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Original Article 
Hyperthermia induced the apoptosis of esophageal 
squamous cell carcinoma cells and affected  
the nuclear translocation of Nrf2
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Abstract: Hyperthermia has been accepted as an effective approach for multifarious tumors. It is not well under-
stood that the mechanism of apoptosis induced by hyperthermia. The present study assessed that hyperthermia 
induced the apoptosis and subcellular localization of Nrf2 in esophageal squamous cell carcinoma. The cell apopto-
sis was monitored by flow cytometry, including control group; heat group; t-BHQ with heat group. The caspase activity 
assay was used to detect the Caspase-3 and Caspase-9 activity. The expression of Bcl-2 and XONA was determined 
by RT-PCR and western blotting. The subcellular localization of Nrf2 was evaluated by immunofluorescence staining. 
The apoptosis rate and caspase-3, caspase-9 activity of heat group were significantly higher than those of control 
group. The Bcl-2 expression was down-regulated in heat group compared to control group, on the contrary, the XONA 
expression was up-regulated in heat group compared to control group. The t-BHQ could inhibit the cell apoptosis 
and caspase-3 and caspase-9 activities, up-regulate the expression of Bcl-2 and suppress the expression of XONA. 
Nrf2 induced by hyperthermia shifted into cytoplasm, which was inhibited by t-BHQ. Hyperthermia could impact on 
subcellular localization of Nrf2 and then induce the apoptosis in esophageal squamous cell carcinoma cells.

Keywords: Hyperthermia, apoptosis, esophageal squamous cell carcinoma, nuclear translocation, Nrf2

Introduction

An estimated 455,800 new esophageal cancer 
cases and 400,200 deaths occurred in 2012 
worldwide [1]. There are two main types of 
esophageal cancer, including esophageal squa-
mous cell carcinoma (ESCC) and adenocarci-
noma [2]. ESCC is one of the leading causes of 
cancer in China [3]. Substantial improvements 
in clinical management and outcomes accrued 
to advances in therapeutics such as endoscop-
ic resection, surgery, radiotherapy and chemo-
therapy [4]. However, five-year survival was a 
dismal 5% in the mid 1970s compared with 
20% now. While this represents significant 
progress, survival still remains poor [5].

For decades, hyperthermia has been accepted 
an effective approach for multifarious tumors, 
and has been uncovered to play a significant 

role in multi-mode concepts for cancer treat-
ment [6-9]. Adding hyperthermia to standard 
treatment regimens had been proved effective, 
including cervical cancer, malignant melanoma, 
recurrent breast cancer, soft tissue sarcoma 
and bladder cancer [10-12]. As a physical treat-
ment, there was fewer reports of complications 
than chemotherapy or radiotherapy [13]. As it 
has been corroborated that persistent heating 
treatment above certain temperature will result 
in cell necrosis and/or apoptosis [6, 9, 14]. 
However, it is not well understood the mecha-
nism of the investigation in apoptosis induced 
by hyperthermia.

Nrf2 is a member of the NF-E2 family of the 
basic leucine zipper transcription factors. Under 
the resting state, the transcription factor Nrf2 
was sequestered by the actin-anchored protein 
Keap1, largely localized in the cytoplasm. This 
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quiescent interaction suppressed basal expres-
sion of downstream genes of Nrf2. However, 
when Nrf2 was sustained accumulation or acti-
vated, it was released from Keap1, avoided pro-
teasomal degradation, translocated to the 
nucleus and transactivated the expression of 
various cytoprotective genes [15, 16]. Nrf2 has 
been demonstrated to regulate the expression 
of detoxification enzymes, antioxidant proteins 
and xenobiotic transporters that enhance cell 
survival [17]. Sustained accumulation or activa-
tion of Nrf2 in cancer cells has been shown to 
tolerate chemotherapeutic agents and radia-
tion and photodynamic therapy [18, 19]. How- 
ever, there were fewer reports about hyperther-
mia related with Nrf2, Thus, the present study 
provides more useful information about hyper-
thermia combination with chemotherapy and/
or radiotherapy.

Materials and methods

Experimental reagents

Tert-butyl hydroquinone (t-BHQ) and 4,6-diamid-
ino-2-phenylindole (DAPI) were purchased from 
Sigma-Aldrich.

Cell Lines and cell culture

ESCC cell line (Eca-109) was obtained from the 
Cell Bank of Shanghai (Shanghai, China) and 
cultured in Dulbecco’s Modified Eagle Medium 
(DMEM, Life Technologies)/high glucose medi-
um supplemented with 10% heat-inactivated 
newborn calf serum at 37°C in a humidified in- 
cubator under 5% carbon dioxide atmosphere.

