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Review Article 
How does the anesthetic agent propofol affect tumors?
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Abstract: Propofol is one of the most popular intravenous agents used for induction and maintenance of anesthesia. 
Numerous studies have intended to explore whether or how propofol affects tumor metastasis and invasion but the 
results are conflicting. Propofol can influence cancer progression through indirectly affecting the function of immune 
cells such as T cells, NK cells or macrophages and directly interfering with cancer cell biology. The anti-inflammation 
property of propofol may be beneficial in certain cancer surgeries. In this review, we will discuss the current under-
standing about the postulated mechanisms underlying the effect of propofol on tumors and the present research 
progress in this field.
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Introduction 

The occurrence and development of cancer are 
caused by a series of factors interacting with 
each other. Hanahan and colleagues [1] des- 
cribed the hallmarks of cancer in detail. A vari-
ety of biological characteristics facilitate tumor-
igenesis or promote tumor progression. Surgery 
is of paramount importance in the manage-
ment of solid tumors as definitive resection can 
be curative. However, cancer recurrence and 
metastasis after primary resections remain the 
main causes for high morbidity and mortality. 
Surgery is likely to evoke strong stress and dis-
semination of cancer cells [2-4], and mean-
while the body is under relative immunosup-
pression [5, 6]. In addition, certain periopera-
tive agents could give rise to body’s metabolic 
disturbance and immunosuppression [7], and 
hence, the perioperative period is a window for 
cancer metastasis and postoperative recurr- 
ence.

Increased numbers of studies have focused on 
the impact of perioperative factors on cancer 
recurrence, including the pathophysiological 
effects of anesthesia techniques and anesthet-
ics on tumor metastasis [8-12]. Propofol (2,6- 

diisopropylphenol) is a potent intravenous 
anesthetic characterized by fast onset, rapid 
recovery and stable hemodynamics and the 
chemical properties of propofol have been 
reviewed in detail by Fan et al. [13]. The mecha-
nism underlying the hypnotic action of propofo-
lis complex with interactions at different neu-
rotransmitter receptors on the central nervous 
system (CNS), particularly gamma-aminobutyric 
acid A (GABAA) receptors [14]. It is extensively 
used for the induction and maintenance of clini-
cal anesthesia and sedation for critically ill 
patients in the intensive care units (ICUs) [15]. 
Propofol exerts both anti-oxidative stress activ-
ity and immunoregulation properties [16]. Fur- 
thermore, some studies [17] reported that the 
propofol concentration commonly used in clini-
cal practice could induce apoptosis and inhibit 
the invasion of human cancer cells, but others 
argued that [18, 19] propofol potentiated can-
cer cell proliferation and metastasis. The pres-
ent review summarizes the progress in the 
research of the propofol effect on tumors and 
possible underlying mechanisms with respect 
to the impact of propofol on immune cells, its 
direct effect on cancer cells and its potential 
anti-inflammatory property, hoping that the 
result could provide some useful references for 
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future research and clinical selection of anes-
thetic agents.

Indirect effects of propofolon tumors through 
immune cells

CD8+ T and CD4+ T cells are of paramount 
importance to immune surveillance against 
tumorigenesis [20]. Among these, CD8+ cyto-
toxic T lymphocytes (CTLs) work as the main 
effector cells in the specific immune response 
to the identification and eradication of tumor 
cells. CD4+ T cells can directly exterminate 
MHC-II molecule-positive tumor cells and indi-
rectly kill MHC-II molecule-negative cancer 
cells in some way [21]. CD4+ T cells are classi-
fied into four subtypes: Th1, Th2, Th17 and T 
regulatory cells (Tregs). IL-12 and IFN-γ can pro-
mote differentiation of CD4+ T cells into Th1 
and cement CTL anti-tumor immune activity  
or activate macrophages to kill tumor cells. 
Accordingly, IL-4 promotes Th2 differentiation 
and inhibits Th1 differentiation. T cell-mediated 
immunity also plays a critical role during the 
perioperative period. Change in T lymphocytes 
in peripheral circulation may depend on the 
stress degree and the duration of surgery. Ji et 
al. [22] demonstrated that propofol anesthesia 
promoted Th1 cell differentiation in patients 
receiving laparoscopic cholecystectomy. In 
patients undergoing pulmonary lobectomy for 
non-small cell lung cancer (NSCLC), both the 
IFNγ/IL-4 ratio and the percentage of CD4+ 

