### Original Article

# Short- and long-term outcomes for patients aged ≥70 years undergoing video-assisted thoracoscopic surgery for non-small cell lung cancer

Zhongbiao Deng\*, Yanli Cai\*, Jinqi Huang

Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, People's Republic of China. \*Equal contributors.

Received June 2, 2016; Accepted April 21, 2017; Epub June 15, 2017; Published June 30, 2017

Abstract: We performed a retrospective review including 255 patients with non-small cell lung cancer (NSCLC) who underwent video-assisted thoracoscopic surgery (VATS) between January 2008 and January 2016 at our institution. Short- and long-term outcomes were compared between two groups: elderly (≥70 years old) and nonelderly patients (<70 years). Final pathology results, overall survival (OS), and disease-free survival (DFS) were also compared. Both groups had similar clinical stages at diagnosis, American Society of Anesthesiologists scores, and sex distribution. The overall conversion rate to open procedures was 3% in both groups, and the postoperative 30-day complication rate was not significantly different between elderly and nonelderly patients. Finally, the 5-year OS rates for elderly and nonelderly patients were 62% and 69%, respectively (P = 0.212), while the 5-year DFS rates were 50% and 58%, respectively (P = 0.618). In summary, VATS for NSCLC in elderly patients is not associated with a higher rate of postoperative complications or worse long-term survival outcomes, compared with nonelderly patients, and can be offered as a treatment option in select elderly patients.

Keywords: Non-small cell lung cancer, pulmonary resection, video-assisted thoracoscopic surgery, elderly patients

#### Introduction

The proportion of aging population has increased globally in recent years. The age of patients with non-small cell lung cancer (NSCLC) has also increased rapidly, increasing the importance of cancer treatment in this population [1]. However, elderly patients generally have cardiac or respiratory comorbidities and often have postoperative morbidity and mortality following thoracotomy [2]. Video-assisted thoracoscopic surgery (VATS) is a minimally invasive treatment for patients with NSCLC that has recently gained popularity throughout Eastern Asian countries [3-5]. Several studies have found that VATS reduces postoperative morbidity and mortality, compared with thoracotomy in the general population [6-8]. However, only a few studies have investigated the safety and efficacy of VATS in elderly patients with NSCLC [9, 10]. These studies mainly focused on short-term surgical outcomes. The purpose of this study was to investigate the short- and long-term outcomes in elderly patients with NSCLC who underwent VATS.

#### Patients and methods

This retrospective study complied with the Declaration of Helsinki and was approved by the Ethics Committee of our institution. Informed consent from all patients was waived, because of the retrospective design of our study.

We identified 255 patients with NSCLC who underwent VATS at our institution between January 2008 and January 2016. Indications for VATS pulmonary resection were: (1) tumors located in the peripheral area. (2) no neoadjuvant therapy. (3) clinical stage I NSCLC. (4) no extended pulmonary resection (e.g., bilobectomy or chest wall resection). The surgical specimens were reviewed by experienced pathologists. All patients underwent routine preoperative imaging evaluation to determine can-

