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Abstract: The growing data demonstrate that Klotho (KL) is deeply implicated in the diabetic nephropathy. The circu-
lating form of α-Klotho (α-KL) named as soluble KL functions as an endocrine substance that exerts heterogeneous 
actions including the modulation of renal function upon hyperglycemia, regulation of cell compensation, downgrade 
inflammation and anti-oxidation. There is a positive correlation between progression of renal disease/other com-
plications and systemic KL deficiency in diabetes mellitus patients. Restoration by exogenous supplementation or 
stimulation of endogenous KL may prevent and/or ameliorate kidney injury and mitigate development of diabetes 
mellitus. KL signaling is intertwined with mTOR, NF-κB, Wnt and PPAR-γ. KL can possibly emerge on the horizon as a 
candidate for an unprecedented sole biomarker and intervention in patients with diabetes mellitus or the complica-
tion like diabetic nephropathy.
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Introduction

Klotho (KL) is originally identified as an anti-
aging protein, but is subsequently discovered 
to have a multitude of biological effects [1]. KL 
is expressed in multiple tissues and organs, 
but by far, its highest expression is in the distal 
convoluted tubule (DCT) of the kidney [2]. Re- 
cently, the accumulated evidences show that 
α-Klotho (α-KL) has extreme pleiotropic func-
tions. It can regulate the parathyroid hormone 
(PTH) release in the parathyroid gland [3], pro-
duction of 1,25 (OH)2 vitamin D3 [4], anti-oxida-
tion [5], anti- apoptosis [6], anti-senescence 
[6], promotion of angiogenesis and vasculari- 
zation [7], inhibition of fibrogenesis [8] and 
preservation of stem cells [9]. All of the above 
properties of α-KL can potentially mediate its 
renoprotective effects demonstrated in animal 
models. In recent years, the roles of α-KL in dia-
betes mellitus (DM) and diabetic nephropathy 
(DN) have attracted more attention [10], but 
little is known about circulating α-KL levels in 
DM/DN. Meanwhile, thus far, recent studies in 

patients with DM report conflicting data. Some 
studies showed that renal α-KL expression is 
markedly decreased in DN in humans and mice 
[11-14]. In contrast, some other researches find 
that the serum α-KL level is not significantly  
different between patients with diabetes with-
out nephropathy and non-diabetic controls [15, 
16]. Several recent reviews have comprehen-
sively addressed the physiology of α-KL in aging 
[17], renal calcium, phosphate and potassium 
transport [18], and its pathophysiologic role in 
acute kidney injury, development and chronic 
kidney disease progression and its complica-
tions [19]. This study primarily devoted to dis-
cussing the potential effects of insulin on α- 
KL, and the diagnostic, prognostic and thera-
peutic roles of α-KL in DN.

Distribution, conversion and major functions 
of KL

α-KL was firstly discovered by Kuro-o et al. in 
1997 [2]. It was named after KL, one of the 
Moirae (the fates) in Greek mythology who  
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spun the thread of life from her distaff onto her 
spindle [2]. α-KL is predominately expressed  
in both the apical and basolateral membrane  
of kidney distal convoluted tubules and brain 
choroid plexus [20-22]. Mice lacking KL exhibit 
many changes that occur during aging, includ-
ing osteoporosis, infertility, and cognitive de- 
cline. They also have a short life span [2]. In 
contrast, mice overexpressing KL live 30% lon-
ger than wild-type mice and are more resistant 
to oxidative stress [22].

Human KL gene is on the chromosome 13q12, 
which contains 5 exons and 4 introns [23]. 
Human KL protein CDNA transcribes a single-
pass transmembrane protein with 1014 amino 
acids [24]. Most amino acids in the KL peptide 
reside in the amino-terminal extracellular do- 
main, which is followed by a 21-amino-acid 
transmembrane domain, and an 11-amino-acid 
short intracellular carboxy terminus [22].

