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Tempol protect against hypoxia induced oxidative  
stress in PC12 cells
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Abstract: Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Tempol 
(4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a membrane-permeable free radical scavenger with unique an-
tioxidant properties. This study aims to investigate the potential neuroprotective effect of Tempol against hypoxia-
induced oxidative stress in PC12 cell and to explore the underlying mechanisms. Treatment of PC12 cells with hy-
poxia reduced viability and increased LDH leakage. Tempol significantly attenuated PC12 cells damage induced by 
hypoxia with characteristics of increased the cell viability and reduced LDH release. In addition, Tempol suppressed 
the hypoxia induced oxidative stress by quenching ROS, inhibiting lipid peroxidation, normalizing the activity of SOD 
and CAT as well as downregulating HIF-1α and VEGF expression. Furthermore, Tempol inhibited hypoxia induced cell 
apoptosis and the expression of caspase-3. Our present study indicated that Tempol has protective effect against 
damage induced by hypoxia in PC12 cell through its antioxidant and anti-apoptotic activities.
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Introduction

Hypoxia, defined as deficiency of oxygen reach-
ing the tissues of the body, often occurs in 
physiologic conditions such as high altitude 
and in pathological conditions including isch-
emia, stroke, and neurodegenerative diseases 
[1]. Brain is particularly sensitive to hypoxia, 
compared with other organs, due to its high 
oxygen consumption, high content of iron and 
peroxidizable fatty acids as well as limited anti-
oxidant capacity [2, 3]. Hypoxia resulted in the 
increased production of reactive oxygen spe-
cies (ROS), such as superoxide anion (O2

•-), 
hydroxyl radical (•OH), and peroxynitrite (ON- 
OO-). Excessive ROS not only directly and non-
specifically oxidize biological macromolecules 
such as DNA, proteins, and lipids, but also dam-
age cells by activating a redox signaling cas-
cade that ultimately leads to cell death [4, 5]. 
Therefore, antioxidant with capacity of scav-
enging ROS, such as vitamin C [6], edaravone 
[7], N-acetyl cysteine [8], and curcumin [9], 
could be used to inhibit oxidative stress and 
apoptosis induced by hypoxia. However, the 
application of these antioxidants is limited due 

to its poor biocompatibility and weak cell mem-
branes penetrate ability.

Tempol (4-Hydroxy-2,2,6,6-tetramethylpiperidi- 
ne-1-oxyl, Figure 1) is a membrane-permeable 
free radical scavenger with unique antioxidant 
properties and readily crosses the blood brain 
barrier [10]. Tempol degrades O2

•- via a super-
oxide dismutase mimetic action, thereby pre-
venting the formation of peroxynitrite. Further- 
more, Tempol can suppress the formation of 
the •OH by inhibiting Fenton’s reaction cata-
lyzed by transition metals [11]. Many studies 
have indicated that Tempol exhibits excellent 
neuroprotective effect [12-17]. For example, 
Tempol has been shown to protect PC12 cells 
against cytotoxicity caused by cocaine and 
1-methyl-4-phenylpyridinium ion [14, 15]. In 
addition, Tempol attenuates ischemia-reperfu-
sion injury in a rat model of transient focal cere-
bral ischemia [16]. Recently, Tempol provides 
neuroprotection for chronic sleep-deprivation 
induced memory impairment [17]. However, the 
potential neuroprotective effects of Tempol 
against hypoxia-induced neurotoxicity and the 
mechanisms of protection remain to be clari-
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fied. Therefore, here we investigated the effects 
of Tempol on hypoxia-induced oxidant stress in 
PC12 cell as well as its mechanisms.

Materials and methods

Reagents

Tempol, Dimethylsulfoxide (DMSO), thiazolyl 
blue tetrazolium bromide (MTT) and 2’,7’-Di- 
chlorofluorescin diacetate (DCFH-DA) were ob- 
tained from Sigma Chemical (St. Louis, MO, 
USA). Annexin V fluorescein isothiocyanate (FI- 
TC)/propidium iodide (PI) apoptosis detection 
kit was purchased from Beyotime Institute of 
Biotechnology (Jiangsu, China).