#### VATS for elderly patients

**Table 1.** Comparison of clinicopathologic characteristics of the two groups

|                             | Nonelderly $(n = 176)$ | Elderly (n = 79)      | Chi square value | P value |
|-----------------------------|------------------------|-----------------------|------------------|---------|
| Age (y)                     | 61 (38-69)             | 76 (70-78)            | -0.870           | 0.000   |
| Gender (Male:Female)        | 99 (56.3%):77 (43.7%)  | 45 (57.0%):34 (43.0%) | 0.011            | 0.916   |
| Comorbidity                 |                        |                       |                  |         |
| Cirrhosis                   | 1 (0.6%)               | 1 (1.3%)              | 0.000            | 1.000   |
| Hypertension                | 5 (2.8%)               | 14 (17.7%)            | 16.189           | 0.000   |
| Type 2 diabetes mellitus    | 3 (1.7%)               | 9 (11.4%)             | 9.354            | 0.002   |
| Stable angina               | 2 (1.1%)               | 3 (3.8%)              | 0.863            | 0.353   |
| Chronic atrial fibrillation | 1 (0.6%)               | 4 (5.1%)              | 3.631            | 0.057   |
| Chronic heart failure       | 1 (0.6%)               | 3 (3.8%)              | 1.888            | 0.169   |
| Pulmonary function          |                        |                       |                  |         |
| Vital capacity (L)          | 3.12 (2.97-4.21)       | 3.01 (2.68-3.88)      | -0.458           | 0.358   |
| FEV <sub>1</sub> (L)        | 1.87 (0.99-3.42)       | 1.99 (1.15-3.49)      | -0.684           | 0.300   |
| Two or more comorbidities   | 1 (0.6%)               | 5 (6.3%)              | 5.568            | 0.018   |
| Clinical stage              |                        |                       | 0.572            | 0.450   |
| IA                          | 48 (27.3%)             | 18 (22.8%)            |                  |         |
| IB                          | 128 (72.7%)            | 61 (77.2%)            |                  |         |
| ASA score                   |                        |                       | -1.829           | 0.067   |
| I                           | 164 (93.2%)            | 68 (86.1%)            |                  |         |
| II                          | 11 (6.3%)              | 10 (12.7%)            |                  |         |
| III                         | 1 (0.6%)               | 1 (1.3%)              |                  |         |
| Tumor location              |                        |                       |                  |         |
| Left upper lobe             | 61 (34.7%)             | 25 (31.6%)            | 0.222            | 0.638   |
| Left lower lobe             | 39 (22.2%)             | 21 (26.6%)            | 0.593            | 0.441   |
| Right upper lobe            | 41 (23.3%)             | 19 (24.1%)            | 0.017            | 0.895   |
| Right lower lobe            | 35 (19.9%)             | 14 (17.7%)            | 0.165            | 0.685   |

FEV₁: Forced expiratory volume in one second.

cer staging, including bronchoscopy, endobronchial ultrasound, and computed tomography scans of the brain, chest, and upper abdomen [11]. Mediastinoscopy was not routinely performed except in cases positive for mediastinal or hilar lymph nodes on chest computed tomography imaging [12]. Positron emission tomography-computed tomography [13] and bone scanning [14] were performed when necessary. TNM stage was based on the 7th edition of the TNM classification of NSCLC proposed by the International Association for the Study of Lung Cancer, Union for International Cancer Control, and American Joint Committee on Cancer [15]. TNM stage was recalculated to match the 7th edition of the TNM classification of NSCLC in patients who underwent surgery before 2010. The surgical procedure has been described elsewhere.

Postoperative 30-day complications were defined as complications occurring within 30 days

post-VATS. Complications were graded according to the Clavien-Dindo classification system as follows: Grade 1, oral medication or bedside medical care required; Grade 2, intravenous medical therapy required; Grade 3, radiologic, endoscopic, or surgical intervention required; Grade 4, chronic deficit or disability associated with the event; and Grade 5, death related to surgical complications [16]. In this study, minor complications were defined as grades 1-2, and major complications, grades 3-5 [17-20].

Follow-up data were collected from the outpatient follow-up database. Patients were seen every 3 months at the outpatient department the first year after treatment was completed. Follow-up continued every 6 months in the second year and annually thereafter. Diagnostic investigations were performed during the follow-up. All patients received chest computed tomography before discharge and before each follow-up visit. Patients were considered to