α-Kl can be cleaved on the cell surface by 
membrane-anchored proteases, including by  
a desintegrin and metalloproteinase (ADAM)-
10, and by ADAM-17. Freathy et al. [25] de- 
monstrated that TAPI-1 and insulin exhibit the 
same effects on KL secretion ex vivo in rat  
kidney slices and overexpression of either 
ADAM10 or ADAM17 leading to an increase in 
both KL1 (molecular mass of 65-70 kDa) and 
KL2 (molecular mass 135 of kDa) fragments, 
whereas silencing of either ADAM10 or AD- 
AM17 with siRNA leading to a decrease of  
both fragments. So, α-KL protein exists in two 
forms, membrane KL (TM-KL) is bound to the 
cell membrane and functions as a co-receptor 
for fibroblast growth factor 23 (FGF23), which  
is required for FGF23 regulation of both renal 
handling of phosphate and renal synthesis of 
calcitriol induced phosphate excretion in kid-
ney [26], and circulating form of KL, detectable 
in plasma and urine, which is also named solu-
ble or secreted Klotho (s-KL). S-KL is derived 
from the proteolytic cleavage of the extracellu-
lar portion of the TM-KL and consists of two 
internal repeats, known as short-form Klotho 
(KL1) and full- length Klotho (KL2), respectively. 
KL1 may be produced through alternative 
mRNA splicing [22, 27]. S-KL level may be 
mainly determined by two possible mecha-
nisms as follows: i) cleavage of α-KL protein  
by proteases such as ADAM 10 or 17 [28], and 
ii) secretion of splice variant form of α-K into 
blood or urine. 

Evidence shown that TM-KL mainly regulates 
the PTH release in the parathyroid gland [3], 
the production of 1,25 (OH)2 vitamin D3 by neg-
atively regulating the expression of 1a-hydroxy-
lase [29] and transepithelial calcium transport 
in the DCTs via activation of the transient recep-
tor potential vanilloid 5 (TRPV5) channel [30]. 
In contrast, soluble KL (major product KL2) has 
been shown to function as an endocrine sub-
stance and to inhibit four signaling pathways 
simultaneously, offering a major advantage 
over numerous individual inhibitors in clinical 
and preclinical development, including IGF-1 
receptor antibodies, tyrosine kinase [31] and 
Wnt signaling inhibitors [32], TGF-β1 neutraliz-
ing antibodies, soluble TGF-βR2, TGF-β recep-
tor kinase inhibitors [33, 34] and ROCK signal-
ing inhibitors.

Interactions of insulin and KL

It has been tested that α-KL is mainly cleaved 
on the cell surface by membrane-anchored pro-
teases by ADAM-10 and ADAM-17. Some stud-
ies have found that insulin also has the similar 
function. But the precise mechanism of insulin-
induced shedding of α-KL is unknown. 

One possible mechanism is that insulin can 
activate the ADAM17 by the down-regulation  
of Timp-3, an ADAM17 inhibitor. Findings from 
the insulin receptor heterozygous mice (Insr+/-) 
that develop diabetes with more than five  
times increased insulin level in the serum. 
These mice have reduced Timp-3 and increa- 
sed ADAM17 activity [35, 36].

Another possible mechanism is that insulin can 
enhance the activity of ADAM10 and ADAM17. 
Shiraki-Iida et al. [27] find that insulin can 
enhance the activity of sheddase, which sug-
gests the involvement of the insulin signaling 
pathway in the release of KL from cell mem-
branes. So the authors propose a possible neg-
ative feedback loop of insulin regulation by KL, 
in which insulin initiates a signaling cascade 
and/or gene expression that results in the traf-
ficking and/or activation of ADAM10 and/or 
ADAM17. This result, in turn, increases the 
release of the KL proteins (including KL1 and 
KL2 fragments) and other ADAM10 and 
ADAM17 substrates into the medium. KL has 
been shown to block insulin and insulin-like 
growth factor 1 receptor phosphorylation of the 
insulin receptor substrate (IRS) and also subse-
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quent downstream activation of PI3K and Akt-1 
[37, 38]. The KL fragments can then feedback 
through an as-yet-unknown process to turn off 
insulin signaling. TNF-α also has been shown  
to contribute to the inhibition of the insulin sig-
naling pathway [39]. It has been reported that, 
in CHO cells, insulin stimulates a 2- to 3-fold 
increase in the endocytic recycling pathway, 
implicating that the vesicle- associated pro-
teins have an increased chance to be at the  
cell surface [40]. In further support for the  
role of insulin in vesicle trafficking is the re- 
cent report that in adipocytes insulin causes 
the fodrin/spectrin remodeling, leading to the 
translocation of GLUT4 to the membrane [41].

