack of growth 
factors, and increases in reactive oxygen me- 
tabolites, which results in renal tubular epit- 
helial cell apoptosis [7, 8]. The main apoptotic 
pathway activated in RIRI is caspase-depen-
dent apoptosis that includes the intrinsic (mito-
chondrial) apoptotic pathway, the extrinsic (de- 
ath receptor) apoptotic pathway, and the endo-
plasmic reticulum pathway [9].

Omi/HtrA2, a widely expressed member of the 
serine protease family, was recently reported to 
be an apoptosis-inducing factor [10, 11]. When 
the mitochondria is stimulated by apoptotic sig-
nals, permeability pores on the mitochondrial 
membrane open, and apoptosis-inducing fac-
tors such as Omi/HtrA2 and cytochrome C are 
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released from the mitochondria into the cyto-
plasm, where they associate with inhibitor of 
apoptosis proteins (IAPs) resulting in the acti- 
vation of caspase-9 and caspase-3, leading  
to cell apoptosis [12]. In addition, the proteo-
lytic activities of Omi/HtrA2 also plays a role in 
the non-caspase-dependent apoptotic pathway 
[13].

RNA Interference (RNAi) is an effective gene-
silencing approach that introduces double-
stranded RNA complementary to a “target 
gene”, resulting in repression of target gene 
expression [14]. RNAi is widely used to study 
high-flux gene, gene knockout, gene therapy, 
and gene expression. After cells are transfect-
ed with shRNA plasmids, siRNAs can be highly 
expressed and achieve a stable and reproduc-
ible knockdown effect [15].

It has been reported that Omi/HtrA2 plays a 
significant role in the occurrence and develop-
ment of prostate cancer and liver cancer [16, 
17]. However, is known regarding the effect  
of Omi/HtrA2 on RIRI-induced renal tubular  
epithelial cell apoptosis. In this study, we con-
structed a hypoxia/reoxygenation model of  
rat renal tubular epithelial cells (NRK-52E) to 
determine the impact of hypoxia/reoxygenation 
on NRK-52E cell apoptosis and caspase-3/9 
expression. Using this model, we transfected 
NRK52E cells with plasmids containing shRNAs 
targeting Omi/HtrA2 to explore the role and 
possible mechanisms of Omi/HtrA2 in renal 
tubular epithelial cell apoptosis.

Material and methods

Cell culture

NRK-52E cells, a rat renal proximal tubular epi-
thelial cell line (a gift from Professor Xue-qing 
Yu, Department of Nephrology, The First Af- 
filiated Hospital, Sun Yat-sen University, Guang- 
zhou, China), were cultured in routine condi-
tions. NRK-52E cells in the logarithmic growth 
phase were seeded in 12-well plate at a con-
centration of 5×103 cells/well for transfec- 
tion with the HK (Pgenesil-1/HK), shRNA1, and 
shRNA2 constructs. In each well, 0.5 μg of 
recombinant plasmid, 1.5 μl of liposomes, and 
75 μl of DMEM/F12 culture medium (Invitrogen, 
Carlsbad, CA, USA) were combined, followed  
by the addition of 1 ml of DMEM/F12 culture 
medium. Eight hours later, the culture medium 
was replaced by media containing 10% fetal 

bovine serum (Hyclone, Logan, UT, USA). After 
24 h, culture medium was replaced by growth 
media containing 300 μg/ml G418. Two weeks 
later, a stable monoclonal cell population was 
obtained and cultured in 50 μg/ml G418.

Grouping and preparation of hypoxia/reoxy-
genation models

Experiments were divided into the five groups: 
five groups: a conventional culture group and 
four hypoxia/reoxygenation groups: model gro- 
up (untransfected cells), HK group (cells trans-
fected with the non-silencing recombinant plas-
mid Pgenesil-1/HK), shRNA1 group (transfect-
ed with Pgenesil-1/Omi/HtrA2 shRNA1), and 
shRNA2 group (transfected with Pgenesil-1/
Omi/HtrA2 shRNA2). Cells in the hypoxia/reoxy-
genation groups were incubated in hypoxic con-
ditions in anaerobic liquid in an atmosphere  
of 95% N2 and 5% CO2 at 37°C for 45 min; reox-
ygenation was performed by incubation in nor-
mal culture medium under standard culture 
conditions for 90 min. After hypoxia/reoxygen-
ation, cells from each group were collected in 
six 75 ml culture.

