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Abstract: Osteosarcoma is the most common form of primary bone cancer in adolescent with a male predominance. 
Current treatment for osteosarcoma is still limited and ineffective. With metastasis or recurrence, the chance of 
long-term survival always bellows 20%, which suggested a requirement of developing novel therapy. In this study, we 
investigate if Second mitochondria-derived activator of caspases (SMAC) mimetic SM-164 could enhance Adriamy-
cin induced apoptosis and cell cycle arrest in Osteosarcoma cell line. Our data suggested that SM-164 induced os-
teosarcoma cell proliferation inhibition in a dose depended manner. Combined treatment SM-163 and Adriamycin 
enhanced apoptosis induction in HOS cells. Treatment of the cell with SM-164 modestly induced protein degrada-
tion of both c-IAP1 and XIAP, which were inhibitors of apoptosis. Moreover, SM-164 enhanced Adriamycin induced 
cell cycle arrest in HOS cells. In conclusion, our data suggested that SM-164 may be a novel candidate as adjuvant 
for chemotherapy of osteosarcoma.
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Introduction

Osteosarcoma is the most common form of pri-
mary bone cancer and most prevalent in chil-
dren and young adults with a male predomi-
nance [1-3]. Osteosarcoma is considered as 
aggressive malignant neoplasm which originat-
ed from cells with mesenchymal origin (and 
thus a sarcoma) [4]. Therefore, osteosarcoma 
generally exhibits osteoblastic differentiation 
and produces malignant osteoid [4].

Although osteosarcoma can occur in any bone, 
most malignancy sites are frequent found in 
the metaphyseal regions of the distal femur, 
proximal tibia and proximal humerus [3], Osteo- 
sarcoma is generally characterized by a local 
invasion of bone and soft tissues, function loss 
of the affected extremity and distant metasta-
sis [3]. Without metastases during diagnosis, 
osteosarcoma patients have a five-year surviv-
al rate from 60% to 70% if aggressive surgical 
resection and chemotherapy were combined 

together for therapy [5]. However, in these cas- 
es with metastasis or recurrence, the chance of 
long-term survival always bellows 20% [4]. The- 
refore, development of novel therapy is urgently 
needed.

The second mitochondria-derived activator of 
caspases (SMAC), also named as Diablo homo-
log (direct IAP binding protein with low pI), a 
mitochondrial protein locating in the intermem-
brane space of mitochondrial, promotes cyto-
chrome c- and TNF receptor-dependent activa-
tion of apoptosis (intrinsic pathway) by inhibiting 
the effect of inhibitor of apoptosis proteins 
(IAP), a class of proteins that negatively regu-
lates apoptosis [6, 7].

The full-length of SMAC protein contains 239 
amino acids residues, but the 55aa N-terminal 
which containing mitochondrial-targeting sequ- 
ence (MTS) will be cleaved after it transporta-
tion to mitochondrial and leads to the expose of 
N-terminal Ala-Val-Pro-Ile sequence (AVPI) of 
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cleaved SMAC [8-10]. The tetrapeptide sequ- 
ence AVPI is the core of binding domain to IAP, 
which is essential for inhibiting function of XIAP 
[10]. Many studies suggested that SMAC is 
involved in cancer due to its pro-apoptotic func-
tion and overexpression of SMAC in tumor cells 
leads to sensitized tumor cells for apoptosis 
induction [11]. As a result, small-molecule mim- 
etics for the tetrapeptide AVPI sequence of 
SMAC have been developed to mimic the in the 
IAP binding domain of SMAC to induce cell 
death in tumor cells [12-15].

SM-164 is a bivalent cell-permeable Smac 
mimetic, which is 1,000 times more potent 
than SM-122 as an inducer of apoptosis in 
tumor cells [16, 17]. Previous reports demon-
strated that combination of SM-164 with TNF-
related apoptosis inducing ligand (TRAIL) repre-
sented a new therapeutic strategy for cancer 
and SM-164 is able to enhance Doxorubicin-
mediated anticancer activity in hepatocellular 
carcinoma cells [17, 18]. Moreover, SM-164 is 
able to induce radiosensitization in breast can-
cer cells as well [19]. In this study, we investi-
gate the role of SMAC mimetic SM-164 as adju-
vant for chemotherapy for osteosarcoma cell 
line. Our data suggested that SM-164 may be a 
novel adjuvant for future development of more 
effective chemotherapy of osteosarcoma.

