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Abstract: Brain injury is the most common injury in human cerebrovascular disease and frequently leads to ischemic 
stroke. Bazedoxifene (BZA) is an efficient drug for the treatment of patients with ischemic brain damage. However, 
the potential mechanisms mediated by BZA remain unclear. The purpose of this study was to investigate neuropro-
tective effects of BZA and explore potential mechanisms mediated by BZA in a rat model of cerebral hemorrhage 
induced by ischemia reperfusion. A cerebral hemorrhage rat model was established and treated by BZA or vehicle 
over a 30-day period. Cerebral infarct volume, neurological functions, hippocampus apoptosis, neuron viability, and 
transforming growth factor (TGF)-β-mediated AKT/GSK3β signal pathway signaling pathways were analyzed after 
treatment with BZA. Our results demonstrate that BZA treatment improved cognitive ability and motor functions, 
and attenuated body weight loss compared to the vehicle group. BZA treatment also markedly decreased cerebral 
infarct volume, neurological functions, and hippocampus apoptosis compared with vehicle-treated rat after the 30-
day treatment. In addition, BZA treatment improved cerebral water content (CWC) and blood brain barrier (BBB) dis-
ruption and increased neuronal viability compared to the vehicle group. Furthermore, BZA treatment up-regulated 
anti-apoptosis protein and down-regulated pro-apoptosis protein expression in neurons of the hippocampus in the 
cerebral hemorrhage rat model. BZA inhibited neuronal apoptosis through down-regulation of TGF-β-mediated AKT/
GSK3β signal pathway. These results indicate that BZA could improve ischemia reperfusion-induced neuronal apop-
tosis by regulation of TGF-β-mediated AKT/GSK3β signal pathway.
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Introduction

Cerebral hemorrhage is a cardiovascular sys-
tem disease, which often causes cerebrovascu-
lar death [1]. Previous reports have indicated 
that cerebrovascular injury caused by ischemia 
reperfusion frequently results in cerebral infar- 
ct, neurological functions dysfunction, and apo- 
ptosis of hippocampus [2-4]. It is widely accept-
ed that neuronal apoptosis may lead to cogni-
tive disorders in cerebrovascular injury induced 
by ischemia reperfusion [5-7]. Thereby, under-
standing the pathological processes of neuro-
nal apoptosis is essential for improvement of 
cognition impairment in cerebral hemorrhage.

Bazedoxifene (BZA) is a compound with multi-
functional activity in the treatment of human 
diseases [8]. BZA has been approved for use in 
the European Union for the treatment of osteo-

porosis and may represent a near-term thera-
peutic option for patients with advanced breast 
cancer [9]. A study showed that Bazedoxifene 
ameliorated homocysteine-induced apoptosis 
and accumulation of advanced glycation end 
products by reducing oxidative stress in MC- 
3T3-E1 cells [10]. However, the role of BZA in 
the cerebral hemorrhage has not been inves- 
tigated.

Currently, transforming growth factor (TGF)-β is 
reported to association with brain injury and 
apoptosis of nerve cells in the hippocampus 
[11]. A previous study has provided an insight 
into understanding a novel role for betaig-h3 
protein induced by TGF-β in the response of 
astrocytes to brain injury [12]. A report found 
that increasing of TGF-β expression may be  
one of indicators during acute brain injury cau- 
sed by Toxocara canis in mice [13]. Endo et al. 
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have shown that the Akt/GSK3beta pathway 
might be involved in neuronal survival in acu- 
te brain injury after subarachnoid hemorrh- 
age [14]. However, relationships between TGF- 
β and Akt/GSK3beta signal pathway have not 
clearly elaborated in neuronal apoptosis in rat 
model of cerebrovascular injury.

In this study, we first investigated the therapeu-
tic effects of BZA in rat model of cerebrovascu-
lar injury. The possible mechanism of TGF-β-
mediated Akt/GSK3β signal pathway was ana-
lyzed in neurons. We also analyzed whether de- 
creased TGF-β expression could lead to reduc- 
ed neuron apoptosis.

Materials and methods

Ethical statement

This study was approved by the Ethics Com- 
mittee of Zhejiang Chinese Medical University 
(Hangzhou, China).

Cerebral hemorrhage rat model

Six-eight male Sprague-Dawley rats (280-320 
g) were purchased from Shanghai Slack experi-
mental animals Co., LTD (Shanghai, China). All 
rats were housed in a temperature-controlled 
facility at 23±1°C and relative humidity of 
50±5% with a 12-hour light/dark cycle. A cere-
bral hemorrhage rat model was established 
using the modified ischemia reperfusion meth-
od [15]. Rats received right middle cerebral 
artery occlusion for 90 minutes and reperfu-
sion by withdrawal of the filament at 37.0°C 
during and after surgery. Immediately, ische- 
mia reperfusion-induced cerebrovascular injury 
rats were randomly divided into two groups 
(n=10 in each group) and received intravenous 
injection of BZA (10 mg/kg/day, Sigma-Aldrich) 
[16] or the same volume of PBS (Vehicle) [17]. 
The treatments were continued to 30 days.