Table 2. Comparison of surgical outcomes of the groups

|                                                                  | Nonelderly<br>(n = 176) | Elderly<br>(n = 79) | Chi square value | P value |
|------------------------------------------------------------------|-------------------------|---------------------|------------------|---------|
| Conversion                                                       | 5 (2.8%)                | 3 (3.8%)            | 0.000            | 0.987   |
| Blood loss (ml)                                                  | 170 (130-480)           | 150 (110-400)       | -0.710           | 0.201   |
| Surgical duration (min)                                          | 190 (140-270)           | 170 (130-290)       | -0.581           | 0.128   |
| Extent of pulmonary resection                                    |                         |                     |                  |         |
| Lobectomy                                                        | 136 (77.3%)             | 64 (81.0%)          | 0.451            | 0.502   |
| Segmentectomy                                                    | 21 (11.9%)              | 9 (11.4%)           | 0.015            | 0.902   |
| Wedge resection                                                  | 19 (10.8%)              | 6 (7.6%)            | 0.632            | 0.427   |
| Patients with complications                                      | 34 (19.3%)              | 18 (23.7%)          | 0.404            | 0.525   |
| Patients with major complications (Clavien-Dindo classification) | 8 (4.5%)                | 5 (6.3%)            | 0.085            | 0.771   |
| Complications                                                    |                         |                     |                  |         |
| Pneumonia                                                        | 16 (9.0%)               | 9 (11.4%)           | 0.327            | 0.568   |
| Prolonged air leak (more than 5 days)                            | 9 (5.1%)                | 5 (6.3%)            | 0.009            | 0.923   |
| Chylothorax                                                      | 7 (4.0%)                | 4 (5.1%)            | 0.004            | 0.951   |
| Respiratory insufficiency                                        | 5 (2.8%)                | 2 (2.6%)            | 0.000            | 1.000   |
| Pulmonary embolism                                               | 3 (1.7%)                | 1 (1.3%)            | 0.000            | 1.000   |
| Acute coronary syndrome                                          | 1 (0.6%)                | 1 (1.3%)            | 0.000            | 1.000   |
| Acute heart failure                                              | 1 (0.6%)                | 1 (1.3%)            | 0.000            | 1.000   |
| Atrial fibrillation                                              | 1 (0.6%)                | 2 (2.6%)            | 0.514            | 0.474   |
| Postoperative hospital stay (days)                               | 11 (6-49)               | 13 (7-49)           |                  | 0.102   |

**Table 3.** Comparison of pathological outcomes of the two groups

|                         | Nonelderly $(n = 176)$ | Elderly $(n = 79)$ | Chi square value | P value |
|-------------------------|------------------------|--------------------|------------------|---------|
| Histological type       |                        |                    |                  |         |
| Adenocarcinoma          | 94 (53.4%)             | 43 (54.4%)         | 0.023            | 0.880   |
| Squamous cell carcinoma | 61 (34.7%)             | 28 (35.4%)         | 0.015            | 0.903   |
| Large cell carcinoma    | 21 (11.9%)             | 8 (10.1%)          | 0.176            | 0.675   |
| Pathological stage      |                        |                    | -0.081           | 0.935   |
| IA                      | 21 (11.9%)             | 10 (12.7%)         |                  |         |
| IB                      | 64 (36.3%)             | 27 (34.2%)         |                  |         |
| IIA                     | 48 (27.3%)             | 22 (27.8%)         |                  |         |
| IIB                     | 25 (14.2%)             | 13 (16.5%)         |                  |         |
| IIIA                    | 18 (10.2%)             | 7 (7.8%)           |                  |         |
| Residual tumor          |                        |                    | -0.404           | 0.686   |
| R0                      | 171 (97.2%)            | 76 (96.2%)         |                  |         |
| R1                      | 5 (2.8%)               | 3 (3.8%)           |                  |         |
| R2                      | 0 (0.0%)               | 0 (0.0%)           |                  |         |

have locoregional recurrence if it occurred in (1) the bronchial stump or cut-end of the lung parenchyma, (2) the ipsilateral pleura and/or chest wall, or (3) the ipsilateral hilar and/or mediastinal lymph nodes. Recurrence was defined as distant if it occurred in a separate lobe of the ipsilateral lung, contralateral thorax, supraclavicular lymph nodes, or in a distant organ. If distant recurrences were uncovered

by systemic survey within a month after the detection of locoregional recurrence, these were defined as a concurrent distant and locoregional recurrence [21]. Overall survival (OS) was calculated from the date of surgery to the date of the last follow-up or death from any cause. Disease-free survival (DFS) was assessed from the date of surgery to the date of cancer recurrence or death from any cause. Follow-up was censored in March 2016.

