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Abstract: Objective: The present study is to study the role of myeloid-derived suppressor cells (MDSCs) in immune 
responses in mice and human induced by alum. Methods: CD11b+Gr1+Ly6C+Ly6G+(Ly6G-) cells were obtained by 
alum-induced murine model. Phenotype, endocytosis, antigen presenting ability, and T cell suppression assays 
were performed by flow cytometry analysis. Results: After intraperitoneal injection of alum into C57BL/6 mice, the 
percentage of CD11b+Gr1+ cells was increased in mice spleen and bone marrow. Compared with control mice, Ly6C, 
Ly6G, F4/80 and CD86 expression were higher in alum-treated mice. Alum-MDSCs showed strong antigen uptake 
and antigen-presentation ability, which were accompanied by increase in F4/80 molecule. In addition, proliferation 
of CD4+ T cells was promoted. Conclusion: The present study demonstrates that alum-induced MDSCs function as 
APC alone, directly prime to adoptive immune cells and trigger subsequent immune responses.
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Introduction

Alum is the most widely used adjuvant in human 
vaccines and it is experimentally used to pro-
mote immune responses [1]. However, the pre-
cise mechanism by which alum promotes 
immune responses is still unclear [2]. Alum-
induced immune response processes include 
aggregation and adsorption of antigens on the 
surface of aluminum particles, which facilitate 
interactions between antigens and immune 
cells. Uptake of antigens by immune cells (den-
tritic cells, macrophages, and monocytes) is a 
pivotal process for antigen-presenting cells-
triggered humoral immune response (B cells) 
and cellular immune response (T cells) [3, 4]. 
Therefore, an ideal adjuvant should elicit 
enough immune response to help antigens 
achieve protective immunity with minimal toxic-
ity and individual tolerance [5].

Myeloid-derived suppressor cells (MDSCs) are 
a heterogeneous population of cells that 
expand in cancer, inflammation, infection and 
transplantation. MDSCs have a remarkable 
ability to regulate adaptive and innate immune 
responses [6-10]. MDSCs consist of myeloid 

progenitor cells and immature myeloid cells, 
which can propagate continuously in pathologi-
cal conditions, resulting in the up-regulated 
expression of arginase 1 (ARG1), inducible nitric 
oxide synthase (iNOS), nitric oxide (NO) and 
reactive oxygen species (ROS) [11, 12]. Due to 
the lack of the expression of cell-surface mark-
ers that are specifically expressed by mono-
cytes, macrophages or dendritic cells (DCs), 
MDSCs are characterized by co-expression of 
myeloid-cell lineage differentiation antigen GR1 
and CD11b in mice [13, 14]. CD11b+Gr1+ MD- 
SCs can be classified into three subsets [15-17] 
depending on differential expression of Ly6C 
and Ly6G: Ly6GhighLy6Cmed (granulocytic), Ly- 
6GmedLy6Chigh (monocytic), and Ly6GmedLy6Cmed 
(non-monocytic and non-granulocytic). We 
speculate that MDSCs may participate in adju-
vant-induced immune responses before or at 
the same time with antigen-presenting cells 
(APCs)-started immune cascades. Therefore, 
MDSCs are the main source of APCs. Although 
a number of studies have set light on the mech-
anism of MDSCs and how to eliminate their role 
on immunosuppression, reports on the effect 
of adjuvant-MDSCs on normal individual imm- 
une systems are rare [18]. In the present study, 
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we construct alum-induced MDSCs in vivo, and 
test their potential interaction with CD4+ T cells 
in vitro. This study will provide a comprehensive 
understanding of alum-induced immune resp- 
onse and a valuable reference for the safe use 
of adjuvants in clinic.

