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Abstract: Objective: Studies have shown that alcohol dehydrogenase (ADH) expression is associated with cancer 
risk. This study investigated the prognostic value of ADH gene expression in hepatitis B virus (HBV)-related hepato-
cellular carcinoma (HCC). Materials and methods: Microarray analysis and survival profiles of HBV-related HCC from 
GSE14520 were used to assess the association between ADH gene expression and patient outcome. Statistical 
correlations between ADH gene expression profiles and predefined gene signatures were investigated by gene set 
enrichment analysis (GSEA). Results: A total of 218 HBV-related HCC patients and six ADH genes were examined. 
ADH mRNA expression level was markedly reduced in HBV-related HCC tumor tissue. ADH1C and ADH5 overexpres-
sion in tumor tissue was significantly decreased the risk of tumor recurrence [adjusted P = 0.005, adjusted hazard 
ratio (HR) = 0.581, 95% confidence interval (CI) = 0.398-0.848 and adjusted P = 0.025, adjusted HR = 0.658, 
95% CI = 0.455-0.950, respectively], whereas ADH1A, ADH1C, and ADH6 overexpression was associated with de-
creased risk of cancer-related death in HBV-related HCC patients (adjusted P = 0.035, adjusted HR = 0.614, 95% CI 
= 0.389-0.967; adjusted P = 0.024, adjusted HR = 0.588, 95% CI = 0.371-0.933; and adjusted P = 0.001, adjusted 
HR = 0.449, 95% CI = 0.282-0.715; respectively). GSEA showed that ADH1A and ADH6 were significantly related 
to liver cancer survival, whereas ADH1C was significantly associated with liver cancer. Conclusions: Upregulation 
of ADH genes (ADH1A, ADH1C, ADH5, and ADH6) may have protective effects in HBV-related HCC patients after 
hepatectomy. Our findings suggest that these genes are potential prognostic markers for HBV-related HCC patients.
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Introduction

Alcohol abuse, aflatoxin B1, and hepatitis B 
virus (HBV) and hepatitis C virus infection are 
the major causes of hepatocarcinogenesis [1, 
2]. HBV can cause chronic infection and 
increase the risk of death from cirrhosis and 
liver cancer [3]. Approximately 650,000 people 
die from HBV-related cirrhosis and liver cancer 
out of a total of 780,000 individuals who die 
from hepatitis B infection each year [4]. 
Hepatitis B is most prevalent in sub-Saharan 
Africa and East Asia including China, where 
between 5%-10% of the adult population is 
chronically infected [5-9]. Over half of new liver 
cancer cases and death from liver cancer in 

2012 occurred in China [10], where liver cancer 
ranks the fourth among the main causes of 
male cancer-related death [11] and has an age-
standardized 5-year relative survival rate of 
10.1% [12]. The majority of liver cancer cases 
are diagnosed as hepatocellular carcinoma 
(HCC) [13].

The correlation between HBV infection and HCC 
is well documented, but the link between alco-
hol metabolism and HCC remains unknown. 
Patients with HBV-related cirrhosis who drink 
excessively are at increased risk of HCC as 
compared to those with HBV infection or alco-
holism alone [14]. Alcohol dehydrogenase (ADH) 
isozymes catalyze the conversion of alcohols to 
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the corresponding aldehydes, which is a key 
step in alcohol metabolism [15]. Dysregulation 
of ADH activity can lead to various diseases, 
including liver cancer [16-18].

Previous studies have shown that ADH is asso-
ciated with increased risk of cancers including 
liver cancer, but few studies have examined the 
prognostic value of ADH expression in HCC 
patients [19]. We addressed this in the present 
study in HBV-related HCC patients after 
hepatectomy.

Materials and methods

Sources of data

The microarray dataset of HBV-related HCC was 
obtained from the NCBI gene expression omni-
bus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 
database GSE14520, which includes human 
HCC mRNA expression and corresponding sur-
vival profiles. There were 247 HCC patients in 
the GSE14520 dataset; information on dis-
ease-free survival (DFS) and overall survival 
(OS) as well as the status of events was avail-
able for 242 of these patients. A total of 218 
HCC patients from the GSE14520 supplemen-
tary file with clear evidence of HBV infection 
and complete follow-up profiles were analyzed 
in the current study.

Data processing

Data were analyzed with Expression Console 
software (http://www.affymetrix.com/estore/
index.jsp). Probe signal values were converted 
to log2 values, and annotated genes were ana-
lyzed using the corresponding Affymetrix HT 
Human Genome U133A and Human Genome 
U133A_2 array annotation files. A multi-array 
average algorithm was used for normalization 
of ADH mRNA expression data.

Bioinformatics and correlation analysis

We investigated the functions and associations 
of ADH genes using multiple bioinformatics 
approaches. The relative expression levels of 
ADH genes in multiple normal tissues were 
determined with GTEx Portal (http://www.gtex-
portal.org/home/). Co-expression analysis was 
carried out using GeneMANIA (http://www.gen-
emania.org/). The Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) 

v.6.7 (https://david.ncifcrf.gov/tools.jsp) was 
used to annotate input genes, classify gene 
functions, identify gene conversions, and carry 
out Gene Ontology (GO) term analysis. Pearson’s 
correlation coefficient was used to evaluate 
correlations among genes.

Survival analysis

Samples were divided into two groups accord-
ing to gene expression levels in tumors. The 
high expression group consisted of samples in 
which gene expression levels were above the 
median value, and the low expression group 
comprised the remaining samples. DFS and OS 
were analyzed in the two groups. We also strati-
fied the analysis based on associations 
between gene expression and clinical features 
in OS and DFS. Age, gender, cirrhosis, Barcelona 
Clinic Liver Cancer (BCLC) stage, and serum 
α-fetoprotein (AFP) level were adjusted in the 
multivariate Cox proportion haphazard regres-
sion analysis.

Gene set enrichment analysis (GSEA)

Tumor tissue samples were divided into high 
and low gene expression groups. The effect of 
tumor gene expression level on biological path-
ways were analyzed by GSEA v2.2.2 (http://
software.broadinstitute.org/gsea/index.jsp), 
with the Molecular Signatures Database 
(MSigDB) of c2 (curated gene sets: c2.all.
v5.1.symbols.gmt) used as a reference gene 
set. The number of permutations was set at 
1000. Genes of the ADH family that were sig-
nificantly associated with DFS or OS were 
included in the GSEA analysis. Enrichment 
results satisfying nominal P<0.05 with a false 
discovery rate (FDR) <0.25 were considered 
statistically significant.