Cell apoptosis analyses

Apoptosis was assessed using annexin V, a  
protein that binds to phosphatidylserine (PS) 
residues, which are exposed on the cell sur- 
face of apoptotic cells. Eca-109 cells were 
seeded into culture flask and incubated at 
37°C for 24 h prior to treatment. After 24 h, 
fresh growth medium was added into each cul-
ture flask, there were three groups, including 
control group; heat group (43°C for 1 h); t-BHQ 
with heat group (43°C for 1 h, then t-BHQ 50 
μM). Following incubation at 37°C for 24 h, 
cells were collected, washed twice with pre-
cold PBS and then were stained with Annexin 
V-FITC and PI in the dark, according to the man-
ufacturer’s protocol. Double-labeling was per-
formed at room temperature for 10 min in the 

dark before the flow cytometric analysis. Finally, 
number of apoptotic cells was quantified by Cell 
Quest software. Each assay was done at least 
three times.

Caspase activity assay

Eca-109 cells were treated as above, the ac- 
tivities were investigated using the caspase 
activitiy assay kits (Caspase-3 and Caspase-9), 
according to the manufacturer’s instructions 
(Nanjing Jiancheng Corp). Measurements were 
made using a fluorescence microplate reader 
at 405 nm.

RNA extraction and quantitative reverse 
transcription-polymerase chain reaction

Total RNA was extracted using TRIzolreagent 
(Invitrogen), according to the manufacturer’s 
instructions. RNA was analyzed and reverse-
transcribed into cDNA using the Superscript  
ІІ Reverse transcriptase kit (Takara). Quan- 
titative, real-time RT-PCR was performed (Ro- 
che Diagnostic Systems). The primer sequenc-
es of the target genes were provided as foll- 
ows: Bcl-2 forward, 5’-GGAGGATTGTGGCCTT- 
CTTT-3’, reverse, 5’-GCCGTACAGTTCCACAAA- 
GG-3’; NOXA forward, 5’-TGGAAGTCGAGTGTG- 
CTACTCAA-3’, reverse, 5’-CAGAAGAGTTTGGAT- 
ATCAGATTCAGA-3’; Glyceraldehydes-3-phosp- 
hate dehydrogenase (GAPDH) forward, 5’-AGA 
AGG CTG GGG CTC ATT TG-3’ reverse, 5’-AGG 
GGC CAT CCA CAG TCT TC-3’. The PCR condition 
consisted of 95°C (30 seconds), 95°C (5 sec-
onds), 60°C (30 seconds), and 72°C (60 sec-
onds) for 30 cycles. The quantity of each tran-
script was standardized against that of GAPDH. 
The relative expression was calculated using 
the equation relative quantification (RQ) = 
2-ΔΔCT.

Western blot analysis

Whole-cell lysates were extracted with RIPA 
lysis buffer kit (Santa Cruz), the protein concen-
trations were determined by BCA Protein Assay 
Kit (Bio-Rad). An equal amount of protein was 
electrophoresed using 15% SDS-PAGE and 
transferred to polyvinylidene fluoride (PVDF) 
membrane (Merck Millipore). Membranes were 
blocked in tris buffered saline with 5% nonfat 
dry milk and then treated overnight with prima-
ry antibody, Bcl-2, NOXA and β-Actin (Santa 
Cruz), followed by secondary antibodies for 1 h 
at room temperature. Blots were developed 
using a peroxidase reaction and visualized with 
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the ECL detection system (Merck Millipore). 
β-Actin was used as an internal positive con-
trol. The densitometry was analyzed by the use 
of the program Quantity One.

Immunofluorescence staining

Eca109 cells were seeded on glass coverslips 
and were divided into three groups, including 
control group; heat group (43°C for 1 h); t-BHQ 
with heat group (43°C for 1 h, then t-BHQ 50 

Statistical analysis

Statistical analyses were performed using 
GraphPadPrism. For each treatment and con-
trol, data from the independent replicate trials 
were pooled, and the results were expressed 
as the means ± standard error. Student’s t test 
or one-way ANOVA was used to compare nor-
mally distributed variables. Results were con-
sidered statistically significant if P < 0.05 (*P < 
0.05, **P < 0.01).

Figure 1. Apoptotic rates of Eca109 cells after treatment with heat or heat and t-BHQ as detected by flow cytometry. 
One representative experiment was shown.

Figure 2. Hyperthermia induced the caspase-3 and caspase-9 activity of 
Eca109 cell that was inhibited by the t-BHQ. (*P < 0.05).