Behavioral tests

Behavioral functional tests were performed 
including neurological deficits score and open-
field tests. Neurological deficits score was mea-
sured using a modified scoring system [18]. 
Open-field tests (locomotor activity) were used 
to analyze the efficacy of BZA on ischemia 
reperfusion injury performed as described [19].

Analysis of brain water content

On day 30, brain water content was measured 
after ischemia reperfusion-induced cerebrova- 

scular injury rat model after treatment with BZA 
as described report [20]. The brains of the rats 
were isolated as described previously [21]. Two 
hemispheres were weighed using an electronic 
analytical balance to obtain wet weights. The 
brain was dried in an electric oven at 100°C for 
24 hours to analyze the water content in the 
intracerebral hemorrhage rat model. The brain 
water content was calculated as the following 
formula: (wet weight-dry weight/wet weight) × 
100 (%).

Quantitative analysis of blood-brain barrier 
permeability

BBB leakage was assessed as previously des- 
cribed with slight modification [22]. The experi-
mental rats were received 100 μl of a 5% solu-
tion of Evan’s blue in BZA or saline adminis-
tered intravenously 10 days following ischemia 
reperfusion-induced injury. Two hours after 
Evan’s blue injection, cardiac perfusion was 
performed under deep anesthesia with 200 ml 
of saline to clear the cerebral circulation of 
Evan’s blue. The brain was isolated and sliced. 
The two hemispheres were homogenized in 
750 μl of N,N-dimethylformamide (DMF). Quan- 
titative analysis of blood-brain barrier permea-
bility was analyzed (λex 620 nm, λem 680 nm) 
using Evan’s blue content.

TGF-β overexpression

On day 30, neuron cells were isolated from ex- 
perimental rats as referenced described [23]. 
Neuron cells (1 × 105) were cultured in six-well 
plate until 85% confluence and the media was 
then removed from the culture plate followed 
three PBS washes. Neuron cells were transfect-
ed by plentivirus-TGF-β (pTGF-βB) or plentivi- 
rus-Vector (pvector) using Lipofectamine 2000 
(Sigma-Aldrich) according to the manufactur-
ers’ instrument. After 48 hours of transfection, 
TGF-β-overexpressed neuron cells were treat- 
ed with BZA (1, 1.5, 2 and 2.5 mg/ml, Sigma-
Aldrich) for further analysis.

Cells viability assay

Neuron cells (2 × 103 cells/well) were seeded  
in 96-well plates and cultured at 37°C for 12 
hours. treated with 10 µl of MTT (5 mg/ml, Sig- 
ma-Aldrich) for 3 hours at 37°C. After incuba-
tion, Cells were captured with light microscopy 
(Bx51, Olympus Corporation, Shinjuku-ku, Ja- 
pan) and purple formazan crystals were dis-
solved using isopropanol (15 μl, isopropanol). 
The absorbance was recorded on a micropla- 
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te reader (Multiskan FC, THERMO SCIENTIFIC) 
at a wavelength of 570 nm. Neuronal viability 
was determined by percent of cell viability cal-
culated as the ratio between mean absorban- 
ce of three samples and mean absorbance of 
controls.

Western blot

On day 30, neuron and TGF-β-overexpressing 
cells were lysed in RIPA buffer (M-PER reagent 
for the cells and T-PER reagent for the tissu- 
es, Thermo Scientific) followed homogenized at 
4°C for 10 minutes. Protein concentration was 
measured by a BCA protein assay kit (Thermo 
Scientific, Pittsburgh PA, USA). A total of 20 μg 
protein extracts was electrophoresed on 12.5% 
polyacrylamide gradient gels and then trans-
ferred to polyvinylidene fluoride (PVDF) membr- 
ane (Millipore, Massachusetts, USA). The mem-
branes were incubated in blocking buffer (5% 
milk) prior to incubation with primary antibod-
ies at 4°C overnight. The primary rabbit anti-rat 
antibodies used in the immunoblotting assays 
were: TGF-β (1:1200, ab31013, Abcam), Bcl-2 
(1:1000, ab692, Abcam), Abcam), Bcl-xl (1: 
1200, ab32370, Abcam), caspase-8 (1:1000, 
ab25901, Abcam), caspase-3 (1:1200, ab2171, 
Abcam), AKT (1:500, ab151279, Abcam), pAKT 
(1:500, ab8805, Abcam), GSK3β (1:1000, ab- 
32391, Abcam) and β-actin (1:2000, ab8226, 

Abcam). After incubation, the membrane was 
washed three times in TBST and incubated with 
HRP-conjugated goat anti-rabbit IgG mAb (PV-
6001, ZSGB-BIO, Beijing, China) for 1 hour at 
37°C. After three-time washing in TBST, mem-
brane was developed using a chemilumines-
cence assay system (Roche) and exposed to 
Kodak exposure film. Densitometric quantifica-
tion of the immunoblot data was performed by 
using the software of Quantity-One (Bio-Rad). 