Materials and methods

Cell and chemicals

Osteosarcoma derived cell line HOS (ATCC® 
CRL-1543™) was purchased from ATCC and 
maintained in Dulbecco’s Modified Eagle Me- 
dium (DMEM, Gibco, Carlsbad, CA, USA) supple-
mented with 10% fetal bovine serum (Gibco). 
SM-164 was purchased from Beyotimes (Bei- 
jing, China) and solved in DMSO according to 
manufacturer’s instruction. Doxorubicin hydro-
chloride (Adriamycin) was purchased from Sig- 
ma-Aldrich (St. Louis, MO, USA). 

Cell proliferation assay (MTT)

The trypsinized HOS cells were first stained by 
trypan blue (Sigma) for counting of living cells. 
Then the single cell suspension was seeded in 
96 well plates with a density of 2 × 104 cell in 
each well. After overnight incubation, indicated 
treatment were conducted, then the cell prolif-
eration was determined at the indicated time 
points by using MTS Cell Proliferation Colori- 

metric Assay kit (Biovision, Milpitas, CA, USA) 
according manufacturer’s instruction with VIC- 
TORTM X5 Multilabel Plate Reader (PerkinElmer, 
Waltham, MA, USA). 

Flow cytometry based cell apoptosis and cell 
cycle assay 

Cells from indicated groups were treated acc- 
ordingly. The trypsinized cells were fixed with 
70% ethanol and permeabilized by PBS con-
taining 0.5% Triton X100 (Sigma-Aldrich). A to- 
tally 1 × 106 cells were stained with FITC label- 
ed Annexin V and Propidium iodide. Then the 
stained cells were analyzed via flow cytometry 
machine (FACSCalibur, BD Biosciences, San 
Jose, CA, USA) for apoptosis analysis.

For cell cycle analysis, a totally 1 × 106 cells of 
each group were fixed with 70% ethanol and 
permeabilized by PBS containing 0.5% Triton 
X100 (Sigma) along with treating of DNase-free 
RNase A (Sigma). Then the fixed cells were 
stained by Propidium iodide for cell cycle analy-
sis by flow cytometry machine (FACSCalibur, BD 
Bioscience).

SDS-PAGE and Western blotting

The SDS-PAGE was conducted as previously 
described [20, 21]. Briefly, SDS-PAGE separat-
ed proteins were transferred into PVDF mem-
brane, followed by blocking with SuperBlock™ 
(PBS) Blocking Buffer (ThermoFisher Scientific, 
Waltham, Massachusetts, USA) for 15 mins. 
Then the membrane was probed by rabbit anti- 
XIAP (SC-11426, Santa Cruz Biotechnology, Sa- 
nta Cruz, CA, USA) and rabbit anti-LC-3 (Sigma-
Aldrich). Specific reactions between antibodies 
and corresponding proteins were detected by 
using goat anti-rabbit poly clonal antibodies 
conjugated with horseradish peroxidase (Sig- 
ma-Aldrich) and revealed by SuperSignal Che- 
miluminescence Substrate (ThermoFisher Sci- 
entific). The luminescence signal was digitally 
recorded by the ChemiDoc MP system (Bio-
Rad, Hercules, CA, USA) and analyzed with the 
ImageLab Program (Version 6.1, Bio-Rad). The 
same membrane was also blotted with anti-
body targeting β-actin (Santa Cruz) for normal-
ization the total protein loading during SDS- 
PAGE. 

Statistical analysis

All quantification data and statistical analysis 
was conducted using Excel program of Office 
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2010 software suit (Microsoft, Seattle, WA, 
USA). Data are presented as the Mean ± SD. 
Difference in indicators between samples were 
subjected to the Student’s t test. A two tailed 
P-value of less than 0.05 was considered sta-
tistically significant.