μM). The cells were fixed in 
4% paraformaldehyde for 15 
min at room temperature and 
washed with cold PBS three 
times, and then permeabi-
lized with 0.5% Triton X-100 
for 10 min. To investigate the 
cellular localization of Nrf2, 
cells were incubated with pri-
mary antibody against Nrf2 
(Santa Cruz) overnight at 4°C 
temperature. After washing 
with PBS, the cells were incu-
bated with Cy3-conjugated 
goat antirabbit IgG as seco- 
ndary antibody for 1 h at room 
temperature. Nuclei were sta- 
ined with 1 µg/mL of DAPI for 
5 min in the dark, and then 
analyzed by a fluorescence 
microscope (Olympus IX71).
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Results

Heat induced apoptosis of ESCC cell

The apoptosis rate and caspase activities were 
measured to ascertain the effect of heat treat-
ment. The apoptosis rate and caspase-3, cas-
pase-9 activity of heat group were significantly 
higher than those of control group (P < 0.05) 
(Figures 1 and 2). The expression of both Bcl-2 
mRNA and protein was down-regulated in heat 
group compared to control group (P < 0.05 and 
P < 0.05) (Figures 3 and 4), on the contrary, the 
expression of both XONA mRNA and protein 
was up-regulated in heat group compared to 
control group (P < 0.05 and P < 0.05), (Figures 

any stimulus, Nrf2 was located in the cyto-
plasm and nucleus (Figure 5A and 5D). When 
Eca109 cells were treated by heat, the Nrf2 
scarcely existed in nucleus and shifted into 
cytoplasm (Figure 5B and 5D), which was in- 
hibited by t-BHQ (Figure 5C and 5D). T-BHQ 
could sustain Nrf2 in nucleus of Eca109 cells. 
Thus, T-BHQ could reverse the nuclear translo-
cation of Nrf2 induced by hyperthermia.

Discussion

Esophageal cancer is the 8-th most common 
cancer and the 6-th leading cause of cancer 
death in the world, survive is very low, because 

Figure 3. Hyperthermia down-regulated the Bcl-2 expression and up-regulat-
ed the XONA expression in mRNA level that was inhibited by the t-BHQ. (*P 
< 0.05, **P < 0.01).

Figure 4. A. Hyperthermia down-regulated the Bcl-2 expression and up-regu-
lated the XONA expression in protein level that was inhibited by the t-BHQ. B. 
The graphs showed the quantified data of Western blots. (*P < 0.05).

3 and 4). Thus, Hyperthermia 
could induce the apoptosis of 
ESCC cells.

T-BHQ suppressed the apop-
tosis of ESCC cell induced by 
heat treatment

The t-BHQ was one of activa-
tors of Nrf2. Eca109 cells 
were heated 43°C for 1 h, 
and then incubated witht-BHQ 
50 μM for 24 h. The t-BHQ 
could inhibit the apoptosis 
rate, caspase-3 and caspa- 
se-9 activities induced by 
heat treatment (P < 0.05) 
(Figures 1, 2), contemporary, 
it also could up-regulate the 
expression of Bcl-2 in mRNA 
and protein level (P < 0.01 
and P < 0.05) (Figures 3 and 
4). In addition, the t-BHQ can 
suppress the expression of 
both XONA mRNA and protein 
(P < 0.01 and P < 0.05) (Fig- 
ures 3 and 4). These results 
suggest that T-BHQ suppre- 
ssed the apoptosis induced 
by hyperthermia.

T-BHQ suppressed the 
nuclear translocation of Nrf2 
induced by heat treatment

Nrf2 was one of the transcri- 
ption factors, translocated to 
the nucleus, and transactivat-
ed the expression of various 
cytoprotective genes. Eca109 
cells grew normally without 
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of its aggressive nature, distant metastasis at 
diagnosis, and most unknown molecular mech-
anism of its progression. Eendoscopic resec-

tion, surgery, radiotherapy, and chemotherapy 
contributed to improvements in prognosis of 
esophageal cancer patients [4, 20, 21]. How- 

Figure 5. The subcellular localization 
of Nrf2 in Eca109 cells. 200× (A) 
Control (B) Heat (C) Heat with t-BHQ 
(D) relative expression of Nrf2 in cy-
toplasm and nucleus. (*P < 0.05, 
**P < 0.01).
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ever, chemotherapy and radiation resistance 
had limited the therapy of esophageal cancer. 
Hyperthermia is currently regarded as the 
fourth line of therapy and is mainly applied as 
an adjunct, ranked below surgery, chemothera-
py and radiotherapy [14]. Nevertheless, hyper-
thermia has the effect of radiosensitivity and 
chemosensitivity, inhibiting the tumormetasta-
sis, promoting the immunity of the organism 
[22, 23]. More than 20 randomized clinical tri-
als demonstrated the significant improvement 
in clinical prognosis through standard treat-
ment regimens of radiation and/or chemother-
apy with hyperthermia [24]. 