CD28+ T cells in peripheral blood were signifi-
cantly higher in propofol anesthesia group than 
that in isoflurane group [23]. In addition, propo-
fol was demonstrated to enhance in vitro anti-
cancer cell activity of CTLs [24], probably due to 
the contribution of propofol to high cytokine 
ratio of IFN-γ/IL-4 [25], which is prone to induce 
Th1 cell differentiation as a consequence of 
the reinforced CTL-killing capacity [26, 27].

NK cells are the major lymphocyte subpopula-
tion that secrete immunity mediators and dis-
solve cancerous cells directly by cytotoxicity 
[28]. NK cells play pivotal roles in immune sur-
veillance and killing tumor cells [29]. However, 
the number and activity of NK cells are both 
affected by surgical stress and medications. 
Clinical studies [30] showed when NK cells 
from healthy individuals were cultured with 
sera from patients who received breast cancer 
resection under anesthesia of either propofol-

paravertebral block or isoflurane with mor-
phine, the in vitro anti-tumor activity of NK cells 
was increased in propofol group and decreased 
in isoflurane-morphine group. Rivka Melamed 
et al. [10] inoculated MADB106 cancer cells 
into rats via the tail vein and found that NK 
cytotoxicity was suppressed markedly and lung 
tumor retention within 1 h was increased in 
either ketamine group or thiopentone group but 
not in propofol group. However, the mechanism 
by which propofol affects NK activity or counts 
in peripheral blood is unknown.

Solid tumors are composed of a group of het-
erogeneous cells including malignant tumor 
cells and stromal cells such as macrophages, 
NK cells, neutrophils, fibroblasts and endothe-
lia [31, 32], among which tumor-associated 
macrophages (TAM) were reported to be closely 
related to tumor angiogenesis, cancer cell 
metastasis and prognosis [33-35]. TAMs were 
supposed to be evolved from monocytes in the 
peripheral circulation recruited by the release 
of chemotactic cytokines to the tumor microen-
vironment, where they were further modified to 
secrete growth cytokines such as EGF [36], 
TNF-α [37], VEGF and bFGF [35] to promote 
tumor growth. In vitro overdose propofol 140 
μM (25 μg/ml) induced macrophage RAW264.7 
apoptosis by inhibiting Akt and activating GSK-
3β [38]. In contrast, low dose propofol 56 μM 
(10 μg/ml) suppressed neutrophils or acute 
promyelocytic leukemia HL60 cell apoptosis by 
activating PI3K/Akt and inhibiting GSK-3β 
activity [39]. Therefore, the cytotoxicity and 
cytoprotection of propofol may associate with 
heterogeneous cells and varied dose because 
150 μM propofol could induce significant apop-
tosis of HL60 cells [40]. GSK-3β is an intracel-
lular serine/threonine protein kinase that acts 
as downstream signal of PI3K/Akt and is inhib-
ited by phosphorylation. Blocking PI3K or over-
expressing GSK-3β was reported to promote 
cell apoptosis [41]. Interestingly, a recent study 
[42] reported that GSK-3β inhibition enhanced 
dendritic cell-based cancer vaccine potency.

Additionally, Zhang et al. [43] conducted a study 
with propofol for in vivo anti-hepatocellular car-
cinoma and demonstrated that propofol could 
repress cancer cell proliferation and metasta-
sis by stimulating macrophages to overexpress 
miR-142-3p which was transferred into hepatic 
carcinoma Hepal-6 cells and downregulated 
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RAC1 protein expression by targeting its target 
gene. However, miR-142-3p could not be upreg-
ulated when Hepal-6 cells were directly treated 
with propofol. MicroRNAs (miR) are small non-
coding RNAs that regulate gene expression pri-
marily through pairing to sites located within 
the 3’ untranslated regions (UTR) of the target 
mRNA [44]. It was reported [45] that enforcing 
miR-142-3p expression could prevent tumor-
induced medullary cells to differentiate into 
immunosuppressive macrophages, also known 
as tumor-associated macrophages (TAM). TAM 
modified the tumor microenvironment in vivo 
and favored antitumor immunity. Targeting miR 
or TAM may create a new strategy for improving 
tumor immunotherapy [46]. Nonetheless, whe- 
ther or how propofol affects the tumor microen-
vironment needs to be clarified.

