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Abstract: Background: The transcription factor interferon regulatory factor 4 (IRF4) was identified to be involved 
in human pigmentation by genome-wide association studies (GWASs). The rs12203592-[T/C], which is located in 
intron 4 of IRF4, shows the strongest link to these pigmentation phenotypes including freckling, sun sensitivity, eye 
and hair color. Previous studies indicated a functional cooperation of IRF4 with Microphthalmia-associated tran-
scription factor (MITF), a causing gene of Waardenburg syndrome (WS), to synergistically trans-activate Tyrosinase 
(TYR). However, the underlying mechanism is still unknown. Methods: To investigate the importance of DNA bind-
ing in the synergic effect of IRF4. Reporter plasmids with mutant TYR promoters was generated to locate the IRF4 
DNA binding sites in the Tyrosinase minimal promoter. By building MITF and IRF4 truncated mutations plasmids, 
the necessary regions of the synergy functions of these two proteins were also located. Results: The cooperative 
effect between MITF and IRF4 was specific for TYR promoter. The DNA-binding of IRF4 was critical for the synergic 
function. IRF4 DNA binding sites in TYR promoter were identified. The Trans-activation domains in IRF4 (aa134-207, 
aa300-420) were both important for the synergic function, whereas the auto-mask domain (aa207-300) appeared 
to mask the synergic effect. Mutational analysis in MITF indicated that both DNA-binding and transcriptional activa-
tion domains were both required for this synergic effect. Conclusions: Here we showed that IRF4 potently synergized 
with MITF to activate the TYR promoter, which was dependent on DNA binding of IRF4. The synergic domains in both 
IRF4 and MITF were identified by mutational analysis. This identification of IRF4 as a partner for MITF in regulation 
of TYR may provide an important molecular function for IRF4 in the genesis of melanocytes and the pathogenic 
mechanism in WS.
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Introduction

Pigmentation is the most visible trait in humans. 
Nearly 200 genes have been identified in mice 
that play a role in pigment system affecting 
various steps in the development of melano-
cytes, a cell population derived from the neural 
crest. Several common variations associated 
with abnormal pigmentation have been identi-
fied from these genes. In a recent genome-wide 
association study (GWAS), several sequence 
variants on interferon regulatory factor 4 (IRF4) 
were linked to human pigmentation [1-3].

Variants in the IRF4 have been suggested to be 
associated with specific pigmentation pheno-
types. The rs12203592 located in intron 4 of 
IRF4 show the strongest link to these pigmenta-
tion phenotypes [2-5]. IRF4 belongs to the 
Interferon Regulatory Factors (IRFs), a family of 
wing-helix-turn-helix structure forms of tran-
scription factors initially identified as down-
stream regulators of interferon signaling. As 
previously described, it is mainly express in 
cells of the immune system where it transduces 
signals from various receptors to activate or 
repress expression of key regulators of lym-
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phoid, myeloid, and dendritic cell development. 
A few studies have mentioned the association 
of IRF4 with pigmentation. The expression of 
IRF4 was found and identified in the skin and 
the G361 melanoma cell lines and correlated 
with MITF expression in melanoma cells [6-8].

Waardenburg syndrome is a clinically rare 
genetic disorder, characterized by pigmenta-
tion-related syndromic deafness. Its main clini-
cal phenotypes are deafness and pigmentation 
anomalies, the latter of which are majorly mani-
fested as heterochromia iridum, white forelock, 
premature graying of the hair, skin hypopigmen-
tation or hyperpigmentation [9-11]. As one of 
the important causing genes of WS, The tran-
scription factor MITF plays an critical role in the 
induction of melanocytes and is also necessary 
for their survival and/or differentiation. MITF 
was shown to regulate several genes involved 
in pigmentation, including the tyrosinase and 
tyrosine-related genes, TYRP1 and DCT, by 
binding to their promoters through an E box 
motif (CANNTG).

Functional analysis indicates that IRF4 and 
MITF cooperate to activate transcription of TYR 
[4], but the mechanism of this synergy still 
remains unclear. To date, due to the high genet-
ic heterogeneity in WS, there are still a signifi-

cant number of patients with an unidentified 
disease-causing gene.  

Methods and materials

Plasmids constructions

MITF expression plasmid (pCMV-Flag-MITF) 
and TYR promoter reporter plasmid (pGL3-Tyr-
Luc) were described previously [12, 13]. DCT 
(Another enzyme important during eumelano-
genesis) and 4M-box promoter (a synthetic  
construct with 4 M-boxes in a row) reporter 
plasmid were kindly provided by Prof Hideki 
Murakami. The wild-type human IRF4 cDNA 
(NM_002460.3) was cloned into the pcDNA3.0-
HA. To map the IRF4 DNA binding site in TYR 
promoter, a series of mutant TYR-luc con- 
structs were synthesized by the Sangon Biotech 
(Shanghai) company and verified by sequenc-
ing (Figure 2B). To map the synergic domain of 
IRF4 and MITF, several mutant constructs were 
generated by PCR and cloned into pcDNA3  
and pCMV separately. All constructs were veri-
fied by sequencing.