Concretely, hyperthermia at 42-43°C cloud 
enhance effects of numerous cytotoxic drugs 
such as taxane, paclitaxel, and docetaxel [25]. 
However, the synergistic mechanism of hyper-
thermia with radiation and/or chemotherapy 
has not been sufficiently understood. In addi-
tion, a few studies corroborated that Nrf2 was 
related to the occurrence and progress of many 
tumors, including lung cancer, head and neck 
squamous cancer, liver cancer, ESCC, colon 
cancer, pancreatic cancer, gastric cancer and 
gallbladder carcinoma [15, 26]. Sustained 
accumulation or activation of Nrf2 has shown 
to tolerate chemotherapeutic agents and ra- 
diation [18]. Thus, the complete understand- 
ing of the role of Nrf2 is very important for elu-
cidating the synergistic mechanism of multiple 
therapy of tumor.

In this study, we evaluated the effect of heat 
treatment of Eca109 cells. The apoptosis activ-
ities were analyzed after heat treatment, our 
findings showed that the apoptosis rate, cas-
pase-3 and caspase-9 activities were induced, 
the expression of Bcl-2 was down-regulated, 
and the NOXA expression wasup-regulated. 
Hyperthermia also can activate other proteins 
of mitochondria pathway, such as AIF, Smac/
Diablo [27, 28]. Moreover, hyperthermia indu- 
ced apoptosis by increasing the sensitivity of 
death receptors [29], including DR4, DR5, 
TNFR1 and FAS [30]. In addition, heat induced 
cell apoptosis through the autocrine and para-
crine systems and non-caspase-dependent 
apoptosis [28, 30]. Hyperthermia had a direct 
cytotoxic effect that was mainly based on dena-
turation of cytoplasmatic and membrane pro-
teins [14]. Hyperthermia had effect on the cell 
cycle, it resulted in inefficient mitosis and con-
secutive polyploidy by damaging the mitotic 

apparatus at M-phase, chromosomal damage 
at S-phase, and abrogated G2/M checkpoint 
activation [14, 31, 32]. Radiosensitivity and 
chemosensitivity were strengthened through 
the cell cycle impacted by hyperthermia. The 
precise mechanisms of hyperthermia resulted 
in tumor cell death are complicated and highly 
dependent on the heating profile.

Previous research suggested that nuclear pro-
teins were most sensitive and a high degree of 
correlation between nuclear protein aggrega-
tion and heat-induced cell kill [33-35]. Hyper- 
thermia could loosen the combining of some 
nuclear proteins and make them out of the 
nucleus. The DNA repair protein, Mre11 drove 
out of the nucleusunder heat treatment, lead-
ing to asub sequent sensitization to ionizing 
radiation. This process could be concerned 
with heat isolating Mre11 from its functional 
complex with other DNA repair proteins [36, 
37]. Malignant melanoma cell was subjected to 
heat shock, the nucleolar protein, nucleolin 
was dissociated from its functional partner 
nucleophosmin and an association with the 
DNA replication protein, RPA. Then, this com-
plex was exported from the nucleus [38]. Our 
finding showed that heat induced Nrf2 out of 
the nucleus in Eca109 cell, the t-BHQ sup-
pressed this procedure and apoptosis induced 
by heat. This result was similar as reported ear-
lier for Nrf2 [15, 17]. Niture and Jaiswal report-
ed that Nrf2 was induced into the nucleus the 
t-BHQ, combined to AREr3 promoter region and 
promoted Bcl-2 gene expression which lowered 
cellular apoptosis and increased cell survival 
[39, 40]. Hep-G2 cell was treated by t-BHQ, 
resulting in the nuclear accumulation of Nrf2 
that was known to regulate the expression of 
detoxifying enzymes [41]. Accumulation of Nrf2 
protein was observed in the nucleus inme- 
thylated HT29 cells, and NQO-1 and AKR1C1 
were overexpression after t-BHQ stimulation 
[42]. Thus, the nuclear aggregation of Nrf2 by 
t-BHQ is important for tumor cell survival. Our 
results showed that hyperthermia made the 
Nrf2 shift out of the nucleus and accelerated 
cellular apoptosis. As mention before, the valid-
ity radiation and/or chemotherapy with hyper-
thermia may attribute to the nuclear transloca-
tion of Nrf2.

In conclusion, the present study showed hyper-
thermia induced the apoptosis of ESCC cell and 
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impacted on the nuclear translocation of Nrf2. 
However, we do not investigate the definite 
mechanism of the nuclear translocation of Nrf2 
induced by hyperthermia, there needed further 
researches. Radiation and/or chemotherapy 
with hyperthermia could be a promising com-
prehensive therapy of tumor. 
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