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Abstract: Chronic wounds are growing medical burdens to overall healthcare that cause high rates of morbidity 
and mortality. The development of clinical therapies should focus on the molecular biology of chronic wounds. As 
key post-transcriptional regulators of gene expression, miRNAs are verified involved in five vital phases of wound 
healing. This review reveals several miRNAs in different processes of wound healing including hemostasis, inflam-
mation, cellular migration and proliferation, tissue formation and tissue remodeling and discusses the underlying 
modulatory mechanisms, Which may inspires the world on treatment of skin diseases and wound healing.
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Introduction

Wound healing is a complex process that 
involves several physiological mechanisms 
being coordinated to tissue injury. Once the 
skin is wounded, the process of hemostasis 
begins, which leads to vasoconstriction and 
fibrin clot formation. Then, inflammatory media-
tors are produced in concert with the coagula-
tion cascade, thereby a local concentration  
gradient is generated, which promotes fibrin 
matrix formation and neutrophil chemotaxis. 
Following inflammation, proliferation and migra-
tion of fibroblasts and keratinocytes are impor-
tant to re-establish the cellular and extracellu-
lar matrix composition of the skin. Meanwhile, 
vascular endothelial cells (VECs) contribute to 
the formation of new blood vessels by supply-
ing nutrients to skin cells [1]. Then, epitheliali-
zation and newly formed granulation tissue 
begin to cover and fill the wound area to re-
establish tissue integrity. Finally, corrective tis-
sue remodeling returns the skin section to its 
normal shape. Some chronic diseases, such  
as diabetic ulcers, are recalcitrant to all treat-
ment approaches and eventually lead to chron-
ic wounds. Drug treatment is the most effective 

therapy for chronic wounds, but the efficacy is 
typically unsatisfactory Thus, there is an impor-
tant need to find better and more efficient treat-
ment options.

MicroRNAs (miRNAs) are a group of naturally 
occurring, small, non-coding, single-strand 
RNAs of 20-22 nucleotides (nt). MiRNAs can 
interact with complementary sequences in the 
3’UTR of the target mRNA to induce translation-
al repression or target degradation. They have 
recently been shown to be involved in the regu-
lation of many key biological functions in both 
physiological and pathophysiological states. 
MiRNAs are potentially involved in promoting  
or inhibiting wound healing. These molecules 
are promising therapeutic targets and have 
demonstrated great potential as diagnostic  
biomarkers for wound healing. However, the 
exact roles of miRNAs in wound healing are still 
unknown, and few studies are conducted on 
the way in which miRNAs regulate the sequen-
tial or overlapping phases of wound healing. 
This paper presents a review of the existing  
evidence on the roles of miRNAs in different 
physiological processes relevant to cutaneous 
wound healing. 
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Hemostasis

Hemostasis enables a body to seal off injured 
blood vessels immediately, maintain blood flow 
under physiological and pathological states 
and form clots, which are necessary for the 
reconstruction of damaged vessels. Four prin-
cipal actors in the hemostatic system are plate-
lets, coagulation factors, anticoagulants, and 
fibrinolytic elements, all with the common ob- 
jective of achieving a dynamic equilibrium that 
maintains adequate blood flow [2]. Several fac-
tors may disturb the fine regulations of the 
hemostatic system and lead to chronic wound. 
Growing evidence support the involvement of 
miRNAs in the regulation of many complex 
mechanisms, such as the hemostatic system. 
Indeed, the regulation of a physiological or 
pathological pathway by miRNAs may be ex- 
tremely complex because such regulation may 
occur at different stages.