All statistical analyses were performed using SPSS, Version 14.0 (SPSS Inc., Chi-

cago, IL, USA). Normally distributed variables were analyzed by Student's t tests and presented as means and standard deviations. Nonnormally distributed variables were analyzed using the Mann-Whitney U test and presented as medians and ranges. Differences between semi-quantitative results were analyzed using the Mann-Whitney U test. Differences between qualitative results were analyzed using chi-

Table 4. Risk factors of postoperative 30-day complications

| Variable                                       | Univariate analysis<br>OR (95% CI) | P value | Multivariate analysis<br>Adjusted OR (95% CI) | P value |
|------------------------------------------------|------------------------------------|---------|-----------------------------------------------|---------|
| Age (≥70 years vs. <70 years)                  | 1.211 (0.509-1.877)                | 0.157   | -                                             | -       |
| Medical comorbidities (>2 vs. ≤2)              | 1.572 (1.139-2.587)                | 0.033   | 1.587 (1.141-2.821)                           | 0.027   |
| Operation time (≥240 min vs. <240 min)         | 1.844 (1.228-3.259)                | 0.021   | 1.229 (1.110-3.228)                           | 0.038   |
| Blood loss (≥300 ml vs. <300 ml)               | 0.748 (0.521-1.458)                | 0.099   | -                                             | -       |
| Type of resection (lobectomy vs. sublobectomy) | 1.160 (0.452-1.820)                | 0.229   | -                                             | -       |

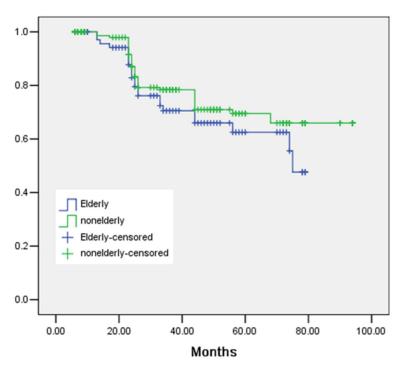
square or Fisher's exact test, as appropriate. Independent risk factors for postoperative 30-day complications were evaluated using logistic regression analysis. Survival rates were analyzed using the Kaplan-Meier method, and differences between the two groups were analyzed using the log-rank test. Univariate analyses were performed to identify prognostic variables related to OS and DFS. Univariate variables with *P*-values <0.1 were selected for inclusion in the multivariate Cox proportional hazard regression model, and the adjusted odds ratios and their 95% confidence intervals (CI) were calculated. *P*-values <0.05 were considered statistically significant.

#### Results

The clinical characteristics of the 2 groups are summarized in **Table 1**. The median age of the elderly and nonelderly patients were 76 and 61 years, respectively. Both groups had a similar clinical stage at diagnosis, preoperative pulmonary functions, ASA scores, and sex distribution. However, the elderly group had higher rates of hypertension (P = 0.001) and type 2 diabetes mellitus (P = 0.014). Moreover, the proportion of patients with  $\geq 2$  medical comorbidities was significantly higher in the elderly group than in the nonelderly group (P = 0.009).

The overall conversion rate to open procedures was similar in both groups. The reasons for conversion included bleeding (n=4) and massive adhesion (n=4). The surgical variables did not significantly differ between the younger and older patient groups, including median estimated blood loss (P=0.201) and median operating time (P=0.128) (**Table 2**). Both groups had a similar rate and severity of 30-day complications during the postoperative period. The most common complication observed was pneumonia. The median length of hospital stay was sig-

nificantly longer in the elderly population than in the nonelderly group (P = 0.01) (**Table 2**).


The final pathologic outcomes are summarized in **Table 3**. Adenocarcinoma was the most common malignancy observed in both groups; they had similar pathologic outcomes.

**Table 4** shows the risk factors for postoperative 30-day complications in the whole cohort. Advanced age was not a statistically significant risk factor. However, multivariate analysis revealed that operation time ay was significantly longer rbidities were independent risk factors for postoperative 30-day complications (**Table 4**).

The follow-up duration was similar between the two groups. Altogether, there were 59 deaths during the follow-up period. No difference in OS was seen between the elderly and nonelderly groups (P = 0.212, **Figure 1**). Multivariate Cox regression analysis demonstrated that pathological N2 and T2 disease were significant predictors of poor OS (**Table 5**).

Among those who died, 51 died from lung cancer recurrence and 8 from causes unrelated to lung cancer. Recurrent tumors developed in 31.7% and 26.7% of the patients in the elderly and nonelderly groups, respectively (P = 0.186). No significant differences were observed in recurrence sites and times to first recurrence (**Table 6**). Locoregional recurrence was the most common recurrence pattern seen. No cases of port-site metastasis were noted in either group during the follow-up period.