Cell apoptosis observed by DNA Ladder

To confirm the induction of apoptosis, DNA frag-
mentation was analyzed by a annexin V-FITC 
apoptosis detection test kit (Keygen Biotec- 
hnology, Nanjing, China). Briefly, cells were  
collected by centrifugation and washed twice 
with PBS. The cell pellet was resuspended in 
0.1 ml lysis buffer and incubated with shaking 
at 37°C for 4 h. The lysate was treated with 20 
μl Solution A and 20 μl Enzyme A for 1 h at 
55°C, followed by reaction with 20 μl Enzyme B 
for 1 h at 37°C. The upper phase was collected 
and precipitated with cold ethanol overnight at 
-20°C. DNA was collected by centrifugation 
(14,000×g; 4°C; 20 min) and washed with 75% 
ethanol. The DNA pellet was resuspended in 
100 μl TE buffer and incubated at 65°C for 1 h 
to facilitate solubilisation. Finally, the DNA was 
subjected to electrophoresis on a 2% agarose 
gel (Invitrogen Life Technologies, Carlsbad, CA, 
USA) at 60 V for 2.5 h and observed and photo-
graphed under UV light.

Colorimetric method for caspase-3/9 activity 
detection 

The activity of caspase-3/9 was measured by a 
colorimetric method using a Caspase Activity 
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Kit according to standard procedures (Caspa- 
se Activity Assay Kit, Beyotime Biotechnology, 
Shanghai, China).

Western blot analysis

Cytoplasmic proteins were extracted using a 
mitochondria/cytoplasmic separation and ex- 
traction kit (BioVision Inc, Milpitas, California, 
USA), and protein concentration was deter-
mined by a Brandford protein concentration 
detection kit (Sigma, St. Louis, MO, USA). Equal 
amounts of protein per sample (80 μg) were 
separated by SDS-PAGE, transferred to nitro-
cellulose membrane under constant current. 
Membranes were blocked with 5% nonfat milk 
over night at 37°C, and then incubated with pri-
mary antibodies against Omi/HtrA2, caspase- 
3 or caspase-9 (each 1:1000 dilution, Santa 
Cruz, CA, USA), at room temperature for 4 
hours. Membranes were then incubated with 
the appropriate horseradish peroxidase-conju-
gated secondary antibodies (each 1:500 dilu-
tion, Maixin Biotechnology, Fuzhou, China), and 
then washed. Membrane were visualized after 
washing. Grey values were used for densito-
metric analysis of bands. β-actin band was 
used as a loading control reference for detec-
tion of grey values of each membrane.

Statistical analysis

One-way analysis of variance (ANOVA) was used 
for comparison of differences among groups. 
Tukey’s honestly significant difference (HSD) 
test was utilized for comparisons between two 
groups. All P values were two-tailed and a P 
value < 0.05 was considered to indicate a  
statistically significant difference. All data were 
analyzed using the SPSS statistical package, 
version 13.0 (SPSS Inc., Chicago, IL, USA) for 
Windows. Results are expressed as mean ± SE.

Results

Apoptosis observed by DNA Ladder

In the normal group, DNA electrophoresis iden-
tified a DNA fragment of high molecular weight 
that lacked gradient bands indicative of apop-
tosis. In the model and HK groups, DNA frag-
mentation in the nucleosome was observed  
as typical electrophoretic gradient bands, sug-
gesting that apoptosis occurred after hypoxia/
reoxygenation. There was no marked difference 
in DNA fragmentation between the model  
and HK groups. However, compared with model 
group, DNA fragmentation was significantly at- 
tenuated after hypoxia/reoxygenation in the 
shRNA1 and shRNA2 groups, suggesting that 
knockdown of Omu/HtrA2 decreased apopto-
sis (Figure 1).

Activity of caspase-3/9 determined with colori-
metric method 

Compared with the normal group, the activity of 
caspase-3/9 was significantly increased in the 
model, HK, shRNA1, and shRNA2 groups (P < 
0.05). Compared with the model group, the ac- 
tivity of caspase-3/9 was significantly decre- 
ased in the shRNA1 and shRNA2 groups. (P < 
0.05). There were no statistical differences in 
the activity of caspase-3/9 between the model 
and HK groups (Table 1).