Tissue factor

TF is a primary initiator of blood coagulation. 
When it is exposed to blood, the coagulation 

cascade is activated, resulting in the transfor-
mation of prothrombin to thrombin, the appear-
ance of fibrin, platelet activation and thrombus 
formation [3, 4]. Further, TF can trigger coagu-
lation and may support thrombosis, which is  
also a key receptor in angiogenesis [5]. Different 
research groups have shown that miRNAs are 
involved in the regulation of TF during hemosta-
sis. For example, miR-19a and miR-126, are 
verified to regulate TF-mediated cellular throm-
bogenicity by adjusting the protein expression 
of TF in both normal and inflammatory states  
of endothelial cells [6]. In addition, miR-19 con-
trols TF expression by binding to the 3’UTR of 
the TF gene directly and provids a molecular 
basis for the selective expression of the TF 
gene [7]. Conversely, the inhibition of miR-19 
increased the expression of TF. Indirectly, miR-
NAs can also impact the expression of TF via 
the tissue factor pathway inhibitor (TFPI) [8]. 
According to Eisenreich. A, the activities of TF 
and the TF-regulated procoagulant are directly 
inhibited by TFPI [9]. What’s more, miRNAs, 
especially miR-616, plays a key role in regulat-
ing the expression of TFPI [10].

Table 1. miRNAs in keratinocytes and fibroblasts
Keratinocytes

miRNAs Target References
miR-21 TIMP3, TIAM1 [48]
miR-34a/34c p63 [28]
miR-99 Family AKT [49]
miR-136 PPP2R2A [30]
miR-197 IL22RA1 [50]
miR-205 ITGA5 [51]
miR-330-5p Pdia3 [52]
miR-378b NKX3.1 [53]
miR-483-3p YAP1 [54]
miR-4516 STAT3 [55]

Fibroblasts
miRNAs Target References
Let-7c HSP70 [56]
miR-21 PTEN [57]
miR-23b Smad3 [58]
miR-29b TGF-β1, Smad3 [59]
miR-143-3p CTGF [60]
miR-185, miR-203*, miR-690, miR-680, miR-434-3p Versican, β-catenin [61]
miR-191 CDK9, NOTCH2, RPS6KA3 [62]
miR-378a vimentin, integrinβ-3 [63]
miR-5787 eIF5 [64]
miR-203*: miR-203-5p.
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Thrombin

In general, thrombin, which is a natural coagu-
lant factor, has a stabilized expression in coag-
ulation [2]. In mammals, thrombin remains at  
a stable concentration, even in a fast-moving 
blood [11]. A recent study showes human aortic 
endothelial cells transfected with miR-146a 
mimics decrease the HG/thrombin-induced  
up-regulation of NAPDH oxidase 4, ROS genera-
tion and inflammatory phenotypes in diabetic 
patients with high blood glucose and thrombin 
production [12]. Moreover, miR-146 was uncov-
ered as an inhibitor of inflammation by the 
thrombin-GPCR-NF-κB pathway in retinal endo-
thelial cells [13].

Fibrinogen

As a final part of hemostasis, fibrin, which is 
composed of fibrinogen and other factors, is 
deemed to enhance wound repair by support-
ing inflammatory and mesenchymal progenitor 
egress into the zone of injury [14]. Once the 
fibrinogen converts into fibrin, it provides the 

necessary structural conditions, including stre- 
ngth and adhesive surfaces, to grow clots [15]. 
The fine-tuning of miRNAs is a key event in 
platelet pathophysiology [16]. As an important 
component in serum, platelet fibrinogen con-
sists of three protein chains (Aα, Bβ, and γ), 
which are encoded by FGA, FGB, and FGG, 
respectively. Recently, it was found that over-
expression of miR-29 members (a, b, c) reduced 
the transcription of these three genes [15]. In 
addition, miR-29a and miR-29b have an indi-
rect impact on gene expression by targeting 
upstream factors. miR-409-3p has been shown 
to suppress the expression of FGB. Additionally, 
another study discovers differential protein  
profiles: the expression of fibrinogenα polypep-
tide isoform 2 precursor is approximately 2-fold 
higher in the absence of miR-451, which dem-
onstrates that miR-451 influences the expres-
sion of fibrinogen α chain mRNA and protein 
[16]. Furthermore, altered miR-191 expression 
influences the angiogenesis and migratory 
capacities of diabetic dermal endothelial cells 
or fibroblasts partly via its target zonula 
occludens-1 [17]. In short, these results point 