Statistical analysis

Survival analysis was carried out using the 
Kaplan-Meier method with the log-rank test to 
compare clinical factors and gene expression 
groups. Cox proportional hazards regression 
analysis was used to calculate the crude or 
adjusted hazard ratio (HR) and 95% confidence 
interval (CI) in uni- and multivariate analyses. A 
P value <0.05 was considered statistically sig-
nificant. Data were analyzed with SPSS v.20.0 
software (IBM, Chicago, IL, USA).
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Results

Clinical features and outcomes

A total of 218 HBV-related HCC patients with 
complete follow-up profiles were recruited for 
the study; the clinical characteristics are sum-
marized in Table 1. At the time of analysis, 
84/218 patients (38.5%) had died, and 121/ 
218 (55.5%) showed tumor recurrence. BCLC, 
tumor-node-metastasis (TNM), and Cancer of 
the Liver Italian Program (CLIP) stages differed 
between these two patient groups (all P<0.01; 
log-rank test). Advanced disease stage was 
associated with increased risk of HCC recur-
rence and death in current study population. 
Tumor size and multiple nodules were signifi-

cantly associated with OS (P<0.001 and 0.035, 
respectively; log-rank test) but not with DFS 
(both P > 0.05; log-rank test). Patients with cir-
rhosis had higher risk of HCC recurrence and 
death (both P = 0.026; log-rank test), and male 
patients had higher risk of recurrence (P = 
0.015; log-rank test).

Bioinformatics and correlation analysis

There were six ADH genes in the GSE14520 
dataset-i.e., alcohol dehydrogenase 1A (AD- 
H1A), alcohol dehydrogenase 1B (ADH1B), alco-
hol dehydrogenase 1C (ADH1C), alcohol dehy-
drogenase 5 (ADH5), alcohol dehydrogenase 6 
(ADH6), and alcohol dehydrogenase 7 (ADH7). 
In normal liver, ADH1A, ADH1C, and ADH6 had 

Table 1. Clinical characteristics of HBV-related HCC patients

Variables
DFS OS

Events/Total MST 
(months) HR (95% CI) Log-rank

P Events/Total MST
(months) HR (95% CI) Log-rank 

P
Age (years) 0.736 0.639

    ≤ 60 100/179 41.6 1 70/179 NA 1

    > 60 21/39 50.0 0.922 (0.576-1.477) 14/39 NA 0.872 (0.491-1.548)

Gender 0.015 0.15

    Female 10/29 NA 1 8/29 NA 1

    Male 111/189 37.9 2.185 (1.143-4.175) 76/189 NA 1.696 (0.818-3.516)

Cirrhosis 0.026 0.026

    No 5/17 NA 1 2/17 NA 1

    Yes 116/201 36.6 2.662 (1.088-6.521) 82/201 NA 4.294 (1.056-17.465)

Tumor size& 0.072 <0.001

    ≤ 5 cm 76/141 51.1 1 46/141 NA 1

    > 5 cm 45/76 29.9 1.402 (0.968-2.029) 38/76 53.3 2.083 (1.353-3.207)

Multinodular 0.254 0.035

    Single 92/170 49.1 1 59/170 NA 1

    Multiple 29/48 26.9 1.275 (0.839-1.937) 25/48 47.9 1.645 (1.0030-2.628)

BCLC stage <0.001 <0.001

    0 6/20 NA 1 2/20 NA 1

    A 77/147 51.1 2.098 (0.914-4.815) 48/147 NA 3.997 (0.971-16.448)

    B 17/24 26.9 4.090 (1.604-10.431) 14/24 46.1 9.609 (2.177-42.423)

    C 21/27 8.9 6.1554 (2.474-15.310) 20/27 13.6 19.139 (4.453-82.261)

TNM stage <0.001 <0.001

    I 37/92 NA 1 20/92 NA 1

    II 49/77 28.7 1.964 (1.280-3.013) 32/77 NA 2.233 (1.276-3.906)

    III 35/49 18.0 3.116 (1.955-4.968) 32/49 18.0 5.405 (3.070-9.514)

CLIP stage 0.002 <0.001

    0 47/95 53.0 1 26/95 NA 1

    1 41/76 40.1 1.215 (0.799-1.848) 27/76 NA 1.406 (0.820-2.410)

    2/3/4/5 33/47 19.6 2.185 (1.397-3.418) 31/47 26.9 3.662 (2.167-6.190)

Serum AFPφ 0.449 0.063

    ≤ 300 ng/ml 65/118 48.0 1 40/118 NA 1

    > 300 ng/ml 55/96 35.2 1.149 (0.802-1.645) 43/96 NA 1.500 (0.975-2.308)
Notes: &Information of tumor size was unavailable in 1 patients; φInformation of serum AFP was unavailable in 4 patients; BCLC, Barcelona Clinic Liver Cancer; TNM, 
Tumor Node Metastasis; CLIP, Cancer of the Liver Italian Program; AFP, alpha-fetoprotein; MST, median survival time; DFS, disease-free survival; OS, overall survival; HR, 
hazard ratio; CI, confidence interval.
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the highest expression, while the remaining 
ADH genes were also present at high levels 
(Supplementary Figure 1A-F). A comparison 
between tumor and adjacent non-tumor tissue 
revealed that all of ADH gene transcripts were 
downregulated in HBV-related HCC relative to 
normal tissue (all P<0.05) (Figure 1A). A gene 
co-expression interaction analysis showed that 
all ADH genes were co-expressed, constituting 
a large and complex co-expression network 

except for ADH1C (Figure 1B), which was not 
recognized by GeneMANIA. A correlation analy-
sis showed that the expression levels of ADH1A, 
ADH1B, ADH1C, ADH5, and ADH6 were weakly 
or moderately correlated (all P<0.01; Table 2). 
However, there was no correlation between 
ADH7 and the other five genes (Table 2). A GO 
term analysis using DAVID revealed that the 
most highly enriched GO terms associated with 
ADH genes pertained to ethanol-related biologi-

Figure 1. A. Transcript levels of ADH genes in HBV-related HCC and adjacent non-tumor tissues. B. Gene interaction 
networks of ADH genes.