Protein expressions of caspase-3/-9 and Omi/
HtrA2 in the cytoplasm determined by western 
blotting

Compared with the normal group, the protein 
expressions of caspase-3/9 and Omi/HtrA2 
were significantly increased in the model and 
HK groups (P < 0.05). Compared with model 
group, the protein expressions of caspase-3/9 

Figure 1. Apoptosis observed by DNA fragmenta-
tion by gel. Lane identifications: 1) marker; 2) nor-
mal group; 3) model group; 4) HK group; 5) shRNA1 
group; 6) shRNA2 group. normal: conventional cul-
ture group; hypoxia/reoxygenation groups: model 
group (untransfected cells); HK group (cells trans-
fected with the non-silencing recombinant plasmid 
Pgenesil-1/HK); shRNA1 group (transfected with 
Pgenesil-1/Omi/HtrA2 shRNA1); and shRNA2 group 
(transfected with Pgenesil-1/Omi/HtrA2 shRNA2).
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and Omi/HtrA2 were significantly decreased in 
the shRNA1 and shRNA2 groups (P < 0.05). 
There were no statistical differences in the  
protein expression of caspase-3/9 and Omi/

HtrA2 between the model and HK groups,  
and between the shRNA1 and shRNA2 groups 
(Table 2 and Figures 2-4).

Discussion

Apoptosis is a tightly regulated physiological 
process of cellular self-destruction, which plays 
an important role in removing abnormal or 
unwanted cells in multicellular organisms, facil-
itating the maintenance of internal homeos- 
tasis and preserving phylogenetic develop- 
ment [5, 18]. As a method of proactive cellular 
death, apoptosis has complex molecular bio-
logical mechanisms, including caspase-depen-
dent and non-caspase-dependent apoptosis. 
Caspase-dependent apoptosis refers to apop-
tosis involving the successive activation of 
members of the caspase family of proteins by 

Table 1. Caspase-3/9 activity detected by colorimetric method
Normal Model HK shRNA1 shRNA2

caspase-3 0.32 ± 0.10 2.98 ± 0.15* 2.84 ± 0.18* 1.74 ± 0.08** 1.68 ± 0.09**
caspase-9 0.21 ± 0.08 1.76 ± 0.14* 1.63 ± 0.13* 1.23 ± 0.12** 1.31 ± 0.11**
*P < 0.05 vs. normal group; **P < 0.05 vs. model group. Values are mean ± SE, n = 6. Normal: conventional culture group; 
hypoxia/reoxygenation groups: model group (untransfected cells); HK group (cells transfected with the non-silencing recombi-
nant plasmid Pgenesil-1/HK); shRNA1 group (transfected with Pgenesil-1/Omi/HtrA2 shRNA1); and shRNA2 group (transfected 
withPgenesil-1/Omi/HtrA2 shRNA2).

Table 2. Values of caspase-3/9 and Omi/HtrA2 determined by western blot
Normal Model HK shRNA1 shRNA2

caspase-3/ß-actin 0.16 ± 0.04 0.86 ± 0.11* 0.84 ± 0.11* 0.69 ± 0.06** 0.64 ± 0.05**
caspase-9/ß-actin 0.10 ± 0.03 0.63 ± 0.10* 0.66 ± 0.06* 0.32 ± 0.05** 0.35 ± 0.08**
Omi/HtrA2/ß-actin 0.17 ± 0.06 0.77 ± 0.10* 0.74 ± 0.06* 0.34 ± 0.06** 0.36 ± 0.08**
*P < 0.05 vs. normal group; **P < 0.05 vs. model group. Values are mean ± SE, n = 6. Normal: conventional culture group; 
hypoxia/reoxygenation groups: model group (untransfected cells); HK group (cells transfected with the non-silencing recombi-
nant plasmid Pgenesil-1/HK); shRNA1 group (transfected with Pgenesil-1/Omi/HtrA2 shRNA1); and shRNA2 group (transfected 
with Pgenesil-1/Omi/HtrA2 shRNA2).

Figure 2. Protein expressions of caspase-3 deter-
mined by western blot. Lane identification: 1) nor-
mal group; 2) model group; 3) HK group; 4) shRNA1 
group; 5) shRNA2 group. normal: conventional cul-
ture group; hypoxia/reoxygenation groups: model 
group (untransfected cells); HK group (cells trans-
fected with the non-silencing recombinant plasmid 
Pgenesil-1/HK); shRNA1 group (transfected with 
Pgenesil-1/Omi/HtrA2 shRNA1); and shRNA2 group 
(transfected with Pgenesil-1/Omi/HtrA2 shRNA2).

Figure 3. Protein expressions of caspase-9 deter-
mined by western blot. Lane identification: 1) nor-
mal group; 2) model group; 3) HK group; 4) shRNA1 
group; 5) shRNA2 group. normal: conventional cul-
ture group; hypoxia/reoxygenation groups: model 
group (untransfected cells); HK group (cells trans-
fected with the non-silencing recombinant plasmid 
Pgenesil-1/HK); shRNA1 group (transfected with 
Pgenesil-1/Omi/HtrA2 shRNA1); and shRNA2 group 
(transfected with Pgenesil-1/Omi/HtrA2 shRNA2).