Table 2. miRNAs in angiogenesis
Pro-angiogenesis

miRNAs Target Signaling pathways References
miR-15b BCL-2 [65]
miR-17-92 cluster TSP-1, CTGF, TIMP-1, HIF-1α TGFβ [66, 67]
miR-29a PTEN AKT [68]
miR-101 Cul3 [69]
miR-126 Spred-1, PI3R2/P85-b [70-72]
miR-130a  GAX, HOXA5 [73]
miR-146a CREB3L1 [74]

Anti-angiogenesis
miRNAs Target Signaling pathways References
miR-23a MET [75]
miR-24 GATA-2, PAK4 [76]
miR-26a SMAD1 [77]
miR-29a COL1A2, VEGF-A Notch2/jagged2 [78]
miR-191 ZO-1 [17]
miR-199a-5p Ets-1 [79]
miR-200b GATA2, VEGFR2, Ets-1 [80, 81]
miR-203 VEGFA [82]
miR-223-3p Rps6kb [83]
miR-320 IGF-1 RPS6KB1/hif-1a [84]
miR-329 VEGF, TNF-α [85]
miR-378a ITGB3 [63]
miR-492 eNOS [86]
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toward a potential cause of variable circulat- 
ing fibrinogen levels and demonstrate that a 
screening approach can identify miRNAs that 
regulate clinically important proteins.

Inflammation

Pro-inflammation

The early stage of inflammation serves as a 
critical period of the wound healing process.  
It is essential for clearing contaminating bacte-
ria and creating an environment that is condu-
cive to the succeeding events of tissue repair 
and regeneration. Pro-inflammatory miRNAs 
are therefore important in the early stages of 
injury. One study shows an interesting example 
of how miR-511 transforms the expression of 
gene products and activates macrophage func-
tions [18]. miR-155 decreases suppressor of 
cytokine signaling 1 (SOCS1) expression. Fur- 
thermore, miR-155 limits the amount of inter-
leukin-2 by inhibiting activation of signal trans-
ducer and activator of transcription 5 (STAT5) 
transcription factor, which enhances the inflam-
matory response [19].

Anti-inflammation

An excessive influx or infiltrating leukocytes into 
the damaged tissue may have negative effects 
on downstream cell migration, proliferation, dif-
ferentiation and, ultimately, the quality of the 
healing response. Therefore, the timely activa-
tion of an anti-inflammatory signal is crucial. 
There are some miRNAs that can reduce the 
inflammatory response by controlling signaling 
pathways and mediators. In keratinocytes, miR-
132 decreases the production of chemokines 
and the capability to attract leukocytes by sup-
pressing the NF-κB pathway. Conversely, miR-
132 increased the activity of the STAT3 and 
ERK pathways, thereby promoting the growth  
of keratinocyte [20]. miR-146, a NF-κB-target 
gene, modulates the inflammatory response by 
down-regulating IRAK1 (IL-1 receptor-associat-
ed kinase 1) and TRAF6 (TNF receptor-associ-
ated factor 6), which are involved in the Toll-like 
receptor (TLR) and cytokine signaling pathway. 
Meanwhile, an increase of miR-146 results in 
the down-regulation of TNF-α and IL-6 [21]. A 
recent study demonstrats that miR-124a and 
miR-125b have a big effect on cytokines and 
chemokines such as TNF-α macrophage che-
moattractant protein-1, acting as anti-inflam-

mation markers [22]. Additionally, miR-124a 
directly binds to the 3’UTR region of ccl2, exclu-
sively controlling the expression of ccl2, which 
is a type of pro-inflammatory chemokine [23]. 
Dangwal finds that miR-191 and miR-200b sig-
nificantly suppress higher circulating C-reactive 
protein and pro-inflammatory cytokine levels  
in patients with diabetes mellitus [17]. As 
described above, several alternative miRNAs 
are critical regulators of skin wound healing 
that accelerate the transition from the inflam-
matory phase to the proliferative phase. 