The measurement kits for lactate dehydroge-
nase (LDH), malondialdelyde (MDA), superoxide 
dismutase (SOD), catalase (CAT), and the BCA 
(bicinchoninic acid) protein assay kit were ob- 
tained from Nanjing Jiancheng Bioengineering 
Institute (Nanjing, China). 

Rabbit HIF-1α, VEGF, caspase-3 and β-actin 
polyclonal primary antibodies were from Abcam 
(Cambridge Science Park, UK). Horseradish pe- 
roxidase-conjugated goat anti-rabbit IgG and 
anti-mouse IgG secondary antibody was pur-
chased from ZSGB-BIO (Beijing, China). En- 

hanced chemiluminescence (ECL) was pur-
chased from Sigma Chemical (St. Louis, MO, 
USA).

Cell culture 

PC12 cells line originated from Experimental 
Animal Center of Fudan University (Shanghai, 
China). Cells were cultured in DMEM/F12 
medium supplemented with 10% fetal bovine 
serum, 100 units/ml penicillin and 80 mg/ml 
gentamicin. Cultures were grown at 37°C in a 
humidified atmosphere incubator with 95% air 
and 5% CO2. The medium was changed every 
2-3 days.

Cell viability assay

PC12 cells were seeded onto 96-well culture 
plates at 1.0×105 cells/well and incubated at 
37°C for 24 h. The medium was removed and 
fresh DMEM/F12 with or without the appropri-
ate dilution of Tempol was added into well. 
Tempol were dissolved in DMSO and added to 
the medium at a final concentration of 0.1, 
0.33, 1, 3.3 and 10 µmol/L, respectively. After 
1h of incubation, the cells were cultured for 24 
h in hypoxia incubator (5% CO2 and 95% N2). 
Control well was the non-treated cells cultured 
for 24 h in normoxic condition. After that, the 
cells were incubation with MTT solution (final 
concentration is 0.5 mg/ml) and 200 µl serum-
free medium for 4 h. Finally, 100 µl of DMSO 
was added to dissolve the formazan. The absor-
bance at the test wavelength of 570 nm was 
measured using a microplate reader (Model 
550, Bio-Rad Laboratories, Inc). Cell viability 
was reported as percentage of the non-hypoxia 
control considered as 100%.

Detection of LDH Leakage, MDA content and 
antioxidant enzyme activity

The PC12 cells were seeded in 90-mm culture 
dish at a density of 1×105/ml and incubated for 
24 h. Cells were treated with Tempol in the 
same way as described above. At the end of 
experiment, 100 µl of the culture supernatants 
were collected to a well, and LDH activity was 
detected at 450 nm by the commercial assay 
kits (Jiancheng Institute of Biotechnology, 
Nanjing, China). The LDH activity was expressed 
as U/mL. Then the PC12 cells were washed 
with ice-cold PBS, harvested by centrifugation 
at 1000×g for 5 min, pooled in 0.5 ml of cold 

Figure 1. Chemical structure of Tempol. 



Neuroprotective effect of Tempol on hypoxia injury

6073	 Int J Clin Exp Med 2017;10(4):6071-6080

PBS and homogenized. The homogenate was 
centrifuged at 8000×g for 15 min, and the 
supernatant was collected for MDA, SOD, and 
CAT assay. The total protein content was deter-
mined with the BCA protein assay kit. MDA con-
tents, SOD and CAT activity were measured 
according to the direction of the assay kit 
(Jiancheng Institute of Biotechnology, Nanjing, 
China). The MDA results were expressed as 
nmol/mg protein. The SOD and CAT was 
expressed as U/mg protein.

Detection of ROS level

The ROS level was measured using the 2’,7’- 
dichlorofluorescin diacetate (DCFH-DA) meth-
od. Briefly, at the end of experiment, the cells 
were washed with PBS and incubated with 
DCFH-DA at a final concentration of 10 mM for 
1 h at 37°C in darkness. After the cells were 
washed twice with PBS to remove the extracel-
lular DCFH-DA, the fluorescence intensity was 
measured using flow cytometer (FACScan, 
Becton Dickinson, USA) with an excitation 
wavelength of 488 nm and an emission wave-
length of 525 nm. The level of intracellular ROS 
was expressed as a percentage of non-hypoxia 
control. 