Material and methods

Animals

Male BALB/c (H-2d) and C57BL/6 (H-2b) mice 
(6-8 weeks) were purchased from Institute of 
Zoology, Chinese Academy of Sciences. Potas- 
sium alum (Sigma-Aldrich, St. Louis, MO, USA) 
was well vortexed before used. Mice without 
treatment were used as blank control. For mice 
in experimental group, 0.5 ml alum turbid liquid 
was given intraperitoneally to each mouse. The 
same dose of PBS was given to mice in control 
group. We extracted cell suspension from 
spleen and bone marrow of all mice on day 7. 
The dose and time were chosen in accordance 
with preliminary tests. Three mice were includ-
ed in each group, and each test was repeated 
for three times. All animal care and procedures 
were approved by the Institutional Animal Care 
and Use Committee of Jilin University, and mice 
were used in accordance with the Association 
for research in Vision and Ophthalmology 
Statement for the Use of Animals in Ophthalmic 
and Vision Research.

Cells

MDSCs and CD4+ T cells were isolated by mag-
netic separation using CD11b+ positive isola-
tion kit and CD4+ T negative isolation kit 
(Miltenyi Biotec, Bergisch Gladbach, Germany) 
according to the manufacturer’s manual. The 
sorted cells were of great purity as detected by 
flow cytometry (> 90%).

Fluorescence-activated cell sorting (FACS)

Anti-CD4-APC, anti-CD11b-APC, anti-Gr1-Per-
CP5.5, anti-Ly6C-PE, anti-Ly6G-PE, anti-CD40-
PE, anti-CD80-PE, anti-CD86-PE, anti-TLR2-PE, 
anti-TLR4-PE, anti-MHC-II-PE, FITC-conjugated 
OVA (OVA-FITC) and isotype control antibodies 
were obtained for FACS analysis (eBioscience, 
San Diego, CA, USA).

Isolated CD11b+ cells (1 × 105/well) were resus-
pended in complete medium and incubated at 
37°C in the presence of 5% CO2. OVA-FITC was 

added at a final concentration of 1 mg/mL or 
the same ratio of CD11b+ and CD4+ T cells was 
used instead. The cells were washed four times 
with cold phosphate-buffered saline (PBS) and 
5% bovine AB serum, and then analyzed by 
FACScalibur (Becton Dickinson) using FlowJo 
7.6 software (https://www.flowjo.com/).

MDSCs suppression assays

Suppression assays were performed in 96-well 
plates in triplicate. Fresh isolated naïve CD4+ T 
cells (1 × 105/well) were incubated with MDSCs 
at a ratio of 1:1 for 5 days. T cell proliferation 
was determined by CFSE dilution profile. The 
suppression percentage was calculated using 
the following formula: suppression percentage 
(%) = (No. of T cells without MDSCs - No. of T 
cells with MDSCs)/(No. of T cells without 
MDSCs) × 100%.

Statistical analysis

The results were analyzed using SPSS13.0  
statistical software (IBM, Armonk, NY, USA). 
Student’s t test was performed for statistical 
analysis. Allograft survival data were generated 
as Kaplan-Meier survival curves, and log-rank 
analysis was conducted for comparisons be- 
tween groups. Data are presented as means ± 
standard deviations. Differences with P < 0.05 
were considered statistically significant.

Results

MDSCs are dramatically increased in spleen 
and marrow by alum induction

To investigate the expression of MDSCs in 
alum-induced mice, the percentage of MDSCs 
in alum-induced mice on day 7 was analyzed. 
The percentage of CD11b+Gr1+ cells was in- 
creased 5 times in spleen and 4 times in bone 
marrow compared with control group. Further 
analysis showed that, among CD11b+Gr1+ cells, 
granulocytic Ly6GhighLy6Cmed subset accounted 
for 46% in spleen and 48% in bone marrow, 
while the percentage of monocytic Ly6Gmed 