Table 2. Correlations between ADH gene transcript levels

Genes
ADH1A ADH1B ADH1C ADH5 ADH6 ADH7

r p r p r p r p r p r p
ADH1A − − 0.721 <0.001 0.471 <0.001 0.475 <0.001 0.684 <0.001 0.013 0.853
ADH1B 0.721 <0.001 − − 0.687 <0.001 0.458 <0.001 0.694 <0.001 0.022 0.75
ADH1C 0.471 <0.001 0.687 <0.001 − − 0.209 0.002 0.458 <0.001 0.033 0.633
ADH5 0.475 <0.001 0.458 <0.001 0.209 0.002 − − 0.52 <0.001 -0.073 0.281
ADH6 0.684 <0.001 0.694 <0.001 0.458 <0.001 0.52 <0.001 − − 0.042 0.541
ADH7 0.013 0.853 0.022 0.75 0.033 0.633 -0.073 0.281 0.042 0.541 − −
Notes: ADH, alcohol dehydrogenase.

Figure 2. Analysis of enriched GO terms for ADH genes carried out using DAVID. A. GO terms of molecular functions. 
B. GO terms of biological process.
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cal processes, including response to ethanol 
and ethanol oxidation and metabolism (Figure 
2A). The top-ranking enriched GO terms for 
molecular function were significantly associat-
ed with alcohol dehydrogenase activity and 
ethanol and alcohol binding (Figure 2B).

Survival analysis

DFS analysis for ADH genes showed that over-
expression of ADH1C and ADH5 in tumor tissue 
was associated with reduced risk of tumor 

recurrence in HBV-related HCC (adjusted P = 
0.005, adjusted HR = 0.581, 95% CI = 0.398-
0.848 and adjusted P = 0.025, adjusted HR = 
0.658, 95% CI = 0.455-0.950, respectively) 
(Table 3 and Figure 3), as determined with the 
multivariate Cox proportional hazards regres-
sion model after adjusting for age, gender, cir-
rhosis, BCLC stage, and serum AFP level. OS 
analysis of ADH genes revealed that high 
ADH1A, ADH1C, and ADH6 transcript levels in 
tumor tissue reduced the risk of death from 
HBV-related HCC (adjusted P = 0.035, adjusted 

Table 3. Associations between ADH genes and DFS in HBV-related HCC patients
Gene  
expression

Patients
(n = 218)

No. of
Event (%)

MST 
(months)

Crude
HR (95% CI) Crude P Adjusted

HR (95% CI)
Adjusted

P§
ADH1A
    Low 109 66 32.6 1 1
    High 109 55 51.1 0.721 (0.504-1.031) 0.073 0.855 (0.588-1.241) 0.409
ADH1B
    Low 109 66 28.2 1 1
    High 109 55 54.8 0.652 (0.456-0.934) 0.020 0.750 (0.508-1.108) 0.148
ADH1C
    Low 109 68 28.4 1 1
    High 109 53 57.7 0.605 (0.422-0.867) 0.006 0.581 (0.398-0.848) 0.005
ADH5
    Low 109 69 28.2 1 1
    High 109 52 57.7 0.581 (0.405-0.833) 0.003 0.658 (0.455-0.950) 0.025
ADH6
    Low 109 66 32.6 1 1
    High 109 55 54.8 0.740 (0.517-1.058) 0.099 0.764 (0.526-1.111) 0.159
ADH7
    Low 109 66 40.1 1 1
    High 109 55 51.1 0.816 (0.570-1.167) 0.265 0.743 (0.515-1.072) 0.113
Notes: §Adjustment for age, gender, cirrhosis, BCLC stage, serum AFP level; ADH, alcohol dehydrogenase; MST, median survival time; DFS, 
disease-free survival; HR, hazard ratio; CI, confidence interval.

Figure 3. Kaplan-Meier survival curves of HBV-related HCC patients. (A, B) DFS stratified by ADH1C (A) and ADH5 
(B) expression.
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HR = 0.614, 95% CI = 0.389-0.967; adjusted P 
= 0.024, adjusted HR = 0.588, 95% CI = 0.371-
0.933; and adjusted P = 0.001, adjusted HR = 

0.449, 95% CI = 0.282-0.715, respectively) 
(Table 4 and Figure 4), as shown by the multi-
variate Cox proportional hazards regression 

Table 4. Associations between ADH genes and OS in HBV-related HCC patients
Gene  
expression

Patients
(n = 218)

NO. of
Event (%)

MST
(months)

Crude
HR (95% CI)

Crude
P

Adjusted
HR (95% CI)

Adjusted
P§

ADH1A
    Low 109 52 57.9 1 1
    High 109 32 NA 0.507 (0.326-0.789) 0.003 0.614 (0.389-0.967) 0.035
ADH1B
    Low 109 51 54.8 1 1
    High 109 33 NA 0.505 (0.325-0.783) 0.002 0.635 (0.394-1.024) 0.062
ADH1C
    Low 109 50 59.2 1 1
    High 109 34 NA 0.562 (0.363-0.870) 0.010 0.588 (0.371-0.933) 0.024
ADH5
    Low 109 50 57.9 1 1
    High 109 34 NA 0.570 (0.368-0.882) 0.012 0.665 (0.4426-1.037) 0.072
ADH6
    Low 109 55 53..0 1 1
    High 109 29 NA 0.445 (0.283-0.698) 0.0004 0.449 (0.282-0.715) 0.001
ADH7
    Low 109 44 NA 1 1
    High 109 40 NA 0.905 (0.589-1.388) 0.646 0.827 (0.531-1.289) 0.402
Notes: §Adjustment for age, gender, cirrhosis, serum AFP level, BCLC stage; ADH, alcohol dehydrogenase; MST, median survival time; OS, overall 
survival; HR, hazard ratio; CI, confidence interval.

Figure 4. Kaplan-Meier survival curves of 
HBV-related HCC patients. (A-C) OS strati-
fied by ADH1A (A), ADH1C (B), and ADH6 
(C) expression.



Alcohol dehydrogenase as a prognostic marker in HBV-related HCC

4463 Int J Clin Exp Med 2017;10(3):4457-4472

model with the same adjustments as for the 
DFS analysis.

Stratification analysis

ADH genes that were significantly associated 
with DFS and OS were subjected to stratifica-
tion analysis. In the stratified DFS analysis, 
high ADH1C expression decreased the risk of 
tumor recurrence among HBV-related HCC 
patients who were older and male; had cirrho-
sis and a single tumor with a size > 5 cm; and 
were BCLC stage A, TNM stage II, CLIP stage 0, 
and had serum AFP level > 300 ng/ml (Table 

5). Patients with high ADH5 expression were 
younger, had cirrhosis and a tumor ≤ 5 cm in 
size, were BCLC stage 0 and TNM stage II, and 
had lower risk of tumor recurrence in HBV-
related HCC.