Cell apoptosis test

Apoptosis of cells was evaluated using an FITC-
Annexin V/propidium iodide (PI) apoptosis de- 
tection kit (Beyotime, Shanghai, China). PC12 
cells were treated as previously described. 
After that, PC12 cells were harvested by cen-
trifugation at 1000×g for 5 min, washed twice 
with cold PBS and adjusted to a concentration 
of 1 ×106 cells/ml. Then the cells were sus-
pended in 195 μL Annexin V-FITC binding buffer 
and incubated with 5 μL Annexin V-FITC and 10 
μL of PI at 20-25°C for 30 min in the dark. Cells 
were analyzed on a flow cytometer (FACScan, 
Becton Dickinson, USA). 

RNA extraction and quantitative real-time PCR 
(qRT-PCR)

Total RNA was extracted from cells with Trizol 
(Invitrogen) according to the manufacturer’s 
protocol and was then reverse-transcribed to 
cDNA with PrimeScript®RT reagent Kit (Takana, 
Dalian, China). Real-time PCR was then per-
formed on each sample with the double-strand-
ed DNA dye SYBR Green PCR Mastermixin 
Takana SYBR®Primix Ex TaqTMKit (Takana, 
Dalian, China) according to the manufacturer’s 

instructions. The following primers were used 
in this study: HIF-1α forward, 5’-CCAGATTCAA- 
GATCAGCCAGCA-3’; HIF-1α reverse, 5’-GCTGT- 
CCACATCAAAGCGTATA-3’; VEGF forward, 5’-AC- 
ATTGGCTCACTTCCAGAAACA-3’; VEGF reverse, 
5′-TGGTTGGAACCGGATCTTTA-3’; caspase-3 for-
ward, 5’-AGACAGACAGTGGAACTGACGATG-3’; 
caspase-3 reverse, 5’-GGCGCAAAGTGACTGGA- 
TGA-3’; GAPDH forward, 5’-GCCACAGTCAAGG- 
CTGAGAATG-3’; GAPDH reverse, 5’-ATGGTGGT- 
GAAGACGCCAGTA-3’. PCR was performed on 
an Applied Biosystems 7300HT Fast Real-Time 
PCR instrument with a 10 min hot start at 95°C 
followed by 40 cycles of a three step thermocy-
cling program: denaturation: 30 s at 95°C, 
annealing: 5 s at 95°C, and extension: 31 s at 
60°C. GAPDH was used as an internal. Three 
replicate PCRs were performed for RT-PCR 
analysis. Data were analyzed by the 2-ΔΔCt 
method.

Western blot analysis

After treatment, PC12 cells were harvested, 
washed with ice-cold PBS twice, lysed with lysis 
buffer on ice for 30 min and centrifuged at 
12,000×g for 30 min. The protein concentra-
tion of supernatant was evaluated with BCA 
protein assay kit. Aliquots of protein were sepa-
rated by 12% sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis and then 
electrotransferred onto nitrocellulose mem-
branes (Millipore, Billerica, MA, USA). After 
blocking (5% nonfat dry milk) for 2 h, the mem-
branes were respectively incubated with prima-
ry antibodies of β-actin (1:1000 dilution, Ab- 
cam), HIF-1α (1:500 dilution, Abcam), VEGF (1: 
500 dilution, Abcam) and caspase-3 (1:500 
dilution, Abcam) at 4°C overnight. The mem-
brane was then washed and incubated with 
horseradish peroxidase-conjugated anti-mouse 
(1:2000 dilution, ZSGB-BIO) as well as anti-rab-
bit (1:5000 dilution, ZSGB-BIO) IgG secondary 
antibodies for 1 h at room temperature. ECL 
western detection reagent was used for detect-
ing the antigen antibody and visualized by 
ChemiDoc-It2 610 imaging system (UVP, LLC, 
Upland, CA, USA). The reactive proteins were 
quantified using Image-Pro Plus 6.0 (Media 
Cybernetics, Inc, Bethesda, MD, USA).