Cellular migration and proliferation

Following the inflammation phase, infiltrating 
leukocytes play a major role in the secretion of 
inflammatory cytokines, growth factors, and 
chemokines, which can stimulate the migration 
and proliferation of progenitor cells and the 
recruitment of keratinocytes, endothelial cells, 
and fibroblasts during the proliferative phase of 
wound healing [24, 25]. It is well recognized 
that a coordinated cellular response of kerati-
nocytes, vascular endothelial cells (VECs) and 
fibroblasts is absolutely necessary for rapid 
and effective wound healing [26]. Cellular 
migration and proliferation are very significant 
for the formation of cutaneous appendages 
and re-epithelialization after wounding [27].

Vascular endothelial cells (VECs)

With the proliferation of VECs, new blood ves-
sels begin to form to readily supply the healing 
area with plentiful oxygen and nutrients via 
angiogenesis/neovascularization [1]. This pro-
cess is vital to fueling the activity of keratino-
cytes and fibroblasts. Multiple miRNAs are 
involved in proangiogenic and antiangiogenic 
regulation, including miR-15b, -16, -17, -92a, 
-126, and -503.

Keratinocytes

In addition, keratinocytes migrate from the 
wound edge to the wound site and begin to  
proliferate and differentiate to restore skin 
integrity (Table 1). The process can be inhibited 
by various miRNAs, including miR-34, -210, 
-198, -203, and -483-3p. In particular, miR-34 
family members, including miR-34a and miR-
34c, have the ability to arrest the cell G1-phase, 
decrease cell cycle regulators (cycle regulators 
cyclin D1 and cyclin-dependent kinase 4) and 
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target the downstream of p63 to retard the pro-
liferation of keratinocytes [28, 29]. Inversely, 
some miRNAs, including miR-136, -21, and -31, 
have the ability to accelerate the process. miR-
136 can enhance proliferation and play an 
important function in TGF-1-induced prolifera-
tion arrest by targeting PPP2R2A [30]. In fact, 
PPP2R2A, which is known as one of the four 
major serine/threonine (Ser/Thr) phosphatas-
es, is a regulatory subunit of the protein phos-
phatase 2A (PP2A) and is implicated in nega-
tive control of cell growth in mammalian cells 
[31, 32]. 

Fibroblasts

A natural and correct fibroblast proliferation is 
considered as the precondition for optimal 
wound closure. Fibroblasts are responsible for 
attracting new cells by secreting growth factors 
and extra-cellular proteins. But aberrant fibro-
blast dynamics will lead to the generation of 
keloids, which will invade adjacent healthy  
tissue (Table 1). Thus, fibroblasts become the 
main cell type in the wound. miRNAs have vari-
able effects on fibroblasts, such as miR-21, 
which increases the rate of fibroblast migration 
towards the wound [33]. The over-expression of 
miR-200b has been verified as contributing to 
the aberrant proliferation of fibroblasts. In  
various fibrogenic diseases, including hypertro-
phic scarring and liver fibrotic progression, the 
expression of miR-200b is deregulated [34]. 
Previous studies have reported that the up-
regulation of miR-200b represses proliferation 
and induces apoptosis of hypertrophic scar 
fibroblasts, vice versa [35]. miR-24, -181b, 
-421, -526b, and -543 can decrease decorin in 
deep dermal fibroblasts [36].