Transfection and luciferase assay

HEK293T (human embryonic kidney) and mela-
noma UACC903 cells were maintained in 
Dulbecco’s modified Eagle medium (DMEM) 

Figure 1. The effect of MITF and IRF4 on the TYR, DCT and 4M-box promoters in HEK293 cells (A) and UACC903 
melanoma cells (B). HEK293T cells and UACC903 melanoma cells were transfected with MITF, IRF4 or MITF+IRF4 
expression plasmids together with different report plasmids. The red bars (Control) indicate co-transfection with the 
empty vector as a negative control. Each value represents the mean ± SD of three replicates from a single assay. 
The results shown were representative of at least three independent experiments (***P<0.001 compare to the 
value from the MITF and MITF+IRF4, unpaired Student’s t-test).
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supplemented with 10% fetal bovine serum 
(FBS), 100 U/ml of Penicillin/Kanamycin, NEAA, 
Fungzone and cultured in an incubator at 37°C 
with 5% CO2. HEK293T and UACC903 cells 

were seeded in 24-well plates and transfected 
with expression and report plasmids using 
Fugene transfection reagent (Promega) accord-
ing to the manufacturer’s protocol. For measur-

Figure 2. A. The human TYR promoter (-300 to 80) shows the sequence of the MITF binding sites (E-box and M-box) 
and potential IRF4-binding sites (BS1-BS4). B. Schematic view of mutant TYR promoters (TYR1-TYR8). C. Effect of 
MITF, IRF4 on mutant TYR promoters(TYR1-TYR8) determined by luciferase activity assays in HEK293 cells. The red 
bars (Control) indicate co-transfection with the empty vector as a negative control. The WT and 8 mutant luciferase 
reporter plasmids were respectively transfected into 293T cells in combination with MITF, IRF4 and MITF+IRF4 ex-
pression plasmids. Each value represents the mean ± SD of three replicates from a single assay. The results shown 
were representative of at least three independent experiments (**P<0.01, ***P<0.001 compare to the value from 
the MITF and MITF+IRF4, unpaired Student’s t-test).
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ing MITF and IRF4 synergy effect on different 
promoter study, the IRF4-DNA binding site 
searching study and the IRF4 and MITF synergy 
domain identification study, each well contains 
250 ng expression plasmids with 166 ng of the 
reporter plasmids.

Additionally, transfection of 66 ng of pGL3 con-
trol vector (Cat.# E1741) served as a transfec-
tion control and was used to normalize lucifer-
ase activity for each well. Total amounts of 
transfected DNA were kept constantly at 750 
ng per well by the empty vector. At 48 h post-
transfection, cells were washed with PBS and 
lysed with 1× Reporter Lysis Buffer (Promega). 
The extract proteins were assayed for firefly 
and renilla activity. Both of the assays were per-
formed using Duel Luciferase firefly Assay 

As also shown in Figure 1, MITF was also able 
to activate 4M-box and DCT promoter alone, 
but did not show synergic effect on these two 
promoters with IRF4. Hence, the cooperative 
effects were specific for TYR promoter.

Analysis of the IRF4 DNA binding sites in the 
TYR promoter

There were four potential IRF4 binding sites 
(BS1-4) in the Tyrosinase minimal promoter 
(Figure 2A). To further investigate the impor-
tance of DNA binding in the synergic effect of 
IRF4, we generated eight reporter plasmids 
with mutant TYR promoters (Figure 2B).

Mutation one, two, three of these IRF4 DNA 
binding sites (TYR1/TYR2/TYR3/TYR4/TYR5) 

Figure 3. Identification of IRF4 sequences involved in synergic transactivation 
with MITF. A. A schematic representation of the full length IRF4 and various 
truncated IRF4 proteins. DBD, DNA binding domain. AMD, automatic mask 
domain. TAD, Trans-activation domain. B. HEK293T cells were transiently 
transfected with the TYR luciferase reporter and full length or truncated IRF4 
expression plasmids including with MITF. Luciferase activity is reported as a 
fold increase relative to reporter alone. Each value represents the mean ± 
SD of three replicates from a single assay. The results shown were represen-
tative of at least three independent experiments (***P<0.001 compare to 
the value from the wt IRF4 and different IRF4 mutants, unpaired Student’s 
t-test).

System (Promega) according 
to the manufacturer’s proto-
col and determined using 
SIRIUS luminometer (Berthold 
Detection Systems GmbH, 
Pforzheim, Germany). All re- 
port assays were repeated at 
least triplicately each time. 
Data were analyzed using 
Prism 5 software (GraphPad, 
Software Inc., San Diego, CA, 
USA).