Finally, there was no difference in the DFS rate between the two groups (**Figure 2**, P = 0.618). Multivariate analysis demonstrated that advanced T stage, poor cancer differentiation grade, and pathological N2 disease were associated with DFS (**Table 7**).



**Figure 1.** Comparison of overall survival rate between the nonelderly and elderly group (P = 0.212).

Table 5. Multivariate Cox regression analysis of overall survival

| Regression variables  | Adjusted hazard ratio | 95% CI      | Beta<br>value | P value |
|-----------------------|-----------------------|-------------|---------------|---------|
| Age                   |                       |             | 0.103         | 0.305   |
| <70 years             | 1.000                 |             |               |         |
| ≥70 year              | 2.087                 | 0.581-2.690 |               |         |
| Medical comorbidities |                       |             |               | 0.208   |
| ≤2                    | 1.000                 |             |               |         |
| >2                    | 1.584                 | 0.440-1.850 | 0.658         |         |
| Type of resection     |                       |             | 0.258         | 0.695   |
| Lobectomy             | 1.000                 |             |               |         |
| Sublobectomy          | 1.289                 | 0.580-1.690 |               |         |
| Operation time        |                       |             | 0.540         | 0.269   |
| <240 min              | 1.000                 |             |               |         |
| ≥240 min              | 1.360                 | 0.402-1.590 |               |         |
| Blood loss            |                       |             | 0.900         | 0.183   |
| <300 ml               | 1.000                 |             |               |         |
| ≥300 mI               | 1.158                 | 0.689-1.680 |               |         |
| ASA score             |                       |             |               | 0.197   |
| I-II                  | 1.000                 |             |               |         |
| III                   | 1.109                 | 0.700-1.419 | 0.615         |         |
| Differentiation grade |                       |             | 0.369         | 0.203   |
| Good-Moderate         | 1.000                 |             |               |         |
| Poor                  | 1.258                 | 0.690-1.680 |               |         |
| Pathological T stage  |                       |             | 2.948         |         |
| T1                    | 1.000                 | 1.71-2.588  |               | 0.023   |
| T2                    | 2.351                 |             |               |         |
| Pathological N stage  |                       |             | 2.698         |         |
| NO-N1                 | 1.000                 |             |               |         |
| N2                    | 3.848                 | 1.489-4.892 |               | 0.018   |

#### Discussion

Radical pulmonary resection is currently the gold standard for treating patients with stage I and II NSCLC. However, it is a major surgical procedure with a reported overall morbidity rate ranging from 10-30% and a mortality rate of up to 8% [9]. Morbidity after radical pulmonary resection has been associated with various patient characteristics [9, 10], including ASA score, particularly if it is 3 or higher; advanced age; and presence of medical comorbidities [9, 10].

However, VATS has been shown to improve postoperative morbidity in selected cases, and, as a result, may be the preferred approach in elderly patients [3-5]. In a previous study, researchers examined outcomes in patients aged >70 years undergoing VATS and found no difference in complications rates, compared with nonelderly patients [22]. In our study, we demonstrated that VATS can be safely performed in elderly patients and that it is associated with a low morbidity rate. This is similar to results reported in open surgery series [3-5]. Furthermore, the elderly patients in our study did not have worse short-term outcomes than nonelderly patients [3-5]. In accordance with these findings, previous studies have reviewed the complications associated with radical pulmonary resection in elderly populations. Although the definition of elderly patients varied widely between the studies (65-80 years), a cut-off age of ≥70 years was used by most of them. These reviews reported that most studies found no relationship

**Table 6.** Comparison of cancer recurrence of the two groups

|                                   | Nonelderly | Elderly    | Chi square | Р     |
|-----------------------------------|------------|------------|------------|-------|
|                                   | (n = 176)  | (n = 79)   | value      | value |
| Overall recurrence n              | 47 (26.7%) | 25 (31.6%) | 0.657      | 0.418 |
| Locoregional recurrence           | 29 (16.5%) | 17 (21.5%) | 0.937      | 0.333 |
| Distant recurrence                | 13 (7.4%)  | 6 (7.6%)   | 0.003      | 0.593 |
| Concurrent recurrence             | 5 (2.8%)   | 2 (2.6%)   | 0.000      | 1.000 |
| Time to first recurrence (median) | 18 months  | 15 months  | 0.360      | 0.090 |