Statistical analysis

Results were expressed as Mean ± SD from at 
least three independent experiments. Statis- 
tical analysis was performed using one-way 
analysis of variance (ANOVA) following by 
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Student-Newman-Keuls post-hoc test. The val-
ues depicting P < 0.05 were considered as sta-
tistically significant.

Results

Tempol enhanced cells viability suppressed by 
hypoxia 

Cells were treated with Tempol at concentra-
tions between 0 and 1×10-5 mol/L. Tempol with- 
out hypoxia exposure did not show cytotoxicity 
or stimulation of the proliferation on PC12 cells 
(Figure 2A). Cell viability was decreased (P < 
0.05) to 48.95% of control group after expo-
sure hypoxia 24 h (Figure 2B). Pretreatment of 
cells with Tempol significantly (P < 0.05) elevat-
ed the cell viability with a conspicuous dose-
response pattern (each P < 0.05). Concen- 
trations exceeding 1×10-6 mol/L have no fur-
ther cytoprotective effect (P > 0.05). Given this 
result, 1×10-6 mol/L was considered as the 

optimal protection concentration for Tempol 
and was used in subsequent experiments. 

Tempol reduced the LDH leakage induced by 
hypoxia 

To verify the protective effect of Tempol, an 
LDH assay was performed. LDH is a stable 
cytoplasmic enzyme in all cells and will be rap-
idly released in a culture medium duo to loss of 
cell membrane integrity. Thus, the increased 
LDH activity represented the degree of cell 
necrosis. As shown in Figure 3A, LDH activity in 
the culture supernatant significantly increased 
after exposure to hypoxia for 24 h. However, 
pretreated with Tempol reduced clearly the 
LDH activity in the culture supernatant.

Tempol inhibited hypoxia-induced lipid peroxi-
dation and ROS generation

In order to measure oxidative stress induced  
by hypoxia, ROS level and MDA content were 

Figure 2. Tempol enhanced cells viability suppressed by hypoxia. (A) PC12 cells were pre-treated with tempol 1 h 
and then incubated for 24 h under normoxic condition (B) PC12 cells were pre-treated with Tempol for 1 h and then 
incubated for 24 under hypoxia condition. Data are presented as mean ± SD of six independent experiments. *P < 
0.05, **P < 0.01 compared to control group; #P < 0.05, ##P < 0.01 compared to hypoxia group.

Figure 3. Tempol reduced the hypoxia-induce LDH leakage (A) and MDA content (B) in PC12 cells. Data were the 
mean ± SD of three independent experiments. *P < 0.05, **P < 0.01 versus the control; #P < 0.05, ##P < 0.01 
versus hypoxia group.
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detected in PC12 cells. As shown in Figures 3B 
and 4A, hypoxia induced increment in the ROS 
and MDA by two and three folds of control, 
respectively. However, the hypoxia-increased 
MDA and ROS production were significantly 
reduced (P < 0.01) by the pre-incubation with 
Tempol.

Tempol restored the activity of antioxidant en-
zymes suppressed by hypoxia

Endogenous antioxidant enzymes, such as 
SOD, CAT and GSH-Px, were always considered 
as the first defense line for oxidant stress and 
could reflect antioxidant ability indirectly. SOD 
has the ability to transform superoxide anions 
to hydrogen peroxide, which was decomposes 
to oxygen and water by CAT or GSH-Px [18]. As 

shown in Figure 4B and 4C, Hypoxia significant-
ly (P < 0.01) inhibited SOD and CAT activities. 
However, these changes could be reversed by 
Tempol-pretreated. These results showed that 
Tempol improved the hypoxia-induced decrease 
in antioxidant capacity in PC12 cell.