Results

SM-164 induced osteosarcoma cell prolifera-
tion inhibition in a dose depended manner

To investigate the role of SM-164 in osteosar-
coma derived HOS cell, we first check the prolif-
eration of HOS cell under different concentra-

tions of SM-164. As demonstrated in Figure 
1A, with the adding of SM-164, proliferation of 
HOS cell stated to reducing as the concentra-
tion of SM-164 increased. However, increasing 
the SM-164 dose from 1nM to 10 μM (10000 
folds) only modestly reduced the HOS prolifera-
tion rate from 90% to 64% (Figure 1A), implied 
proliferation inhibition induced by SM-164 
alone was not enough. Therefore, it is interest-
ing know if SM-164 combined with a chemo-
drug together could resulted a stronger inhibi-
tion since previous studies demonstrated that 
SM-164 is able to enhance Doxorubicin-me- 
diated anticancer activity in hepatocellular car-

Figure 1. SM-164 combined with Adriamycin inducing osteosarcoma cell proliferation inhibition. A: Dose depended 
inhibition of HOS cell proliferation by SM-164. B: HOS cell was seeds in 12 well plate for 24 h, then treated with 200 
nM SM164, or 0.5 μg ADM or both for 24 hours. Then cells were observed under microscope. C: MTT based cell pro-
liferation assay for HOS cell treated with 200 nM SM164, or 0.5 μg ADM or both for 24 hours. Error bar represented 
SD from 3 times repeats of experiments. Significant differences between cancer tissues and normal he are shown 
by “*” to indicate significant difference (P < 0.05).
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cinoma cells [17, 18]. In our study, we used Ad- 
riamycin (ADM) as the stimulator for apoptosis, 
since ADM has been widely used for treating 
primary Osteosarcoma [22-24]. Compared to 
the cells treating with SM-164 or ADM alone, 
combination of both significantly inhibited the 
growth of HOS cells (Figure 1B and 1C). 

SM-163 enhance adriamycin induced apopto-
sis in HOS cells 

ADM induces histone eviction from transcrip-
tionally active chromatin [25]. DNA damage 
response, epigenome and transcriptome dereg-
ulation lead to apoptosis in ADM-exposed cells 

[25]. As data above demonstrated that treat-
ment of HOS cell with SM-164 could enhanced 
ADM induced cell proliferation inhibition, we 
further explorer examined if SM-164 enhanced 
ADM induced apoptosis in HOSs. Based on our 
flow cytometry data, under the normal condi-
tion, there were little cells experiencing early or 
late apoptosis (Figure 2A). With the treatment 
of 200 nM SM-164 alone, there were 18.9% 
and 9.7% of the total cells undergo early apop-
tosis and later apoptosis, respectively. More- 
over, with the treatment of 0.5 μg/mL ADM, 
about 40.9% and 10.8% HOS cells were experi-
encing early and later apoptosis (Figure 2A). 
However, with the combination of both ADM 
and SM-164, the cells undergo early apoptosis 
and later apoptosis were significantly increased 
to 32% and 45.4%, respectively. Moreover, by 
repeating the experiment for 3 times, quantifi-
cation analysis for FCM data also confirmed our 
observation (Figure 2B). Taken together, these 
data suggested the SM-163 sensitized HOS 
cells for apoptosis induced by ADM.

SM-164 treatment inhibit expression of inhibi-
tor of apoptosis (IAPs)

It has been reported that SMAC proteins act as 
endogenous antagonist for inhibitor of apopto-

Figure 2. SM-163 enhance Adriamycin induced apoptosis in HOS cells. A: Flow cytometry based apoptosis analysis 
for HOS cell treated with 200 nM SM164, or 0.5 μg ADM or both for 24 hours. B: Statistical analysis for FCM based 
apoptosis assay, Error bar represented SD from 3 times repeats of experiments. Significant differences between 
cancer tissues and normal he are shown by “*” to indicate significant difference (P < 0.05).

Figure 3. SM-164 treatment inhibit expression of in-
hibitor of apoptosis (IAPs). Western blot for protein 
expression level of XIAP and c-IAP1; HOS cell were 
treated with indicated dose of ADM and SM164, then 
lysed for WB analysis. Anti-β actin was included as 
protein loading control for normalization.
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sis (IAPs) and SMAC mimetic SM-164 could 
induce rapid degradation of cIAP-1 in breast 
cancer cell line MDA-MB-231 [16]. It is interest-
ing to know if SM-164 plays the same role in 

HOS cells to during the ADM mediated apopto-
sis induction. Therefore, we examine both cIAP-
1 and XIAP protein level in treated cells. Our 
data demonstrated that exposed HOS cells 

Figure 4. SM-164 enhanced ADM induced cell cycle arrest in HOS cells. A: Flow cytometry based cell cycle analysis 
for HOS cell treated with 200 nM SM164, or 0.5 μg ADM or both for 24 hours. B: Statistical analysis for FCM based 
cell cycles assay, Error bar represented SD from 3 times repeats of experiments. Significant differences between 
cancer tissues and normal he are shown by “*” to indicate significant difference (P < 0.05).
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alone to different dose of ADM did not changed 
the protein level of cIAP-1 and XIAP (Figure 3). 
On the other hand, treatment of the cell with 
SM-164 modestly induced protein degradation 
of both c-IAP1 and XIAP (Figure 3). Notably, with 
increasing of the ADM dose to 0.5 μg, SM-164 
induced a very strong degradation of XIAP.