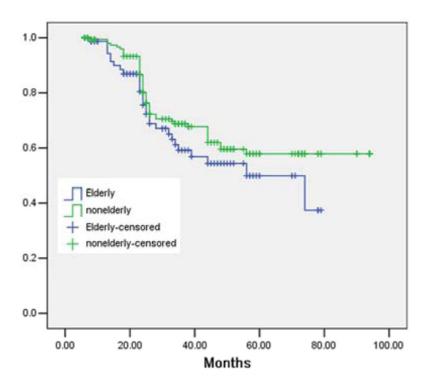



Figure 2. Comparison of disease-free survival rate between the nonelderly and elderly group (P = 0.618).

between the age at radical pulmonary resection and complication rates [3-5].

In our study, the postoperative 30-day complication rate was 20.3%, which is similar to data reported in other contemporary series [23-25]. Only 8 patients (3.1%) required conversions. Most complications were minor, such as pneumonia and prolonged air leakage, which is similar to previously reported complications in VATS series [23-27]. Recovery following VATS has been shown to have several benefits, including reduced blood loss, chest drain days, and postoperative opiate use [3-6]. Herein, we also observed a quicker recovery in both groups, compared with patients who underwent open surgery. However, our operative time was lon-

ger than that reported in previous studies [23-27]. In these studies, the procedure was generally performed by only one or two surgeons, whereas in our institution, they were performed by several different surgeons, which may explain the longer operative times. In addition, we included the initial "learning curve" surgeries, which had longer operative times.

The median number of hospital stays post-VATS were short in both groups, compared with that reported in previous reports [23-27]; the length of stay was significantly longer in the nonelderly group in our study however. Two patients from this group had major complications that required a 49-day hospital stay. Specifically, these two patients underwent secondary procedures and had significant past medical histories of coronary artery and chronic pulmonary disease requiring a prolonged stay. Furthermore, the hospital length of stay we observed in our study was likely longer because of the difference in

the average stay for surgical patients between the Asian and Eastern healthcare systems. This difference depends on cultural and social factors, as well as on the financial aspects of the respective healthcare systems. In addition, we believe that this difference could also be explained by the initial surgeon learning curve for the VATS procedures, which led to higher complication rates. Most major complications that required a second procedure were observed during the early period of our experience (i.e., in the initial 50 cases).

Our long-term outcomes data showed no difference in OS and DFS between the groups. In most previous studies [23-27], the 5-year OS rate in patients aged difference in OS and DFS

**Table 7.** Multivariate Cox regression analyses of disease-free survival

| Regression variables        | Adjusted hazard ratio | 95% CI      | Beta<br>value | P value |
|-----------------------------|-----------------------|-------------|---------------|---------|
| Age                         |                       |             | 0.259         | 0.108   |
| <70 years                   | 1.000                 |             |               |         |
| ≥70 years                   | 1.540                 | 0.581-1.897 |               |         |
| Medical comorbidities       |                       |             |               | 0.364   |
| ≤2                          | 1.000                 |             |               |         |
| >2                          | 1.258                 | 0.568-1.540 | 0.198         |         |
| Type of resection Lobectomy | 1.000                 |             | 0.150         | 0.190   |
| Sublobectomy                | 1.489                 | 0.609-1.991 |               |         |
| Operation time              |                       |             | 0.881         | 0.150   |
| <240 min                    | 1.000                 |             |               |         |
| ≥240 min                    | 1.580                 | 0.654-1.901 |               |         |
| Blood loss                  |                       |             | 0.751         | 0.201   |
| <300 ml                     | 1.000                 |             |               |         |
| ≥300 mI                     | 1.187                 | 0.880-1.521 |               |         |
| ASA score                   |                       |             | 0.742         | 0.374   |
| I-II                        | 1.000                 |             |               |         |
| III                         | 1.360                 | 0.549-1.517 |               |         |
| Differentiation grade       |                       |             | 0.645         | 0.190   |
| Good-Moderate               | 1.000                 |             |               |         |
| Poor                        | 1.364                 | 0.548-1.980 |               |         |
| Pathological T stage        |                       |             | 2.410         | 0.017   |
| T1                          | 1.000                 | 1.45-3.954  |               |         |
| T2                          | 3.012                 |             |               |         |
| Pathological N stage        |                       |             | 1.597         | 0.007   |
| NO-N1                       | 1.000                 |             |               |         |
| N2                          | 2.357                 | 1.577-3.570 |               |         |