In the stratified OS analysis, upregulation of 
ADH1A, ADH1C, and ADH6 was associated with 
decreased risk of cancer death among patients 
with older age, cirrhosis and a single tumor and 
who were BCLC stage A (Table 6). In male HBV-
related HCC patients, high ADH1A and ADH1C 
levels decreased the risk of cancer death. This 
protective effect was also observed among 

Table 5. Stratified analysis of associations between ADH1C or ADH5 and DFS in HBV-related HCC 
patients

Variables Patients
(n = 218)

ADH1C Adjusted
HR (95% CI)

Adjusted
P§

ADH5 Adjusted
HR (95% CI)

Adjusted
P§Low High Low High

Age (years)
    ≤ 60 179 91 88 0.673 (0.446-1.017) 0.060 92 87 0.572 (0.381-0.858) 0.007
    > 60 39 18 21 0.187 (0.056-0.627) 0.007 17 22 1.165 (0.459-2.952) 0.748
Gender
    Female 29 17 12 0.201 (0.031-1.307) 0.093 10 19 0.621 (0.116-3.328) 0.578
    Male 189 92 97 0.599 (0.403-0.888) 0.011 99 90 0.684 (0.466-1.005) 0.053
Cirrhosis
    No 17 8 9 1.797 (0.295-10.956) 0.525 8 9 0.620 (0.097-3.965) 0.614
    Yes 201 101 100 0.555 (0.376-0.819) 0.003 101 100 0.674 (0.463-0.983) 0.040
Tumor size&
    ≤ 5 cm 141 67 74 0.641 (0.399-1.029) 0.066 63 78 0.492 (0.311-0.777) 0.002
    > 5 cm 76 42 34 0.453 (0.228-0.897) 0.023 45 31 0.843 (0.449-1.580) 0.593
Multinodular
    Single 170 83 87 0.511 (0.330-0.790) 0.003 83 87 0.703 (0.459-1.075) 0.104
    Multiple 48 26 22 0.813 (0.376-1.754) 0.597 26 22 0.621 (0.284-1.358) 0.233
BCLC stage
    0 20 12 8 0.369 (0.042-3.240) 0.368 8 12 0.094 (0.011-0.831) 0.034
    A 147 67 80 0.496 (0.307-0.802) 0.004 70 77 0.688 (0.438-1.082) 0.105
    B 24 13 11 1.340 (0.448-4.012) 0.601 14 10 0.408 (0.113-1.467) 0.170
    C 27 17 10 0.600 (0.221-1.627) 0.315 17 10 1.026 (0.404-2.604) 0.957
TNM stage
    I 92 38 54 0.539 (0.260-1.117) 0.096 39 53 0.770 (0.391-1.515) 0.449
    II 77 42 35 0.474 (0.256-0.879) 0.018 41 36 0.469 (0.252-0.870) 0.016
    III 49 29 20 0.883 (0.407-1.917) 0.753 29 20 0.869 (0.417-1.808) 0.707
CLIP stage
    0 95 33 62 0.513 (0.276-0.954) 0.035 41 54 0.690 (0.386-1.234) 0.211
    1 76 46 30 0.731 (0.353-1.513) 0.398 40 36 0.565 (0.284-1.122) 0.103
    2/3/4/5 47 30 17 0.447 (0.188-1.062) 0.068 28 19 0.731 (0.348-1.535) 0.408
Serum AFPφ
    ≤ 300 ng/ml 118 43 75 0.657 (0.390-1.106) 0.114 55 63 0.612 (0.374-1.000) 0.050
    > 300 ng/ml 96 66 30 0.473 (0.254-0.880) 0.018 52 44 0.715 (0.411-1.246) 0.236
Notes: &Information of tumor size was unavailable in 1 patients; φInformation of serum AFP was unavailable in 4 patients; §Adjustment for age, 
gender, cirrhosis, BCLC stage, serum AFP level; BCLC, Barcelona Clinic Liver Cancer; TNM, Tumor Node Metastasis; CLIP, Cancer of the Liver Ital-
ian Program; AFP, alpha-fetoprotein; MST, median survival time; DFS, disease-free survival; HR, hazard ratio; CI, confidence interval.
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Table 6. Stratified analysis of associations between ADH1A, ADH1C, or ADH6 and OS in HBV-related HCC patients

Variables Patients
(n = 218)

ADH1A
Adjusted HR (95% CI) Adjusted 

P§
ADH1C Adjusted

HR (95% CI)
Adjusted 

P§
ADH6

Adjusted HR (95% CI) Adjusted 
P§Low High Low High Low High

Age (years)

    ≤ 60 179 89 90 0.858 (0.524-1.406) 0.543 91 88 0.688 (0.418-1.133) 0.142 94 85 0.526 (0.319-0.869) 0.012

    > 60 39 20 19 0.098 (0.017-0.557) 0.009 18 21 0.128 (0.025-0.660) 0.014 15 24 0.198 (0.052-0.749) 0.017

Gender

    Female 29 13 16 0.684 (0.101-4.632) 0.697 17 12 0.131 (0.012-1.445) 0.097 16 13 1*10-6 (1*10-7-4.004*10161) 0.898

    Male 189 96 93 0.594 (0.368-0.960) 0.033 92 97 0.635 (0.392-1.028) 0.064 93 96 0.504 (0.312-0.814) 0.005

Cirrhosis

    No 17 7 10 1.4*10-5 (10-6-5.787*10248) 0.970 8 9 2.276*105 (10-6-1.510*10248) 0.970 9 8 3*10-6 (1*10-6-2.686*10225) 0.975

    Yes 201 102 99 0.609 (0.384-0.966) 0.035 101 100 0.548 (0.343-0.878) 0.012 100 101 0.462 (0.289-0.737) 0.001

Tumor size&

    ≤ 5 cm 141 65 76 0.608 (0.333-1.112) 0.106 67 74 0.664 (0.354-1.247) 0.203 60 81 0.460 (0.243-0.872) 0.017

    > 5 cm 76 44 32 0.596 (0.284-1.252) 0.172 42 34 0.472 (0.218-1.025) 0.058 49 27 0.344 (0.157-0.753) 0.008

Multinodular

    Single 170 76 94 0.498 (0.296-0.838) 0.009 83 87 0.555 (0.319-0.964) 0.037 78 92 0.412 (0.238-0.711) 0.001

    Multiple 48 33 15 0.762 (0.285-2.041) 0.589 26 22 0.757 (0.313-1.834) 0.538 31 17 0.511 (0.190-1.372) 0.183