Figure 4. Protein expressions of Omi/HtrA2 deter-
mined by western blot. Lane identification: 1) nor-
mal group; 2) model group; 3) HK group; 4) shRNA1 
group; 5) shRNA2 group. normal: conventional cul-
ture group; hypoxia/reoxygenation groups: model 
group (untransfected cells); HK group (cells trans-
fected with the non-silencing recombinant plasmid 
Pgenesil-1/HK); shRNA1 group (transfected with 
Pgenesil-1/Omi/HtrA2 shRNA1); and shRNA2 group 
(transfected with Pgenesil-1/Omi/HtrA2 shRNA2).
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stimulating factors, ultimately resulting in apo- 
ptosis. Based on the differences in activators 
and the types of caspases, caspase-depen-
dent apoptotic pathways are divided into the 
death receptor pathway, the mitochondrial 
pathway, and the endoplasmic reticulum path-
way. In the death receptor pathway, extracel- 
lular ligands activate caspase-8/10 through 
combination with their receptors; in the mito-
chondrial pathway, apoptosis inducing factors 
such as Omi/HtrA2, cytochrome C, and nuclear 
endonuclease G are released to activate cas-
pase-9 following mitochondrial stimulation; in 
the endoplasmic reticulum pathway, after the 
endoplasmic reticulum is stimulated, calpain is 
released and activates caspase-12. In all the 
three pathways, activated caspase-3 is the ulti-
mate pathway effector, resulting in DNA break-
age and apoptosis. In non-caspase-dependent 
apoptosis, caspase activation is not involved. 
In general, there are both caspase-dependent 
and non-caspase-dependent pathways involv- 
ed in most cellular apoptosis [19, 20]. In RIRI, 
the main pathway of apoptosis is the caspase-
dependent pathways [21].

In this study, NRK-52E cells were transfected 
with shRNA1, shRNA2, and HK, and monoclo-
nal cell cultures were obtained by G418 selec-
tion. Renal tubular epithelial cell apoptosis  
was induced in hypoxia/reoxygenation models. 
The results of this study indicated that expr- 
ession of the Omi/HtrA2 and procaspase-3/9 
proteins and cellular apoptosis were signifi-
cantly increased in the model group. However, 
knockdown of Omi/HtrA2 resulted in decreased 
caspase-3/9 protein expression and relief of 
NRK-52E cell apoptosis after hypoxia/reoxy-
genation. These data suggest that Omi/HtrA2 
induces renal tubular epithelial cell apoptosis 
through a caspase-dependent pathway.

Omi/HtrA2 is involved in apoptosis via a num-
ber of mechanisms. Hegde et al. [22] reported 
that Omi/HtrA2 is involved in mammalian apop-
tosis, and it is known that Omi/HtrA2 promotes 
apoptosis in a variety of tumor cells. In prostate 
cancer, hepatocellular cancer, and breast can-
cer expression of Omi/HtrA2 is elevated and  
is positively correlated with apoptosis [16, 17, 
23]. Liu et al. [24] reported that during rat myo-
cardial I/R administration of Omi/HtrA2 inhibi-
tors induces a significant relief of apoptosis, 
decrease in XIAP protein expression, and inhi- 
bition of caspase-3/9 activity. It was reported 

that the Omi/HtrA2 tetrapeptide domain con-
sisting of the first four amino acid residues 
AVPS (or AVPA) may interact with the third BIR 
motif in the XIAP protein, resulting in an inhibi-
tion of the combination of XIAP and caspase-9, 
thus relieving the inhibitory effects of XIAP on 
caspase-9 and increasing apoptosis. Activated 
caspase-9 then activates caspase-3, and acti-
vated caspase-3 may also promote caspase-9 
activation followed by endonuclease activa- 
tion to promotes apoptosis [25]. In addition, 
Omi/HtrA2 also can directly promote apoptosis 
through its protease activity.

Our study demonstrates that hypoxia/reoxy-
genation results in significantly increased ex- 
pression of Omi/HtrA2 in NRK-52E cells. Furt- 
hermore, we show that blockade of Omi/HtrA2 
expression using RNAi decreases the activity  
of caspase-3/9 protein and inhibits apoptosis 
in NRK-52E cells. shRNA targeting Omi/HtrA2 
may be developed into an effective treatment 
for ARF resulting from RIRI. 
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