KL in diabetes and DN

Experimental research: There are numerous 
experimental studies showing that KL orches-
trate various pivotal functions though hetero- 
geneous mechanisms in diabetes. Growing  
evidences showed that KL exerts antioxidant 
effects and can provide effective protection 
against the oxidative stress through KL expres-
sion in DN. It has been established that high 
glucose caused an excessive production of 
ROS [42]. Improvements in diabetes- induced 
renal dysfunction and DN by antioxidants are 
evidence for an important role of ROS in kidney 
damage [43]. KL plays a major role in the pro-
tection of kidney due to anti-oxidation in dia- 
betes rats [44-46]. It has been demonstrated 
that KL-overexpressed mice showed increased 
superoxidative dismutase (SOD2) expression  
in muscles and low levels of phosphorylated 
Forkhead box O proteins (FOXOs), in addition to 
the reduced oxidative stress as evidenced by 
lower levels of urinary 8-OHdG, a marker of oxi-
dative damages to DNA [47]. KL could activate 
FOXOs, induce SOD2 expression, and confer 
resistance to oxidative damages and apoptosis 
induced by paraquat or hydrogen peroxide [48]. 

The RhoA/Rho-associated coiled-coil kinase 
(ROCK) signaling pathway has been implicated 
in DN. Regulation of KL expression can be 
achieved through inhibition of RhoA/ROCK sig-
naling pathway [49]. Another study [50] also 
demonstrated that exogenous recombinant 
adeno-associated virus (rAAV) carrying mouse 
KL full-length cDNA (rAAV. mKL) transfection 
inhibited the expression of fibronectin (FN), 
decreased the protein expression of vimentin 
(VIM), which may contribute to the inhibition of 

the mRNA expression and protein activity of 
ROCK. 

There are growing evidences demonstrated 
that TGFβ1 and mTOR signaling may contribute 
to the exacerbation of early DN in KL+/- mice. 
TGFβ1 has been shown to be linked to renal 
fibrosis in DN in animals and humans [52-54]. 
Suppression of TGFβ1 inhibited hyperglycemia-
induced collagen synthesis and prevented glo-
merular fibrosis and renal insufficiency in db/db 
mice [53, 55]. One study [56] reveals that defi-
ciency of renal KL in KL+/- mutant mice increas- 
ed phosphorylation of Smad2, a key down-
stream signaling of TGFβ1, in diabetic kidney. 
This result supports a notion that endogenous 
KL in kidney may be an important negative reg-
ulator of the TGFβ1 signaling in diabetic mice. 
Several findings have shown that activation of 
mTOR increases the synthesis of matrix pro-
teins that contributes to basement membrane 
thickening and glomerular mesangial matrix 
expansion [57]. A number of studies have 
shown that activation of mTOR plays a crucial 
role in renal hypertrophy and podocyte injury, 
which may contribute to the progressive loss  
of renal function in DN [56, 58]. KL+/- mutant 
mice showed exacerbated kidney damage that 
is likely attributed to KL deficiency-induced en- 
hancement of mTOR signaling.

According to literatures [59], there is a close 
link between PPAR-γ and KL. PPAR-γ is a key 
transcription factor controlling adipogenesis 
and insulin sensitivity. PPAR-γ dimerizes with 
retinoid X receptor and activates the gene 
expression by binding to the cognate PPRE 
within the regulatory region of the target ge- 
nes. A study showed that troglitazone, an ago-
nist for PPAR-γ, augmented the renal KL mRNA 
expression in OLETF (Otsuka Long- Evans Toku- 
shima Fatty) rats [60]. It has also been recent- 
ly described that KL promotes adipocyte dif- 
ferentiation in cultured preadipocytes [61] and 
that overexpression of KL slows the aging pro-
cess through induction of insulin resistance. 
Recently, Zhang et al. [59] established a novel 
transcriptional mechanism that controls the 
expression of KL by showing that KL is a target 
gene of PPAR-γ in the cultured kidney cells as 
well as in mouse kidneys in vivo.