BCLC stage

    0 20 9 11 0.303 (0.014-6.793) 0.452 12 8 7*10-6 (1*10-6-1.317*10273) 0.971 9 11 1*10-5 (1*10-6-3.005*10239) 0.968

    A 147 65 82 0.539 (0.304-0.958) 0.035 67 80 0.454 (0.245-0.840) 0.012 68 79 0.395 (0.214-0.727) 0.003

    B 24 17 7 0.214 (0.037-1.249) 0.087 13 11 1.452 (0.427-4.941) 0.551 16 8 0.389 (0.093-1.631) 0.197

    C 27 18 9 0.888 (0.332-2.378) 0.814 17 10 0.776 (0.284-2.123) 0.622 16 11 0.674 (0.260-1.742) 0.415

TNM stage

    I 92 34 58 0.589 (0.234-1.485) 0.262 38 54 0.459 (0.164-1.286) 0.138 37 55 0.467 (0.182-1.200) 0.114

    II 77 41 36 0.635 (0.308-1.309) 0.219 42 35 0.418 (0.196-0.892) 0.024 43 34 0.281 (0.115-0.688) 0.006

    III 49 34 15 0.698 (0.287-1.698) 0.428 29 20 1.205 (0.540-2.686) 0.649 29 20 0.710 (0.325-1.550) 0.390

CLIP stage

    0 95 38 57 0.534 (0.244-1.170) 0.117 33 62 0.445 (0.197-1.005) 0.051 36 59 0.381 (0.172-0.845) 0.017

    1 76 41 35 0.595 (0.255-1.389) 0.230 46 30 0.677 (0.272-1.682) 0.400 45 31 0.490 (0.185-1.301) 0.152

    2/3/4/5 47 30 17 0.786 (0.330-1.872) 0.586 30 17 0.543 (0.221-1.335) 0.184 28 19 0.476 (0.209-1.082) 0.076

Serum AFPφ

    ≤ 300 ng/ml 118 53 65 0.626 (0.331-1.181) 0.148 43 75 0.702 (0.360-1.367) 0.298 49 69 0.544 (0.279-1.061) 0.074

    > 300 ng/ml 96 54 42 0.627 (0.322-1.221) 0.170 66 30 0.479 (0.234-0.979) 0.044 57 39 0.347 (0.171-0.704) 0.003
Notes: &Information of tumor size was unavailable in 1 patients; φInformation of serum AFP was unavailable in 4 patients; §Adjustment for age, gender, cirrhosis, BCLC stage, serum AFP level. BCLC, Barcelona Clinic Liver Cancer; TNM, Tumor 
Node Metastasis; CLIP, Cancer of the Liver Italian Program; AFP, alpha-fetoprotein; MST, median survival time; OS, overall survival; HR, hazard ratio; CI, confidence interval.
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patients with CLIP stage 0 and serum AFP > 
300 ng/ml in high ADH1C and ADH6 expres-
sion groups, respectively. High ADH6 expres-
sion was associated with decreased risk of 
cancer death in patients with any tumor size.

GSEA

To determine whether the expression of ADH 
genes is related to the prognosis of HBV-related 
HCC patients, GSE14520 expression data were 
subjected to GSEA, grouping the ADH genes 
that were associated with DFS and OS.Top 20 
GSEA enrichment results of each genes are 
summarized in supplementary material (Supp- 
lementary Tables 1, 2, 3, 4). High ADH1A 

expression was significantly associated with 
liver cancer survival and progression (Figure 
5A and 5B), whereas ADH1C expression enrich-
ment was significantly related to liver cancer 
but not progression (Figure 5C and 5D). High 
ADH5 and ADH6 levels in HBV-related HCC 
were related to liver cancer survival and recur-
rence (Figure 6), although the GSEA results of 
ADH5 had an FDR > 0.25, indicating that ADH5 
is not related to these parameters through the 
GSEA approach.

Discussion

ADH genes are located on 4q23 of chromo-
some 4; the protein can be divided into five 

Figure 5. GSEA of ADH genes expressed in HBV-related HCC patients. (A-D) Results are shown for high ADH1A (A, B) 
and ADH1C (C, D) expression groups in GSE14520.
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classes based on sequence and structural sim-
ilarities. Class I ADH isoenzymes consists of α, 
β, and γ subunits, encoded by ADH1A, ADH1B, 
and ADH1C, respectively. The ADH5 gene 
encodes the χ subunit of a Class III isoenzyme, 
whereas ADH6 and ADH7 encode Class V and 
IV isoenzymes, respectively, with the latter con-
sisting of the σ subunit [20, 21]. This enzyme 
family is involved in the metabolism of a wide 
variety of substrates, including ethanol, retinol, 
other aliphatic alcohols, hydroxysteroids, and 
lipid peroxidation products [22].

Our bioinformatics analysis revealed that class 
I ADH genes were more highly expressed in nor-

mal liver and colorectal as compared to other 
tissues. Previous studies have shown that total 
ADH and class I ADH isoenzyme activities are 
elevated in the tissues and serum of patients 
with liver cancer [17, 18, 23], colorectal cancer 
(CRC) [24-26], brain cancer [27, 28], renal cell 
carcinoma (RCC) [29, 30], endometrial cancer 
[31, 32], cervical cancer [33, 34], breast can-
cer [35], ovarian cancer [36], and bladder can-
cer [37], while ADH7 is overexpressed in stom-
ach and esophageal cancers [38]. Therefore, 
both of the total ADH and class IV ADH isoen-
zyme were significantly activity in the sera of 
esophageal cancer [39] and gastric cancer (GC) 
[40] patients, identical result also been found 

Figure 6. GSEA of ADH genes expressed in HBV-related HCC patients. (A-D) Results are shown for high ADH5 (A, B) 
and high ADH6 (C, D) expression groups in GSE14520.
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in esophageal tumor tissue [41]. Total ADH and 
ADH III also showed higher activity in the serum 
and pancreatic cancer tissue of healthy sub-
jects [42, 43]. Thus, expression of ADH isoen-
zymes can serve as a diagnostic marker for 
specific types of cancer. Indeed, the utility of 
ADH I for diagnosis of CRC [26], RCC [30], endo-
metrial cancer [32], and cervical cancer [33] 
has been reported. Similarly, class III ADH is a 
potential marker for pancreatic cancer [43], 
whereas class IV ADH is a marker for gastric 
[40] and esophageal [44] cancers. Serum ADH 
activity is also used to assess the function of 
grafts after liver transplantation [45]. In con-
trast to ADH isoenzymes, the activity of alde-
hyde dehydrogenase (ALDH) isoenzyme does 
not differ between cancer patients and normal 
subjects; discrepancies between the activities 
of ADH and ALDH lead to increased acetalde-
hyde accumulation and decreased acetalde-
hyde elimination, which is known to promote 
carcinogenesis [16, 46].