Tumor immunity is acknowledged as a complex 
process. Innate immune and adaptive immune 
cells collectively mediate immune surveillance 
for tumorigenesis and cancer cell killing (Table 
1). Immune function could be affected by vari-
ous factors during the perioperative period. 
Immune cells act collaboratively in the anti-
tumor process. For example, NK cells and anti-
gen presenting cells DCs induce T cell anti-
tumor immunity synergistically [47-49]. Posto- 
perative cancer recurrence and metastasis 
may hinge upon, to some extent, perioperative 
immunocyte function, which will affect immune 
surveillance against tumors or tumor metasta-
sis. Surprisingly, dendritic cell-based vaccines 
treated with propofol enhanced antitumor 
immunity in mice [50]. Still, the effect of propo-
fol on immune function requires further study, 
embracing the interactions among diverse 
immunocytes and the variationsin heteroge-
neous cancer cells and different patients.

The direct effect of propofol on tumor cells

Studies have suggested several mechanisms 
by which propofol affected the proliferation and 
metastasis of tumors. Tadanori et al. [17] show- 
ed 1-5 ug/ml propofol decreased the invasive-
ness ability of human cancer cells dose depend-
ently through suppressing β1 integrin cluster-
ing and actin stress fiber formation mainly by 
modulating RhoA. Rho protein is known as a 
member of the p21 Ras subfamily of small 
GTPases and regulates tumor progress [51, 
52], which was reported to facilitate cancer cell 
invasion after activation [53].

In the process of tumor growth, hypoxia induc-
es significant biological effects, among which 
induced angiogenesis has been well document-
ed, and promotes tumor proliferation and me- 
tastasis. Hypoxia inducible factor HIF-1α acts 
as a key regulator therein [54]. In vitro HIF-1α 
protein synthesis and its mediated genes 
including LDHA, VEGF, PHD-3 and FIH-1 were 
inhibited by 100 uM propofol in an oxygen con-
centration-dependent manner [55]. Volatile 
anesthetic isoflurane induced HIF-1α expres-
sion and exerted activity that favored tumor 
growth [56, 57]. However, propofol was report-
ed to antagonize isoflurane-induced expression 
of HIF-1α and VEGF, proliferation and metasta-
sis of tumor cells and reverse isoflurane-
induced resistance of prostate cancer PC3 
cells to chemotherapy drug docetaxel.

Studies [57] reported that both inhibition of 
PI3K/Akt/mTOR and MAPK/ERK pathways 
were involved in propofol anti-tumor activity. 
Besides, propofol attenuated the activity of 
MAPK/ERK/MMP-9 signal pathway in esopha-
geal squamous carcinoma Eca-109 cells and 
colon cancer LoVo cells, there by impairing can-
cer cell proliferation and invasion and tumor 
angiogenesis [58, 59]. Propofol also inhibited 
invasion and increased apoptosis of osteosar-
coma cell in vitro via downregulation of trans-
forming growth factor-β1 (TGF-β1) expression 
[60]. EGFR/Ras/Raf/MAPK/ERK pathways con-
trolled normal cell proliferation, survival and 
differentiation and EGFR activation correlated 
with HIF-1α induced angiogenesis [54]. Plenty 
of human cancer cells go with R as mutation 
resulting inaberrant activation of Ras/Raf/
MAPK/ERK pathway, consequently bringing 
about persistent proliferation and metastasis 
of cancer cells and insensitivity to EGFR block-
ers [61]. However, lung cancer A549 cell lines 
with K-ras gene mutation at codon12 treated 
by propofol showed declined levels of ERK1/2 
phosphorylation, upregulation of Caspase-3 
and BAX proteins and were inclined to apopto-
sis [62]. Clinical target therapy is preferred to 
lung cancer patients with K-ras mutation. We 
therefore speculate whether propofol could 
improve the chemotherapeutic effect of target 
drugs, which of course needs to be verified by 
in vitro experiments in the first place.