Ly6Chigh subset was elevated to 30%, and the 
percentage of Ly6GmedLy6Cmed subset was 
increased to 5%. The percentage of alum-
induced Cd11b, Gr1, Ly6G, and Ly6C cells was 
significantly increased compared with control 
group (P < 0.05) (Figure 1). The results sug-
gested that MDSCs are dramatically increased 
in spleen and marrow by alum induction.
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MDSC cells tend to elicit immune responses by 
adjuvant induction

To examine MDSCs phenotype alteration of 
alum-induced mice, expression of various cell 
surface markers was detected by flow cytome-
try. The percentages of F4/80, CD86, Ly6C and 
Ly6G cells were significantly increased to that 
in sham group (P < 0.05). However, the percent-
ages of CD40 and MHC-II were similar to that of 
PBS group (P < 0.05) (Table 1). These results 
indicate that MDSC cells tend to elicit immune 
responses by adjuvant induction.

MDSCs tend to be functioning as APCs

To determine the role of MDSC cells on antigen 
phagocyte and antigen presenting ability, OVA-
FITC was used. Coculture of isolated CD11b+ 
cells with OVA for 4 h showed that 55% CD11b+ 
cells were conjugated to OVA. By contrast, only 

proliferation was achieved by alum-MDSCs, 
which has shown higher proportion of cells 
than PBS and blank groups (P < 0.05). However, 
the promotive effect in sham mice was not sig-
nificantly different from that in PBS group or 
blank group (P > 0.05) (Figure 3). These find-
ings indicated that alum-MDSCs promote CD4+ 
T cells proliferation.

Discussion

Our results have shown that CD11b+Gr1+ cells 
are markedly increased in spleen and bone 
marrow at the site of injection. Moreover, alum-
MDSCs participate in systemic immune res- 
ponses. Before immune responses initiated by 
APCs, the MDSCs have independently started 
immunoreaction processes. MDSCs population 
mainly include granulocytic and monocytic cells 
(75%). Similar results are reported in malignant 
lymphoma model, chronic inflammatory dis-

Figure 1. MDSCs expression on day 7 after alum injection. Percentage of 
CD11b+Gr1+Ly6C+Ly6G+ cells was analyzed by flow cytometry.

Table 1. Percentage of positive MDSCs in alum and PBS mice (control)
MDSCs Alum PBS 

Spleen Bone marrow Spleen Bone marrow
CD11b+Gr1+ 5.29 ± 0.65*** 20.09 ± 5.05*** 0.93 ± 0.05 5.35 ± 0.25
Ly6GhighLy6Cmed 46.34 ± 2.70*** 47.66 ± 2.34*** 0.65 ± 0.20 2.82 ± 0.56
Ly6GmedLy6Chigh 32.65 ± 2.69*** 28.02 ± 2.32*** 0.37 ± 0.13 1.50 ± 0.25
Ly6GmedLy6Cmed 5.70 ± 0.12* 5.01 ± 0.84* 1.55 ± 0.13 1.31 ± 0.48
CD40 2.2 ± 0.09 1.03 ± 0.88 1.70 ± 0.18 0.79 ± 0.22
F4/80 10.2 ± 2.09*** 8.03 ± 0.88*** 0.87 ± 0.08 1.25 ± 0.43
CD86 3.70 ± 0.12* 5.01 ± 0.84* 0.47 ± 0.10 0.26 ± 0.03
MHC-II 60.13 ± 1.54 58.66 ± 3.34 61.0 ± 1.21 61.0 ± 2.82
Note: Data are presented as means ± standard deviations of triple independent experi-
ments. Significant differences between the alum and PBS mice: *P < 0.05; **P < 0.02; 
***P < 0.01.

30% CD11b+ cells were 
conjugated to OVA in PBS 
mice. Co-stimulation with 
F4/80 increased the per-
centage to 33% as to that 
of 8% in PBS group (P < 
0.05). Coculture of isolat-
ed CD11b+ cells with OVA 
and CD4+ T cells showed 
that 68% CD11b+ cells 
are able to present OVA 
to CD4+ T cells, whereas 
this percentage was 32% 
in PBS group (P < 0.05) 
(Figure 2A and 2B). The 
results suggested that 
MDSCs tend to be func-
tioning as antigen pre-
senting cells.