ADH gene polymorphism has been linked to 
cancer risk [47]. For instance, the rs1230025 
polymorphism of ADH1A is associated with 
increased GC cancer risk, which may be exacer-
bated by alcohol intake [48]. ADH1B polymor-
phisms were related to increased cancer risk in 
CRC [49], upper aerodigestive tract (UAT) can-
cer [50], esophageal squamous cell carcinoma 
(ESCC) [51], and head and neck squamous cell 
carcinoma (HNSCC) [52] but did not increase 
the risk of HCC [53, 54] or pancreatic cancer 
[55].

ADH1C-rs398 Ile350Val is a non-synonymous 
single nucleotide polymorphism and complete 
linkage disequilibrium with polymorphisms of 
Arg272Gln, the alter of them can be used to 
distinguish the ADH1C*1 and ADH1C*2 alleles, 
which differ in terms of oxidative function [20, 
56]. ADH1C*2*2 has been implicated in the 
etiology of oral squamous cell carcinoma [57, 
58], bladder cancer [59], UAT cancer [60, 61], 
and CRC [62, 63]. The G allele of ADH1C-rs698 
also contributes to the risk of HNSCC [52] and 
UAT cancer [64, 65], although it is not associ-
ated with esophageal cancer risk [66]. The 
rs283411, rs1614972, and rs1789903 poly-
morphisms of ADH1C increased the risk of GC 
[48] and ESCC [51]. ADH7-rs1573496 was 
linked to UAT cancer [50] and HNSCC [67], 
whereas rs1573496 (C) allele carriers who 

engaged in heavy drinking had higher risk of 
CRC [68]. A genome-wide association study 
demonstrated that ADH7-rs17028973 was 
associated with the risk of developing ESCC 
[51]. In contrast, ADH5 and ADH6 genetic poly-
morphisms in cancer risk are rarely involved.

The prognostic value of ADH genes has rarely 
been investigated. ADH4 was downregulated in 
HCC tissue compared to adjacent mucosa both 
at the mRNA and protein levels, and was linked 
to lower OS rates [19]. In the present study, we 
found that ADH gene transcripts were down-
regulated in HBV-related HCC tumor tissue, 
consistent with previous reports. We speculate 
that ADH genes may have a tumor-suppressor 
role in HBV-related HCC. Our survival analysis 
also indicated that decreased ADH1C and 
ADH5 expression in HBV-related HCC tumor tis-
sue predicted earlier recurrence, whereas 
ADH1A, ADH1C, and ADH6 predicted poor sur-
vival. The GSEA in cancer patients revealed 
that high ADH1A and ADH6 expression was 
associated with liver cancer survival, and that 
ADH1C was significantly related to liver cancer.

This study had certain limitations. Firstly, the 
clinical information in the public databases was 
not comprehensive; as such, confounding fac-
tors affecting HBV-related HCC patient progno-
sis were not included in the Cox proportional 
hazards regression model. Secondly, due to 
lacking of information regarding alcohol intake, 
we were unable to analyze the interaction 
between this and ADH gene expression in 
terms of patient outcomes.

Upregulation of ADH genes (ADH1A, ADH1C, 
ADH5, and ADH6) in tumor tissues was found 
to be associated with favorable prognosis in 
HBV-related HCC and may have protective 
effects in patients receiving hepatic resection. 
Further studies with a larger sample size are 
needed to confirm the value of these genes as 
therapeutic targets in the treatment of HBV-
related HCC.
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Supplementary Figure 1. A. ADH1A gene expression in multiple normal tissues. B. ADH1B gene expression in multiple normal tissues. C. ADH1C gene expression 
in multiple normal tissues. D. ADH5 gene expression in multiple normal tissues. E. ADH6 gene expression in multiple normal tissues. F. ADH7 gene expression in 
multiple normal tissues.

Supplementary Table 1. Top 20 GSEA enrichment results of ADHA

NAME SIZE ES NES NOM 
p-val FDR q-val FWER 

p-val
RANK 

AT MAX LEADING EDGE

HOSHIDA_LIVER_CANCER_SURVIVAL_DN 104 0.746643 2.030554 P<0.001 0.074579 0.091 1364 Tags = 48%, list = 10%, signal = 53%
PID_HNF3B_PATHWAY 37 0.79728 1.984134 P<0.001 0.074536 0.166 1437 Tags = 57%, list = 11%, signal = 63%
SCHAEFFER_PROSTATE_DEVELOPMENT_AND_CANCER_BOX4_DN 23 0.639044 1.982034 0.002033 0.051743 0.171 1899 Tags = 35%, list = 14%, signal = 40%
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 41 0.834586 1.970976 P<0.001 0.045273 0.193 1641 Tags = 78%, list = 12%, signal = 89%
SHETH_LIVER_CANCER_VS_TXNIP_LOSS_PAM4 198 0.664689 1.946122 P<0.001 0.052568 0.256 863 Tags = 33%, list = 6%, signal = 35%
PID_HNF3A_PATHWAY 38 0.590562 1.945659 P<0.001 0.044381 0.257 1751 Tags = 39%, list = 13%, signal = 45%
COULOUARN_TEMPORAL_TGFB1_SIGNATURE_DN 116 0.630233 1.938828 P<0.001 0.04307 0.287 1730 Tags = 47%, list = 13%, signal = 53%
CAIRO_LIVER_DEVELOPMENT_DN 215 0.720077 1.933612 P<0.001 0.041029 0.301 1446 Tags = 56%, list = 11%, signal = 62%
KEGG_LYSINE_DEGRADATION 38 0.682618 1.919852 P<0.001 0.043401 0.349 1275 Tags = 39%, list = 10%, signal = 44%
CHIANG_LIVER_CANCER_SUBCLASS_UNANNOTATED_UP 58 0.816577 1.919385 P<0.001 0.039271 0.351 1361 Tags = 62%, list = 10%, signal = 69%
ACEVEDO_LIVER_CANCER_DN 397 0.675502 1.905973 P<0.001 0.043596 0.398 1671 Tags = 48%, list = 13%, signal = 54%
BOCHKIS_FOXA2_TARGETS 320 0.559642 1.902829 P<0.001 0.041826 0.41 1753 Tags = 35%, list = 13%, signal = 40%
ACEVEDO_NORMAL_TISSUE_ADJACENT_TO_LIVER_TUMOR_DN 256 0.589372 1.900327 0.001942 0.040281 0.422 1820 Tags = 36%, list = 14%, signal = 41%
SERVITJA_ISLET_HNF1A_TARGETS_DN 77 0.656267 1.900026 P<0.001 0.037596 0.422 1348 Tags = 45%, list = 10%, signal = 50%
IIZUKA_LIVER_CANCER_PROGRESSION_G2_G3_UP 24 0.822648 1.89814 P<0.001 0.035924 0.43 2145 Tags = 83%, list = 16%, signal = 99%
LEE_LIVER_CANCER_ACOX1_DN 62 0.795563 1.894656 P<0.001 0.034857 0.44 1170 Tags = 53%, list = 9%, signal = 58%
REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES 169 0.639955 1.890827 P<0.001 0.034863 0.452 1163 Tags = 35%, list = 9%, signal = 38%
SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_DN 39 0.685199 1.879148 P<0.001 0.039175 0.515 2368 Tags = 59%, list = 18%, signal = 72%
KEGG_FATTY_ACID_METABOLISM 35 0.853894 1.871046 P<0.001 0.041684 0.544 1311 Tags = 80%, list = 10%, signal = 88%
KEGG_PROPANOATE_METABOLISM 27 0.806565 1.867816 P<0.001 0.041072 0.558 1360 Tags = 70%, list = 10%, signal = 78%
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Supplementary Table 2. Top 20 GSEA enrichment results of ADH1C