Tissue formation

Proper cellular migration and proliferation  
contributes to the proper occurrence of tissue 
formation, including epithelialization and new 
granulation tissue formation. Likewise, the 
sprouting of capillaries from existing blood ves-
sels is indispensable by nourishing the tissue 
to expedite wound healing. Indeed, complex 
interactions between the epidermal and der-
mal compartment are essential. Over the past 
decade, numerous factors have been distin-
guished that are engaged in a complex recipro-
cal dialogue between epidermal and dermal 
cells to facilitate wound repair [37].

Angiogenesis

Angiogenesis is the process by which new  
blood vessels develop from a pre-existing vas-
cular system. Angiogenesis plays a substantial 
role in the physiological course of wound heal-
ing. Dysregulation of angiogenesis leads to 
pathological conditions [38]. A group of miR-
NAs has been reported to regulate angiogene-
sis as activators or inhibitors (Table 2).

Epithelialization

The epidermis is considered the skin’s gate-
keeper and is necessary for avoiding harm  
from external factors. Complex interactions of 
keratinocytes, fibroblasts, endothelial, immune 
cells and other cell types result in re-epithelial-
ization. E-cadherin reinforces the stabilization 
of epithelial cell-cell junctions and epithelial 
barrier function. miR-192/215 increases the 
expression of E-cadherin by repressing transla-
tion of ZEB2 [39]. miR-203 controls the target 
proteins of RAN and RAPH1 to inhibit the re-
epithelialization and re-establishment of epi-
dermal homeostasis in injured skin [40].

Tissue remodeling

When the wound is closed, the remodeling 
phase begins. Tissue remodeling is defined as 
the ultimate phase of wound healing, which 
involves shaping the physiological skin section, 
adjustments of ECM, collagen deposition, and 
scar formation. In most favorable cases, the 
injury is resolved and the fibrogenic response is 
then limited. Furthermore, the temporary scar 
tissue is repopulated by fully differentiated 
functional cells, and the repair reaches a func-
tional and morphological unification [41, 42]. 
However, in some cases, chronic or reiterative 
ulcers drive a pathogenic fibrogenic response. 
This response causes tissues to lose the nor-
mal regenerative process, resulting in perma-
nent scarring and substantial tissue remodel- 
ing.

Collagen deposition

In intact skin, the ratio of collagen type III to  
collagen type I is significantly lower than that  
in wounded skin. A higher ratio of collagen type 
III to collagen type I contributes to a more com-
pliant, ductile granulation tissue, which makes 
for extracellular matrix remodeling [43]. In par-
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ticular, miR-29b increases the ratio of collagen 
type III to collagen type I. miR-29a regulates the 
contractility of dermal fibroblasts by targeting 
TABL1 [44]. Moreover, miR-29b and miR-29c 
modulate the ECM remodeling response and 
reduce maladaptive remodeling such as 
aggressive deposition of collagen type I after 
injury [43, 45].

Scar

Scar is widely believed to be the excessive and 
persistent accumulation of extracellular matrix 
components in response to chronic tissue inju-
ry. As a crucial component of cell production, 
TGF-β plays a role in fibroblast proliferation, col-
lagen synthesis regeneration and excessive 
deposition of ECM, which leads to the final for-
mation of hypertrophic scar tissue [46]. The 
role of TGF-β in scar formation is increasingly 
attracting researchers’ attention. As of 2015, 
106 miRNAs have been detected to contribute 
to scarless wound healing by targeting the 
TGF-β pathway in fetal keratinocytes of differ-
ent gestational ages [47].

Conclusion

miRNAs play significant roles in initiating repair 
and progression of wound healing by regulating 
the processes mentioned above. In addition, 
there could be many undiscovered miRNAs that 
are involved in wound repair. Because few 
treatment options are effective in wound heal-
ing, miRNA modulation might be a novel thera-
peutic approach. Some miRNAs may contribute 
substantially to wound healing and could thus 
potentially be used therapeutically. Despite 
these encouraging findings, before miRNA-tar-
geted wound therapies can become a reality, 
large clinical trials are needed.
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