Results 

IRF4 synergizes with MITF to 
activate the TYR promoter 
specifically

We first tested the ability of 
MITF alone or in combination 
with IRF4 to transactivate  
the TYR promoter in pigmen-
tation cells and non-pigmen-
tation cells. As shown in 
Figure 1, in both kinds of 
cells, transfection with MITF 
increased the TYR promoter 
activity as compared with  
that of the empty vector con-
trol. IRF4 alone did not affect 
TYR promoter significantly. 
However, IRF4 was able to 
augment the ability of MITF  
to transactivate the TYR 
promoter. 
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did not disrupt the cooperative effects of  
MITF and IRF4. However, IRF4 failed to argu-
ment the trans-activity of MITF on the promoter 
with all four IRF4-binding sites mutated (TYR7). 
We further make a truncated reporter including 
E-box and BS4 only (TYR6). As shown in Figure 
2C, MITF was still able to transactivate TYR6, 
indicated E-box alone was sufficient to initiate 
the transactivation of TYR by MITF. Impor- 
tantly, IRF4 retained its synergic effect on 
TYR6, indicating BS4 alone was sufficient for 
the synergic effect. Nevertheless, The synergic 
effect of IRF4 was lost on TYR7 with only func-
tional E-box, confirming IRF4-binding sites 
(BS1-BS4) were all required for the synergy.

Functional synergic domain in IRF4 and MITF

To map the functional domains in IRF4 that are 
critical for the synergic effect, we generated a 
series of C-terminal truncated IRF4 expression 
plasmids (Figure 3A). As shown in Figure 3B, 
full-length IRF4 (aa1-450), IRF4 (aa1-420) and 
IRF4 (aa1-207) showed similar synergic effect 
on TYR promoter. However, IRF4 (aa1-300) and 
IRF4 (aa1-134) lost the synergic effect with 
MITF. 

Further, we also localized the domain of MITF 
that is required for its transcriptional synergy 
with IRF4 by a series of truncated MITF mutant 
constructs, which were designed based on the 
known functional domains of MITF (Figure 4A). 
Synergy effect with IRF4 on TYR promoter was 
only showed in the truncated MITF aa1-293 
and aa185-419, both of which containing the 
bHLH/LZ domain and trans-activation domain 
(N-terminal or C-terminal individually). Fur- 
thermore, The mutant MITF aa1-185, aa185-
293 and aa293-419 nearly completely abol-
ished synergy (Figure 4B).

Discussion

MITF encodes a member of MYC superfamily 
transcription factor containing the bHLH-Zip 
domain. The basic domain used for DNA bind-
ing, whereas the HLH and Zip domains are 
used for homo- and/or heterodimer [14, 15]. 
Tyrosinase is one of the key enzymes in mela-
nin biosynthesis. It is encoded by the TYR gene 
which is specifically expressed in differentiated 
melanocytes [16]. MITF alone can binds to the 
specific E-box motif (CANNTG) within the pro-
moter of TYR and initiates its transcription [16, 
17]. Three conserved E-box motifs have been 

located in the TYR promoter, named as initiator 
E-box (position -12 to -7), the M-box (position 
-104 to -99) and the TDE (tyrosinase distal ele-
ment) (position -1972 to -1967) respectively. 
The M-box (an E-box with a flanking T at the 5’ 
end and CT at the 3’ end of the CATGTG 
sequence) has been shown to be essential for 
the activation of the tyrosinase promoter by 
MITF. The initiator E-box, and TDE, also act to 
further increase the level of tyrosinase expres-
sion [16-18]. Kluppel et al. found that a 270 bp 
upstream region is sufficient for specific  
expression in melanocytes and pigmented epi-
thelium of the retina [19]. Our “minimal TYR 
promoter” (-300 to +80) contains M-box and 
initiator E-box motifs.  

Quantitative ChIP experiments showed that 
IRF4 may bind at the sites of a proximal (pTYR; 
around the transcription start site) and a more 
distant region (dTYR; >1,800 bp upstream of 
transcription start site) which in both cases is 
consistent with the presence of E-box motifs in 
these positions of the TYR promoter [4]. 

As shown in Figure 1, Unlike the TYR promoter, 
Wild type MITF is able to transactivate the DCT 
promoter and the artificial promoter containing 
4 copies of the M-box (4M-box), but no cooper-
ative effects could be observed with IRF4. IRF4 
contains an N-terminal DNA-binding domain 
that recognizes GAAA/TTTC core motifs [20]. 
Four potential IRF4 binding sites (BS1-4) in the 
our Tyrosinase minimal promoter were identi-
fied by sequencing (Figure 2A). Since there is 
no IRF4 DNA binding site on DCT or 4M-box pro-
moter by sequencing. Mutating analysis also 
showed that synergistic effects of MITF and 
IRF4 on the TYR promoter are mediated through 
all these IRF4 binding sites. All these results 
indicated that the DNA binding of IRF4 is 
required for synergy.