NF-κB pathway maybe is one of the mecha-
nisms related to the function of KL in DN [62]. 
It’s reported that both exogenous soluble α-KL 
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administration and overexpression of membra-
nous α-KL in kidney cell culture suppress NF- 
kB activation and subsequent inflammatory 
cytokine production in the response to TNF-α 
stimulation suggest that α-KL serves as an 
anti-inflammatory modulator [14]. 

KL may preserve beta cells against develop-
ment of diabetes. Lin et al. [51] found that 
β-cell-specific expression of KL attenuated the 
development of diabetes in db/db mice, de- 
creased intracellular superoxide levels, oxida-
tive damage, apoptosis, and endoplasmic re- 
ticulum stress in pancreatic islets. Further- 
more, β-cell-specific expression of KL increa- 
sed expression levels of Pdx-1 (insulin tran-
scription factor), PCNA (a marker of cell pro- 
liferation), and LC3 (a marker of autophagy) in 
pancreatic islets in db/db mice. 

Although this review is focusing on KL’s role on 
diabetic nephropathy, it is noted that mTOR, 
Wnt, NF-κB and PPAR-γ signaling are inter-
twined each other. Therefore, in vivo expres-
sion of KL may offer a new and effective thera-
peutic strategy not only in β-cell dysfunction 
but also in systemic pathology in DM [63-66].  

Clinical research: In recent years, studies on 
soluble KL levels in diabetic patients are scarce 
and inconclusive [67-69]. Several researches 
[70, 71] showed that the KL gene expression 
and protein levels were decreased in patients 
with even early DN [12-14, 72-75]. Of interest, 
studies further demonstrated that restoration 
of α-KL abundance in the kidney by gene trans-
fer could ameliorate angiotensin II-induced  
proteinuria [76]. Other studies also found that 
the replacement or endogenous upregulation 
of α-KL protects the kidneys from renal insults, 
preserves kidney function, and suppresses 
renal fibrosis [77]. 

In contrast, several papers didn’t find the in- 
crease of KL in patients with DN [15, 16, 78]. 
The controversial findings may be multifactori-
al. Firstly, different testing methods can affect 
the results. A reliable ELISA-based assay to 
measure s-KL levels has only recently become 
available [79], these conflicting data have been 
obtained using various commercially available 
assays [80, 81]. Secondly, many factors can 
affect the soluble KL level. Besides insulin, 
AMAD10 and AMAD17, some research show- 
ed that renal α-KL expression levels were in- 

versely correlated with urinary calcium aug-
mentation [82, 83], the use of ACE-inhibitors 
and angiotensin II receptor may have negative 
effect on soluble KL production in type2 diabe-
tes with nephropathy [39, 84]. Therefore, clini-
cally we need to interpret these data with cau-
tion in a certain patient.

On the other hand, more solid evidence shown 
that the increase of soluble KL in DN, but little 
is known about the regulatory mechanism of  
KL in DN. A study found that miR-199b-5p  
targeted KL at two binding sites using the 
MicroRNA.org data bank and that the activa-
tion of miR-199b-5p inhibited the 3’UTR acti- 
vity of KL and down-regulated its expression 
level in HK-2 cells. Some other authors also 
observed the similar research findings [85-87]. 
Therefore, at present, it can be hypothesized 
that the miR-199 family may be at least one of 
the regulatory mechanisms of KL in DN. This 
warranted the further studies.

Conclusions

In conclusion, KL may be an early biomarker 
and a potential therapeutic target in patients 
with DN. Numerous efforts have been made to 
identify the mechanisms of DN, and indeed, 
significant progress has been made. Growing 
studies strongly pose the potential utility of 
endogenous KL restoration or exogenous KL 
replacement as therapeutic options in DN. Re- 
combinant KL administration is efficacious in 
animal studies, but prior to launching clinical 
trials, many further studies still needed. 
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