Other than the above-mentioned mechanisms, 
there are also other mechanisms underlying 
the suppressive effect of propofol on tumor 
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Table 1. Indirect effects of propofol on tumors through immune cells
Immune cells Publications
T cells Promote CD4+ T cells differentiating into Th1 and cement in vitro anti-cancer cell activity of CTLs [22-25]
NK cells Increase in vitro anti-tumor activity and cytotoxicity of NK cells [10, 30]
Macrophage Induce macrophage apoptosis; stimulate miR-142-3p overexpression in macrophage and miR-142-3p induce TAM differentiation [38-40, 43]

Table 2. Propofol effect on cancer cells
Effect Reported underlying mechanisms
Inhibiting Decrease the invasiveness ability of human cancer cells by modulting RhoA protein [17]

Inhibit HIF-1α protein synthesis and its mediated genes [55-57]
Inhibit PI3K/Akt/mTOR or MAPK/ERK pathway [57-59, 62]; downregulate TGF β1 expression [60]
Repress the NF-κB activity of pancreatic cancer cells and enhance in vitro gemcitabine chemotherapeutic effect [63]
Trigger HL-60 cell apoptosis through activating death receptors-caspase signal pathway and mitochondrial apoptotic pathway [40]
Cripple cancer cell proliferation by upregulating miR-199a expression within liver cancer cells HepG2 [64]
Attenuate the invasive and migratory abilities of colon cancer cells by activating GABAA receptors [59]
Attenuate inflammation and oxidative stress [72-76]

Promoting Accelerate gallbladder carcinoma GBC-SD cell proliferation by promoting Nrf2 nucleus translocation [18]
Trigger migration of breast cancer MDA-MB-468 cells via incrementing calcium influx and reconstituting troponin after activating GABAA receptors [19]
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cells. Propofol was found to repress the NF-κB 
activity of pancreatic cancer cells and enhance 
the in vitro chemotherapeutic effect of gem-
citabine [63]. Additionally, 150 uM propofol 
was proved to trigger HL-60 cell apoptosis th- 
rough activating death receptors-caspase sig-
nal pathway on the cell surface and mitochon-
drial apoptotic pathway [40]. Propofol upregu-
lated miR-199a expression within liver cancer 
cells HepG2 to cripple cancer cell proliferation 
[64]. MiR-199a is documented as a highly con-
served microRNA and it is down-regulated uni-
versally in Hepatocarcinoma cells, whose over-
expression both in vivo and in vitro could sup-
press cancer cell proliferation [65]. A recent 
study [66] reported that the level of miR-199a-
5p expression correlated with the malignancy 
and prognosis of cancers, and HIF-1α was 
shown to inhibit its expression. As propofol was 
demonstrated to inhibit HIF-1α protein synthe-
sis [55, 57], there possibly exists a link between 
propofol, HIF-1α and miR-199a.

Although numerous studies have demonstrat-
ed the suppressive effect of propofol on tumor 
cells, there are conflicting reports in the litera-
ture. A published study [18] reported that pro-
pofol treatment regulated downstream target 
gene transcription in gallbladder carcinoma 
GBC-SD cells by promoting transit of activated 
Nrf2 from the cytoplasm to the nucleus, thus 
increasing the level of ERK1/2 phosphorylation 
and ultimately accelerating cancer cell prolifer-
ation. Nrf2 is a critical transcriptional regulato-
ry factor that regulates the expression of anti-
oxidases and detoxifying enzymes, of which 
hemeoxygenase HO-1 is a typical one [67]. 
Stimulating HO-1 expression by propofol pro-
tected neuroblastoma cells SH-SY5Y against 
oxidative stress-induced cell death through 
activating ERK signal pathway [68]. Garib V et 
al. [19] discovered that propofol triggered 
migration of breast cancer MDA-MB-468 cells 
via incrementing calcium influx and reconstitut-
ing troponin. An overview is seen below (Table 
2). Different cancer cells respond to propofol in 
different ways due to various reasons including 
the propofol concentration, the diversity of can-
cer cells, gene mutations [62], heterogeneity of 
phenotypes and functions of cancer cells [69] 
or variation of surface receptors on tumor cells. 
Therefore, more in vivo and in vitro experiments 
are needed to confirm the relevant underlying 
mechanisms.