Map the IRF4 and MITF functional synergic 
domains

The IRF4 protein can be basically divided into 
two parts: DNA binding domain (DBD), aa1-134 
and Functional regulatory domain, aa135-450 
(Figure 3A). The DBD contains five conserved 
tryptophan residues [21]. The Functional regu-
latory domain contains two transactivation 
domains (TAD): TAD1, aa134-207 and TAD2, 
aa300-420 and an auto-masking domain 
(AMD), aa207-300 [20]. 
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Our results indicated that TAD1 (aa134-207) 
and TAD2 (aa300-420) of IRF4 participate  
in the synergic trans-activation with MITF, 
However the AMD (aa207-300) may serve as a 
masking region. Our results are consistent with 
previous reports regarding the cooperation 
between c-Src and IRF4 [22]. In the study of  
the interaction of c-Src and IRF4, the region 
spanning aa255-412, rich in α-helix structure, 

was identified to an important domain which 
could inhibits the cooperational activity.

The bHLH-LZ domain contains a basic domain 
which is used for DNA binding and HLH and Zip 
domains that are used for homo- and/or het-
erodimer formation. Moreover, As important 
functional domains for the transactivation, two 
Tyrosinase related different activation domains 

Figure 4. Identification of MITF sequences involved in transactivation with/without IRF4. A. A schematic representa-
tion of the full length MITF and various truncated MITF proteins. Basic-HLH-LZip, region of the basic HLH leucine 
zipper domains. TA, Transactivation domain. B. HEK293T cells were transiently transfected with the TYR luciferase 
reporter and full length or truncated MITF mutant expression plasmids with/without IRF4. Luciferase activity is re-
ported as a fold increase relative to reporter alone. Each value represents the mean ± SD of three replicates from 
a single assay. The results shown were representative of at least three independent experiments (***P<0.001 
compared to the value from the wt MITF with/without IRF4 and different MITF mutants with/without IRF4, unpaired 
Student’s t-test).
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have been identified in the MITF protein (TA in 
Figure 4) so far [23-25]. As shown in the Figure 
4B, MITF (aa1-185) and MITF (aa293-419), 
which are lack of bHLH/LZ domain (DNA bind-
ing domain), completely lost the transcriptional 
activation on TYR promoter and so does the 
synergic effect with IRF4. MITF (aa185-293), 
which is lack of transcriptional activation (TA) 
domains, lost the transcriptional activation on 
TYR promoter and synergic effect with IRF4 
similarly. Notable, Full length MITF, MITF (aa1-
293) and MITF (aa185-419) show obvious 
transactivation of the TYR promoter, synergy 
with IRF4 also can be observed, all of which 
contain the bHLH/LZ domain (DNA binding 
domain) and trans-activation domains in 
N-terminal and/or C-terminal. Our results indi-
cated that the bHLH/LZ domain and transacti-
vation domain of MITF are both required for the 
transactivation and synergic effect with IRF4 
on TYR promoter.

IRF4 usually as a positive regulator of gene 
transcription for many cofactors. Some of the 
Mechanism of IRF4 synergy with other protein 
has been characterized in the previous studies. 
IRF4 and PU.1 can form a stable ternary com-
plex to regulate the target gene dependent on 
DNA [26]. IRF4 can also functionally cooperate 
with the transcription factor NFATC2 to syner-
gistically regulate the IL4 promoter in T cells 
without binding DNA [27]. 

Since IRF4 poorly binds to DNA by itself as  
a weak transcriptional activator which previ-
ously research described [26] and cannot acti-
vate the TYR promoter independently. These 
domains could either form as interaction sur-
face for a co-activator or as a component for 
the transcription apparatus. 

The mechanism of the MITF and IRF4 relative 
domains in mediating synergy is proposed. 
MITF may lead a conformational change of 
IRF4, which lead to strengthen the ability of 
binding DNA and get expose TAD sequences 
necessary for trans-activation of TYR. More- 
over, the conformational changes in both  
proteins are also could be involved in this syn-
ergy mechanism. Therefore, the formational 
changed IRF4 may act as a enhancer and 
induce an MITF conformation which facilitates 
DNA binding and lead to the increasing produc-
tion of TYR promoter. 

Here we showed that IRF4 potently synergizes 
with MITF to activate TYR promoter, which is 
dependent on DNA binding of IRF4. The syner-
gic domains in both IRF4 and MITF were also 
identified by mutational analysis. This will  
help to better understand the role of IRF4 in  
the pigment system and the pathogenic mech-
anism in WS. 
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