between the groups. In most previog-term survival of elderly patients has been reported to be slightly poorer than that of nonelderly patients, but it is still considerably long and acceptable. The authors of these previous studies suggested that this difference may be due to the more limited survival expectancy and higher prevalence of medical comorbidities in this population [23-30]. The present series supports this finding, even though the limited sample size may explain the absence of statistical differences in OS and DFS.

The major limitations of our study were the retrospective nature of the analysis, despite the prospective recording of the data. Moreover, due to the relatively short follow-up period and the acceptable prognosis of early-stage NSCLC, late recurrences were not detected in our series.

#### Conclusion

VATS appears feasible in elderly patients with NSCLC. It has acceptable short-term complications and long-term survival outcomes that are similar to those in nonelderly patients. These data suggest that advanced age should not be regarded as a contraindication for VATS in this patient population.

#### Acknowledgements

We sincerely thank our hospital colleagues who participated in this research.

## Discourse of conflict of interest

None.

Address correspondence to: Dr. Yanli Cai, Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, People's Republic of China, Tel: +86-718-8250718; Fax: +86-718-8250718; E-mail: yanlicaicn@ 163.com

#### References

- 1] Vamvakas L, Saloustros E, Karampeazis A and Georgoulias V. Advanced non-small-cell lung cancer in the elderly. Clin Lung Cancer 2009; 10: 158-167.
- [2] Rocco G and Weder W. Lung surgery in the elderly today. Lung Cancer 2013; 80: 115-119.
- [3] Gajra A and Jatoi A. Non-small-cell lung cancer in elderly patients: a discussion of treatment options. J Clin Oncol 2014; 32: 2562-2569.
- [4] Bakirhan K, Sharma J, Perez-Soler R and Cheng H. Medical treatment in elderly patients with non-small cell lung cancer. Curr Treat Options Oncol 2016; 17: 13.
- [5] Abu Arab W. Video-assisted thoracoscopic surgery for non-small cell lung cancer. Minim Invasive Surg Oncol 2017; 1: 1-11.
- [6] Gridelli C, Maione P, Rossi A, Ferrara ML, Castaldo V, Palazzolo G and Mazzeo N. Treatment of advanced non-small-cell lung cancer

- in the elderly. Lung Cancer 2009; 66: 282-286.
- [7] Weinmann M, Jeremic B, Bamberg M and Bokemeyer C. Treatment of lung cancer in elderly part II: small cell lung cancer. Lung Cancer 2000; 40: 1-16.
- [8] Takahashi Y. Real-time intraoperative diagnosis of lung adenocarcinoma high risk histological features: a necessity for minimally invasive sublobar resection. Minim Invasive Surg Oncol 2017; 1: 12-19.
- [9] Kidane B, Toyooka S and Yasufuku K. MDT lung cancer care: input from the surgical oncologist. Respirology 2015; 20: 1023-1033.
- [10] Lemjabbar-Alaoui H, Hassan OU, Yang YW and Buchanan P. Lung cancer: biology and treatment options. Biochim Biophys Acta 2015; 1856: 189-210.
- [11] Zhang LB, Wang B, Wang XY and Zhang L. Influence of video-assisted thoracoscopic lobectomy on immunological functions in non-small cell lung cancer patients. Med Oncol 2015; 32: 201.
- [12] Stamatis G. Staging of lung cancer: the role of noninvasive, minimally invasive and invasive techniques. Eur Respir J 2015; 46: 521-531.
- [13] Shiono S, Yanagawa N, Abiko M and Sato T. Detection of non-aggressive stage IA lung cancer using chest computed tomography and positron emission tomography/computed tomography. Interact Cardiovasc Thorac Surg 2014; 19: 637-643.
- [14] Fang W and Ruan W. Advances in uniportal video-assisted thoracoscopic surgery for non-small cell lung cancer. Minim Invasive Surg Oncol 2017; 1: 20-30.
- [15] Hachey KJ and Colson YL. Current innovations in sentinel lymph node mapping for the staging and treatment of resectable lung cancer. Semin Thorac Cardiovasc Surg 2014; 26: 201-209.
- [16] Xiao H, Xie P, Zhou K, Qiu X, Hong Y, Liu J, Ouyang Y, Ming T, Xie H, Wang X, Zhu H, Xia M and Zuo C. Clavien-Dindo classification and risk factors of gastrectomy-related complications: an analysis of 1049 patients. Int J Clin Exp Med 2015; 8: 8262-8268.
- [17] Chen X, Yang J, Peng J and Jiang H. Casematched analysis of combined thoracoscopiclaparoscopic versus open esophagectomy for esophageal squamous cell carcinoma. Int J Clin Exp Med 2015; 8: 13516-13523.
- [18] Wang W, Zhou Y, Feng J and Mei Y. Oncological and surgical outcomes of minimally invasive versus open esophagectomy for esophageal squamous cell carcinoma: a matched-pair comparative study. Int J Clin Exp Med 2015; 8: 15983-15990.