SM-164 enhanced ADM induced cell cycle ar-
rest in HOS cells

Except apoptosis induction, ADM stabilizes the 
topoisomerase II complex after it has broken 
the DNA chain for replication, preventing the 
DNA double helix from being resealed and 
thereby inhibiting the process of replication 
[26]. Therefore, we expected the SM-164 could 
enhance ADM induced cell cycle arrest as well. 
To verify this, HOS cells with indicted treat-
ments were analyzed in FCM. It was reported 
that ADM mainly induced cell cycle arrest in 
G0\G1 phase [27]. In our study, treatment of 
HOS cells with ADM lead to more than half of 
the total cells stay in the G0\G1 phase (Figure 
4A). On the other hand, treatment of the cells 
with SM-164 only did not show significant 
change in the cell cycle (Figure 4A). However, in 
cell with combined treatment of ADM and 
SM-164 significantly increase the cells in G0\
G1 phase up to 60% (Figure 4A and 4B). 
Therefore, SM-164 could enhance ADM induced 
cell cycle arrest in HOS cells. Taken together, 
our result demonstrated that SM-164 could 
enhanced the apoptosis induction and cell pro-
liferation effect of ADM in osteosarcoma cell 
line HOS cell, which may presentation a novel 
method for future osteosarcoma therapy.

Discussion

With current treatment methods, long-term sur-
vival probabilities for osteosarcoma have im- 
proved dramatically during the late 20th cen-
tury and approximated 68% in 2009 [1, 28]. Ho- 
wever, unlike other cancer, osteosarcoma are 
mostly prevalent in children and young adults 
with a male predominance [1-3]. Therefore, it  
is necessary to improve current therapeutic 
methods so the young patients could survive as 
long as possible. As part of the standard che-
mo-therapy drug for osteosarcoma, Adriamycin 
was widely used for osteosarcoma patients 
after surgery removal of tumor. However, the 
side effect and drug-resistance is a major prob-
lem for Adriamycin application. Therefore, deve- 

lopment of novel adjuvant which is able to 
enhance the anti-tumor effect of ADM is an 
alternative strategy. 

SM-164 is a novel bivalent SMAC mimetic. 
Compared with its monovalent form SM-162, 
SM-164 is 1,000 times more potent than 
SM-122 as an inducer of apoptosis in tumor 
cells [16]. In our study, treatment of HOS cells 
with SM-163 could provoke apoptosis. However, 
the level of cells undergo apoptosis is much 
less than HOS cells treated with ADM, which 
suggested the SM-164 cannot act alone as an 
anti-tumor drugs. However, if combined with 
ADM together, the ADM induced apoptosis is 
enhanced by co-treatment of SM-164. More- 
over, it is very interesting that our data suggest-
ing that the degradation of cIAP-1 by SM-164 is 
modest sine previous data suggesting that 
SM-164 provokes a very rapid degradation of 
cIAP-1 to undetectable level in breast cancer 
cells [16]. This may suggest sensitivity of IAPs 
to SM-164 is varying in different cancer types. 

On the other hand, we also observed that SM- 
164 could down-regulate the expression of 
XIAP in HOS cells, which is not reported before. 
It is still unclear the reduced expression of XIAP 
in SM-164 treated HOS cell was caused by 
SM-164 induced degradation in a similar man-
ner of c-IAP1 since treatment of SM-164 to 
breast cancer cells did not lead to degradation 
of XIAP in previous report [16]. In conclusion, 
SM-164 could enhanced the ADM mediated 
proliferation inhibition of osteosarcoma cell 
line HOS via sensitized cancer cells for apopto-
sis induction and cell cycle arrest. Taken togeth-
er, our data suggested that SM-164 may be a 
novel candidate as adjuvant for chemotherapy 
of osteosarcoma.
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