The anti-inflammatory effect of propofol on 
tumors

Innate immune and adaptive immune cells as 
well as non-hematopoietic cells collaborate 
with each other to regulate immunity, inflamma-
tion, tissue repair, and tumor occurrence and 
development [70]. Cancer-related inflammation 
is recognized as the 7th hallmark of cancer [1]. 
Inflammation promotes angiogenesis, prolifera-
tion and invasion of tumor cells, eventually 
accelerating tumor evolvement [71]. Existing 
studies indicate that propofol can attenuate 
inflammation and oxidative stress [72-76], and 
therefore it seems reasonable to postulate that 
these properties of propofol may account for its 
antitumor effect.

Propofol-GABAA receptors and tumors

GABA (γ-Amino butyric acid) receptors com-
prise ionotropic receptors GABAA and GABAC 
and metabotropic receptor GABAB. The endog-
enous ligand GABA for GABAA receptor is a kind 
of inhibitory neurotransmitter. GABAergic sig-
naling is not only limited to the nervous system; 
rather it extensively exists in peripheral organs 
and various cancer cells [77]. Additionally, 
GABAergic signaling is involved in the control 
over cell proliferation, differentiation and migra-
tion, including cancer cells [78].

Propofol has been found to exert different 
effects following triggering GABAA receptors on 
different cancer cells. For instance, propofol 
attenuated the invasive and migratory abilities 
of colon cancer cells [59] but promoted the 
metastasis of breast cancer MDA-MB-468 cells 
[19] after activating GABAA receptors. GABAA 
receptors/ERK1/2/keratin signaling was repo- 
rted to be possibly involved in the metastasis 
and dissemination of cancer cells [79]. How- 
ever, Satoshi et al. [55] found that HIF-1α pro-
tein expression was also suppressed by 2,4- 
diisopropylphenol almost commensurate with 
2,6-diisopropylphenol in Hep3 cells under the 
condition of 20% aloxygen. As 2,4-diisopropyl-
phenol does not possess GABAA receptor-bind-
ing capacity, the propofol effect could not be 
totally explained by GABAA receptor binding. 
These research findings are discrepant, but 
what contributes to the discrepancy may be 
attributed to the differences in GABAA ergic-
mediated cellular signaling in different cancer 
cells and the variations of GABAA receptor 
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expression or their structural mutations on the 
surface of cancer cells. Nonetheless, studies 
suggest that GABAA receptors may be involved 
in the inhibitory or promoting effect of propofol 
on cancer cells. As few studies have directly 
focused on the correlation between propofol-
GABAA ergic signaling and tumor development, 
more studies are required toto illuminate why 
propofol-GABAA ergic signaling facilitates the 
migration and invasion of some tumor cells 
[19] while suppresses others [59].

Conclusion

Studies have demonstrated that propofol has 
positive effect on the anti-tumor immune cells 
and properties against the proliferation and 
metastasis of cancer cells. Probably the above 
effect or properties correlate with GABAA ergic 
signaling, though discrepancies exist. These 
discrepancies maybe because of the heteroge-
neity of cancer cells. Besides, many factors 
such as surgery stress, inflammation, pain, 
immunocompromise, and other anesthetic 
agents including morphine, inhalation gas or 
analgesics could affect immunity in the periop-
erative period. Clinical prospective randomized 
studies are expected to confirm the effect of 
propofol anesthesia on immune function and 
postoperative prognosis of cancer patients. 
Therefore, consensus guidelines for the selec-
tion of clinical anesthetics for cancer surgeries 
are required with respect to their immunologic 
properties, methods of their use, and their 
direct or potential effects on cancer cell biolo-
gy. Clinical anesthesiologists should be pru-
dent in the selection of anesthetic agents and 
related techniques.
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