NAME SIZE ES NES NOM 
p-val FDR q-val FWER 

p-val
RANK 

AT MAX LEADING EDGE

CAIRO_HEPATOBLASTOMA_CLASSES_DN 187 0.802441 1.956468 P<0.001 0.415669 0.226 1550 Tags = 67%, list = 12%, signal = 75%
BURTON_ADIPOGENESIS_6 158 0.595723 1.94419 P<0.001 0.249218 0.257 1998 Tags = 42%, list = 15%, signal = 49%
HOUSTIS_ROS 34 0.770789 1.934926 P<0.001 0.1938 0.291 2026 Tags = 59%, list = 15%, signal = 69%
KEGG_TYROSINE_METABOLISM 35 0.763226 1.916672 P<0.001 0.18821 0.347 1524 Tags = 40%, list = 11%, signal = 45%
KEGG_TRYPTOPHAN_METABOLISM 32 0.846824 1.914434 P<0.001 0.15404 0.352 1251 Tags = 69%, list = 9%, signal = 76%
HOSHIDA_LIVER_CANCER_SUBCLASS_S3 248 0.837974 1.90638 P<0.001 0.145274 0.38 1314 Tags = 74%, list = 10%, signal = 81%
KEGG_BUTANOATE_METABOLISM 31 0.774436 1.904073 P<0.001 0.128246 0.383 1031 Tags = 55%, list = 8%, signal = 59%
REACTOME_BIOLOGICAL_OXIDATIONS 109 0.7657 1.902508 P<0.001 0.115003 0.389 1345 Tags = 59%, list = 10%, signal = 65%
KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 52 0.859774 1.89029 P<0.001 0.122347 0.441 1374 Tags = 73%, list = 10%, signal = 81%
REACTOME_PHASE_II_CONJUGATION 48 0.785464 1.882603 P<0.001 0.121892 0.466 1273 Tags = 60%, list = 10%, signal = 67%
ACEVEDO_LIVER_CANCER_DN 397 0.660644 1.87092 P<0.001 0.129507 0.508 2059 Tags = 50%, list = 15%, signal = 58%
SPIRA_SMOKERS_LUNG_CANCER_UP 35 0.758693 1.850824 P<0.001 0.156581 0.582 656 Tags = 29%, list = 5%, signal = 30%
CHIANG_LIVER_CANCER_SUBCLASS_UNANNOTATED_UP 58 0.78767 1.843463 P<0.001 0.15926 0.608 1329 Tags = 59%, list = 10%, signal = 65%
BOYAULT_LIVER_CANCER_SUBCLASS_G1_DN 36 0.876597 1.84159 P<0.001 0.151747 0.615 1590 Tags = 94%, list = 12%, signal = 107%
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 64 0.79062 1.834657 P<0.001 0.155165 0.64 1596 Tags = 63%, list = 12%, signal = 71%
TSUNODA_CISPLATIN_RESISTANCE_DN 44 0.676448 1.831794 P<0.001 0.151094 0.648 1603 Tags = 50%, list = 12%, signal = 57%
KEGG_HISTIDINE_METABOLISM 22 0.753428 1.828263 0.001984 0.149407 0.661 1638 Tags = 59%, list = 12%, signal = 67%
KEGG_RETINOL_METABOLISM 43 0.851498 1.822884 P<0.001 0.150132 0.677 1209 Tags = 72%, list = 9%, signal = 79%
SHETH_LIVER_CANCER_VS_TXNIP_LOSS_PAM4 198 0.625686 1.821781 P<0.001 0.144713 0.682 1007 Tags = 36%, list = 8%, signal = 38%
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 55 0.854561 1.82021 P<0.001 0.140282 0.692 1374 Tags = 76%, list = 10%, signal = 85%
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Supplementary Table 3. Top 20 GSEA enrichment results of ADH5

NAME SIZE ES NES NOM 
p-val FDR q-val FWER 

p-val
RANK 

AT MAX LEADING EDGE

SHEN_SMARCA2_TARGETS_UP 347 0.614099 1.96963 P<0.001 0.267056 0.2 3486 Tags = 64%, list = 26%, signal = 85%

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_DN 490 0.60512 1.95085 P<0.001 0.171147 0.24 2738 Tags = 58%, list = 21%, signal = 70%

MOOTHA_MITOCHONDRIA 418 0.511119 1.863074 0.003976 0.356493 0.539 2857 Tags = 44%, list = 21%, signal = 55%

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 41 0.780803 1.840249 P<0.001 0.363532 0.628 2064 Tags = 78%, list = 15%, signal = 92%

MOOTHA_HUMAN_MITODB_6_2002 407 0.514765 1.830548 0.005941 0.328087 0.655 2871 Tags = 45%, list = 22%, signal = 56%