Tempol suppressed cell apoptosis induced by 
hypoxia

To determine whether Tempol inhibits cell apo- 
ptosis induced by hypoxia, Annexin V-FITC/PI 
assay based on flow cytometry was used. As 
shown in Figure 5, hypoxia exposure increased 
the apoptosis rate from 5.11 to 11.93% com-
pared to the control, which was declined to 
6.87% by Tempol pretreatment.

Figure 4. Tempol suppressed hypoxia-induced oxidative stress of PC12 cells. (A) ROS level (B) SOD activity (C) CAT 
activity. Data were the mean ± SD of three independent experiments. *P < 0.05, **P < 0.01 versus the control; #P < 
0.05, ##P < 0.01 versus hypoxia group. **P < 0.01 compared to control group; ##P < 0.01 compared to hypoxia group.
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Figure 5. Tempol suppressed the hypoxia-induced apoptosis of PC12 cells. Data were the mean ± SD of three inde-
pendent experiments. *P < 0.05, **P < 0.01 versus the control; #P < 0.05, ##P < 0.01 versus hypoxia group.

Figure 6. Tempol suppressed the expression of HIF-
1, VEGF and caspase-3 mRNA. Data were the mean 
± SD of three independent experiments. *P < 0.05, 
**P < 0.01 versus the control; #P < 0.05, ##P < 0.01 
versus hypoxia group.
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Tempol suppressed the expression of HIF-1, 
VEGF and Caspase-3 mRNA and protein

To investigate the underlying mechanism of 
Tempol against hypoxia induced cells injury, the 
expression of mRNAs related to hypoxia and 
apoptosis were detected by quantitative RT- 
PCR. As shown in Figure 6, compared with the 
control group, the relative quantitative expres-
sion of HIF-1, VEFG and Caspase-3 mRNA in 
hypoxia groups significantly increased (P < 
0.01). Pretreatment of Tempol decreased the 
mRNA expression of HIF-1, VEFG and Caspase-3 
in PC12 cell under hypoxia.

The expression of protein related to hypoxia 
and apoptosis were further confirmed by west 
blot. As shown in Figure 7, hypoxia exposure 
significantly upregulated the expression of HIF-
1, VEFG and Caspase-3 (P < 0.01). Pretreatment 
of Tempol downregulated remarkably the ex- 
pression of HIF-1, VEFG and Caspase-3, com-
pared with hypoxia group (P < 0.01).

Discussion

Hypoxia-mediated oxidative stress plays a piv-
otal role in the central nervous system in patho-
logical situations, such as stroke and ischemia 

[19]. Rat pheochromocytoma (PC12) cells, with 
many properties similar to neurons, have been 
widely used as a model for the in vitro study of 
hypoxia/ischemia induced neuron damage [20-
22]. In the present study, we examined the neu-
roprotective effect of Tempol against hypoxia-
induced neurotoxicity in PC12 cells. We obser- 
ved that PC12 cells exhibited a marked decre- 
ase in cell viability after hypoxia 24 h. Pretre- 
atment with Tempol significantly improved cell 
viability. It has been shown that LDH is reliable 
markers of cell necrosis [23]. Therefore, the 
protective effect of Tempol was further con-
firmed by the LDH leakage. We found that 
Tempol significant suppressed the LDH leakage 
caused by hypoxia.

ROS is a by-product of cell aerobic metabolism 
and functions as secondary messengers to 
regulate cell growth, survival and proliferation. 
But overproduced ROS has hazardous effects 
on the cell structure and function [24]. The 
mechanisms of hypoxia induced damage are 
very complicated. Oxidative stress resulting 
from imbalance between ROS production and 
elimination play a critical role in hypoxia injury 
[25]. In this work, hypoxia significantly increased 
ROS generation in PC12 cell, which was signifi-
cantly reduced by Tempol treatment. MDA, an 

Figure 7. Tempol suppressed the expression of HIF-1, VEGF and caspase-3 protein. Data were the mean ± SD of 
three independent experiments. *P < 0.05, **P < 0.01 versus the control; #P < 0.05, ##P < 0.01 versus hypoxia 
group.
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end product of lipid peroxidation, has been 
widely used for determining the level of oxida-
tive stress and indirectly reflects the cell injury 
under conditions of excessive ROS production 
[26]. Compared with control group, hypoxia sig-
nificantly increased the MDA level in PC12  
cell. In contrast, MDA levels were significantly 
decreased by the treatment of Tempol. 