- [19] Zhu Y and Chen W. Very long-term outcomes of minimally invasive esophagectomy for esophageal squamous cell carcinoma. J BUON 2015; 20: 1585-1591.
- [20] Qi Y and Fu J. Long-term outcomes following radical esophagectomy for esophageal squamous cell carcinoma in elderly patients. Int J Clin Exp Med 2016; 9: 3642-3648.
- [21] Wu CF, Fu JY, Yeh CJ, Liu YH, Hsieh MJ, Wu YC, Wu CY, Tsai YH and Chou WC. Recurrence risk factors analysis for stage I non-small cell lung cancer. Medicine (Baltimore) 2015; 94: e1337.
- [22] Koizumi K, Haraguchi S, Hirata T, Hirai K, Mikami I, Fukushima M, Kubokura H, Okada D, Akiyama H and Tanaka S. Video-assisted lobectomy in elderly lung cancer patients. Jpn J Thorac Cardiovasc Surg 2002; 50: 15-22.
- [23] Sui X, Zhao H, Wang J, Yang F, Yang F and Li Y. Outcome of VATS lobectomy for elderly nonsmall cell lung cancer: a propensity scorematched study. Ann Thorac Cardiovasc Surg 2015; 21: 529-535.
- [24] Port JL, Mirza FM, Lee PC, Paul S, Stiles BM and Altorki NK. Lobectomy in octogenarians with non-small cell lung cancer: ramifications of increasing life expectancy and the benefits of minimally invasive surgery. Ann Thorac Surg 2011; 92: 1951-1957.
- [25] Mun M and Kohno T. Video-assisted thoracic surgery for clinical stage I lung cancer in octogenarians. Ann Thorac Surg 2008; 85: 406-411.
- [26] Cattaneo SM, Park BJ, Wilton AS, Seshan VE, Bains MS, Downey RJ, Flores RM, Rizk N and Rusch VW. Use of video-assisted thoracic surgery for lobectomy in the elderly results in fewer complications. Ann Thorac Surg 2008; 85: 231-235; discussion 235-236.
- [27] Lin L, Hu D, Zhong C and Zhao H. Safety and efficacy of thoracoscopic wedge resection for elderly high-risk patients with stage I peripheral non-small-cell lung cancer. J Cardiothorac Surg 2013; 8: 231.
- [28] Fang Z, He J, Fang W, Ruan L and Fang F. Longterm outcomes of thoracoscopic anatomic resections and systematic lymphadenectomy for elderly high-risk patients with stage IB nonsmall-cell lung cancer. Heart Lung Circ 2016; 25: 392-397.
- [29] Koizumi K, Haraguchi S, Hirata T, Hirai K, Mikami I, Fukushima M, Okada D, Yamagishi S, Enomoto Y, Nakayama K, Akiyama H and Tanaka S. Lobectomy by video-assisted thoracic surgery for lung cancer patients aged 80 years or more. Ann Thorac Cardiovasc Surg 2003; 9: 14-21.
- [30] Amer K, Khan AZ, Vohra H and Saad R. Is it safe to include octogenarians at the start of a video-assisted thoracic surgery lobectomy programme? Eur J Cardiothorac Surg 2012; 41: 346-352.