ACEVEDO_NORMAL_TISSUE_ADJACENT_TO_LIVER_TUMOR_DN 256 0.553115 1.789675 0.003929 0.469904 0.787 2844 Tags = 47%, list = 21%, signal = 58%

KEGG_PROPANOATE_METABOLISM 27 0.758891 1.783667 0.006224 0.435957 0.806 1014 Tags = 59%, list = 8%, signal = 64%

UEDA_PERIFERAL_CLOCK 123 0.560324 1.775862 P<0.001 0.419906 0.832 2723 Tags = 49%, list = 20%, signal = 61%

HOSHIDA_LIVER_CANCER_SURVIVAL_DN 104 0.644922 1.758561 0.002004 0.461178 0.87 1819 Tags = 47%, list = 14%, signal = 54%

LUCAS_HNF4A_TARGETS_UP 52 0.669112 1.753128 0.004115 0.440649 0.882 1854 Tags = 50%, list = 14%, signal = 58%

KEGG_TYROSINE_METABOLISM 35 0.681066 1.723439 0.002092 0.562175 0.935 982 Tags = 40%, list = 7%, signal = 43%

KEGG_PEROXISOME 67 0.719978 1.71696 0.00818 0.555119 0.948 2868 Tags = 75%, list = 22%, signal = 95%

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 16 0.774674 1.711986 0.002066 0.54221 0.95 1043 Tags = 63%, list = 8%, signal = 68%

KEGG_BETA_ALANINE_METABOLISM 21 0.71657 1.709855 0.010288 0.516777 0.95 2005 Tags = 67%, list = 15%, signal = 78%

SHETH_LIVER_CANCER_VS_TXNIP_LOSS_PAM4 198 0.576228 1.708068 0.008197 0.491595 0.951 2218 Tags = 43%, list = 17%, signal = 51%

WONG_MITOCHONDRIA_GENE_MODULE 184 0.464797 1.704497 0.055227 0.479663 0.957 3682 Tags = 53%, list = 28%, signal = 72%

KEGG_HISTIDINE_METABOLISM 22 0.682512 1.697962 0.0125 0.482191 0.965 2365 Tags = 64%, list = 18%, signal = 77%

KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 27 0.835804 1.697437 0.007797 0.457934 0.965 1302 Tags = 74%, list = 10%, signal = 82%

WAKABAYASHI_ADIPOGENESIS_PPARG_RXRA_BOUND_WITH_H4K20ME1_MARK 104 0.496037 1.696148 0.008016 0.439943 0.967 2218 Tags = 39%, list = 17%, signal = 47%

WOO_LIVER_CANCER_RECURRENCE_DN 75 0.845553 1.695638 0.001992 0.420547 0.967 1221 Tags = 84%, list = 9%, signal = 92%
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Supplementary Table 4. Top 20 GSEA enrichment results of ADH6

NAME SIZE ES NES NOM 
p-val FDR q-val FWER 

p-val
RANK 

AT MAX LEADING EDGE

MOOTHA_MITOCHONDRIA 418 0.57029 2.028491 P<0.001 0.098193 0.086 2561 Tags = 43%, list = 19%, signal = 51%
COULOUARN_TEMPORAL_TGFB1_SIGNATURE_DN 116 0.656916 2.01586 P<0.001 0.057755 0.099 1822 Tags = 48%, list = 14%, signal = 55%
HOSHIDA_LIVER_CANCER_SURVIVAL_DN 104 0.736942 2.003667 P<0.001 0.04521 0.115 1776 Tags = 53%, list = 13%, signal = 61%
BOCHKIS_FOXA2_TARGETS 320 0.58259 1.981637 P<0.001 0.049893 0.152 1899 Tags = 37%, list = 14%, signal = 42%
FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_DN 490 0.610343 1.961969 P<0.001 0.052266 0.193 1681 Tags = 40%, list = 13%, signal = 44%
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 41 0.852069 1.956236 P<0.001 0.048219 0.21 1578 Tags = 80%, list = 12%, signal = 91%
MOOTHA_HUMAN_MITODB_6_2002 407 0.558954 1.936948 0.002105 0.056014 0.273 2561 Tags = 44%, list = 19%, signal = 53%
ACEVEDO_NORMAL_TISSUE_ADJACENT_TO_LIVER_TUMOR_DN 256 0.596508 1.92055 P<0.001 0.06201 0.318 1873 Tags = 38%, list = 14%, signal = 43%
KEGG_LYSINE_DEGRADATION 38 0.672505 1.90313 P<0.001 0.069656 0.367 1672 Tags = 45%, list = 13%, signal = 51%
HOSHIDA_LIVER_CANCER_LATE_RECURRENCE_DN 65 0.622985 1.901125 P<0.001 0.064096 0.374 848 Tags = 34%, list = 6%, signal = 36%
HOSHIDA_LIVER_CANCER_SUBCLASS_S3 248 0.845669 1.900867 P<0.001 0.058565 0.375 1219 Tags = 74%, list = 9%, signal = 80%
KEGG_TYROSINE_METABOLISM 35 0.775984 1.898256 P<0.001 0.055739 0.389 903 Tags = 40%, list = 7%, signal = 43%
SHETH_LIVER_CANCER_VS_TXNIP_LOSS_PAM4 198 0.650788 1.897512 P<0.001 0.052372 0.395 1374 Tags = 38%, list = 10%, signal = 42%
KEGG_PROPANOATE_METABOLISM 27 0.835786 1.893706 P<0.001 0.051449 0.409 1517 Tags = 74%, list = 11%, signal = 83%
REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES 169 0.642203 1.88226 0.001946 0.056409 0.447 1187 Tags = 37%, list = 9%, signal = 40%
ACEVEDO_LIVER_CANCER_DN 397 0.659783 1.880445 0.001965 0.053874 0.449 1810 Tags = 49%, list = 14%, signal = 55%
REACTOME_BIOLOGICAL_OXIDATIONS 109 0.7766 1.879382 P<0.001 0.051521 0.453 849 Tags = 50%, list = 6%, signal = 53%
KEGG_PHENYLALANINE_METABOLISM 17 0.824741 1.878918 P<0.001 0.04905 0.456 510 Tags = 47%, list = 4%, signal = 49%
RODWELL_AGING_KIDNEY_DN 110 0.554667 1.875812 P<0.001 0.048975 0.473 1499 Tags = 33%, list = 11%, signal = 37%
KEGG_HISTIDINE_METABOLISM 22 0.775955 1.873437 P<0.001 0.04826 0.483 1632 Tags = 68%, list = 12%, signal = 78%