Alum-MDSCs promote 
CD4+ T cells proliferation

To determine the sup-
pressive ability of MDSCs, 
CD4+ T cells were co-cul-
tured with CD11b+ cells. 
The data showed that 
about 40% CD4+ T cells in 
blank control could spon-
taneously split after 5 
days of in vitro culture. 
Over 50% of CD4+ T cells 
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ages, granulocytes and DCs. This population of 
myeloid progenitors are currently classified in 
two main subsets: monocytic and granulocytic, 
which differ in phenotypes and biological prop-
erties. In pathological conditions such as can-
cer, tumor-bearing hosts persistently produce 
MDSCs, which impair T cell and nature killer 
(NK) cell responses, resulting in tumor-induced 
immunosuppression and poor prognosis [27]. 
MDSCs have become a major therapeutic tar-
get in immunotherapy strategies. Consequently, 
an effective vaccine-adjuvant formulations are 
to be developed for cancer immunotherapy. 
The present study has demonstrated positive 
immune responses of MDSCs. Therefore, we 
provide possible ways to control immunoregula-
tory ability of MDSCs. Lee et al demonstrate 
that TLR7/8 against resiquimod differentiates 
tumor-induced MDSCs in vitro toward macro-
phages and DCs [28]. Adjuvant LPS is unable to 
differentiate tumor-induced MDSCs to mature 
APCs [29]. Alum may be a candidate for cancer 
vaccine formulations [30, 31]. Our data also 

Figure 2. Phagocytic capacity and antigen presenting ability. A: MDSCs co-
cultured with OVA-FITC or CD4+ T cells after 4 h. B: Histogram presenting 
the percentages of CD4, OVA and F4/80-positive cells after being cultured 
with MDSCs induced by alum (white histogram) and PBS (black histogram). 
Data are means ± standard deviations of triple determinations. *P < 0.05, 
**P < 0.02, and ***P < 0.01 indicate significant differences obtained by 
Wilcoxon rank sum test between alum and PBS mice.

Figure 3. CD4+ T cell proliferation promoted by alum-
MDSCs. A: Percentage of CFSE dilution by culturing 
CD4+ T cells or/and MDSCs for 5 days. B: Histogram 

presenting the percentage of CD4+ 
T cells division of blank (white), 
PBS (black) and alum (gray). Data 
are means ± standard deviations 
of triple determinations. *P = 
0.034 indicates significant differ-
ence obtained by t test between 
alum and PBS mice.

ease, virus or bacterial infec-
tion and acute graft-versus-
host disease [19-23]. Most 
studies have confirmed that 
the function of MDSCs is to 
inhibit immune reactions. Al- 
though our results demon-
strate that MDSCs promote 
immune responses in vitro, 
MDSCs can be acted as an 
independent factor to initiate 
cascades. Whether MDSCs 
play positive or negative roles 
in diseases depends on many 
factors such as cytokines, 
pathogenic factors and signal 
pathway [24-26].

MDSCs are a heterogeneous 
population of myeloid cells with 
immunoregulatory activity, and 
they include immature precur-
sors of monocytes, macroph- 
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support the idea that alum-induced MDSCs 
could promote the proliferation of CD4+ T cells, 
while LPS-induced MDSCs inhibit the prolifera-
tion of CD4+ T cells.

The present study also shows that alum is the 
most commonly used adjuvant, and MDSCs 
function as APCs. In addition, alum has been 
demonstrated to elicit humoral immunity [18, 
32]. In conclusion, the present study demon-
strates that alum-MDSCs independently cause 
cellular immunity. Our research provides new 
ideas for the safe use of alum in clinic, and 
insights for the development of cancer 
vaccines.
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