It is known that cell has an innate antioxidant 
system including SOD, CAT and GSH-Px and 
GSH which inhibit the formation of ROS and 
keep ROS at a basal non-toxic level [27]. SOD 
catalyzes the reduction of superoxide radicals 
to H2O2, which is detoxified by CAT or GSH-Px 
[28]. Previous studies have shown that hypoxia 
induced ROS accumulation is associated with 
the depletion of innate antioxidant system [29]. 
In according with previous study, we also found 
that the activity of antioxidant enzymes in PC12 
cell under hypoxia was significantly reduced. 
However, Tempol administration was found to 
significantly maintain the innate antioxidant 
status during hypoxia. These findings suggest-
ed that the protective effect of Tempol might be 
associated with the inhibition of intracellular 
ROS production. 

Growing evidence indicates that hypoxia induce 
the accumulation of ROS, which involves the 
triggering of cells to apoptosis [4, 30]. Cas- 
pase-3, an essential member of the caspase 
family, is considered as the ultimate mediator 
of cell apoptosis [31, 32]. In the present study, 
we confirmed that hypoxia exposure significant-
ly increased the apoptosis rate and unregulat-
ed caspase-3 mRNA and protein expression, 
while Tempol could prevent hypoxia-induced 
apoptosis and activation of caspase-3. 

Tempol could suppress the oxidant stress and 
apoptosis also supported by the fact that 
Tempol could reverse the increase of expres-
sion of HIF-1 and VEGF induced by hypoxia. 
HIF-1 is a transcriptional factor that regulates 
multiple gene expression in response to hypox-
ic conditions. It is a heterodimer composed of a 
constitutively expressed β subunit and an oxy-
gen-regulated α subunit [33]. Under normal 
conditions, HIF-1α is continuously synthesized 
and degraded. In contrast, under hypoxia, HIF-
1α degradation is inhibited. HIF-1α dimerized 
with HIF-1β in nucleus and bind to hypoxia 
responsive elements. Then, multiple target 
genes, including vascular endothelial growth 
factor (VEGF), will be activated [34]. A number 

of studies have demonstrated that HIF-1α accu-
mulated following by hypoxia, but the beneficial 
and detrimental effects of HIF-1α elevation is 
still elusive. Lopez-Hernandez et al revealed 
that unregulated HIF-1α protects neurons from 
death during mild hypoxia [35]. Yin et al report-
ed that overexpression of HIF-1α attenuated 
the hypoxia induced apoptosis of the PC12 
cells [36]. Nevertheless, increased HIF-1α indi-
cates that the cells are in a challenged state as 
ROS is necessary for stabilizing HIF-1α under 
hypoxia [37, 38]. In addition, HIF-1α can also 
trigger cell apoptosis during hypoxia [39, 40]. 
2-methoxyestradiol has protective effect aga- 
inst hypoxia-ischemia-induced neonatal brain 
damage by decreasing HIF-1α expression and 
subsequently down-regulating VEGF levels [41]. 
One possible explanation for the discrepancies 
between these studies is that HIF-1α may have 
a dual effect that depends on the severity and 
time of the hypoxia. In the present study, we 
found that a clear up-regulation of HIF-1α and 
VEGF was induced by 24 h of hypoxia. The up-
regulation was reversed by the Tempol. These 
results indicated that Tempol reduced hypoxia 
induced injury on PC12 cell, likely by inhibition 
of HIF-1α and downstream targets VEGF, which 
lead to the decrease in oxidant stress and cell 
apoptosis.

In summary, our finding indicated that Tempol 
protected PC12 cell against hypoxia-induced 
injury by ameliorating ROS generation and 
apoptosis. However, further studies are neces-
sary to confirm the protective effect of Tempol 
on animal test. 
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