TUNEL assay

Tissues in hippocampus or neuronal cells in 
cerebral hemorrhage rat model were analyzed 
using terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL) as- 
say (DeadEndTM Colorimetric Tunel System, Pro- 
mega) according to the manufacturer’s instruc-
tions. TGF-β-overexpressed cells were treated 
with BZA (2 mg/ml, Sigma-Aldrich) or PBS for 
12 hours at 37°C. Cells were incubated TUNE 
(DeadEndTM Colorimetric Tunel System, Prome- 
ga). Cells were washed with PBST (Sigma-Ald- 
rich) three times for 5 minutes at 37°C follow- 
ed by incubated with 5% DPAI (Sigma-Aldrich) 
for 15 minutes at 37°C. Finally, images were 
captured with a ZEISS LSM 510 confocal micro-
scope at 488 nm. The infarct volume was cal-
culated by using the software of Developer XD 
1.2 (Definiens AG, Munich, Germany).

Figure 1. BZA decreases cerebral infarct vol-
ume and improves cognitive competence. A. BZA 
treatment improves cognitive ability of cerebral 
hemorrhage rat. B. BZA treatment improves mo-
tor functions of cerebral hemorrhage rat. C. BZA 
treatment decreases body weight loss of cerebral 
hemorrhage rat. **P<0.01.
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Statistical analysis

Data are presented as means ± SD of triplicate. 
All data were analyzed by SPSS 19.0 software 
(SPSS, Chicago, IL, USA). Significant differenc-
es between two groups were analyzed by two-
tail unpaired Student’s t-test. Multiple groups 
differences were analyzed using one-way analy-
sis of variance (ANOVA) followed Tukey HSD 
test. A P-value of <0.05 and <0.01 was consid-
ered to indicate a statistically significant. 

Results

BZA decreases cerebral infarct volume and 
improves cognitive competence

The in vivo efficacy of BZA in cerebral hemor-
rhage rat model was first investigated. As sh- 
own in Figure 1A, BZA treatment markedly im- 
proved cognitive ability compared to vehicle 
group. BZA treatment improved motor func-
tions, and attenuated body weight loss com-
pared to vehicle group (Figure 1B and 1C). 
These results indicate that BZA is an efficient 
drug for the treatment of cerebral hemorrhage 
rat model induced by reperfusion injury.

BZA improves CWC and BBB disruption in cere-
bral hemorrhage rat model

The effects of BZA on CWC and BBB disruption, 
as well as cerebral infarct volume were next 
investigated. BZA treatment significantly decre- 
ased the cerebral water content (CWC) com-
pared to vehicle group (Figure 2A). As shown in 
Figure 2B, more Evans blue passed from the 
circulation through the BBB in the BZA group 
than vehicle, which suggests that blood brain 
barrier (BBB) disruption was decreased by BZA 
treatment in cerebral hemorrhage rat model 
(Figure 2B). BZA treatment also decreased ce- 
rebral infarct volume compared to vehicle group 
(Figure 2C). These results suggest that BZA is 
beneficial for improvement of cerebral hemor-
rhage-induced symptoms. 

BZA treatment decreases neuron cells apopto-
sis via regulation of apoptosis-related protein

The neuronal viability and apoptosis was in- 
vestigated in cerebral hemorrhage rat model. 
As shown in Figure 3A, BZA increased neuron- 
al viability in cerebral hemorrhage rat model. 
TUNEL-positive neurons in hippocampus were 
markedly decreased by BZA treatment com-

Figure 2. BZA improves CWC and BBB disruption in cerebral hemorrhage rat model. A. BZA treatment decreases the 
CWC of cerebral hemorrhage rat compared to vehicle group. B. BZA treatment decreases BBB disruption of cerebral 
hemorrhage rat. C. BZA treatment decreases cerebral infarct volume compared to vehicle group determined by 
TUNEL assay under ZEISS LSM 510 confocal microscope. **P<0.01.
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pared to control group (Figure 3B). Anti-apo- 
ptosis protein expression levels of Bcl-2 and 
Bcl-xl were up-regulated and pro-apoptosis  
protein expression levels of Caspase-3 and 
Caspase-8 were down-regulated by BZA treat-
ment compared to control (Figure 3C). These 
results indicate that BZA could attenuate neu-
ron cells apoptosis via regulation of apoptosis-
related protein.

BZA ameliorates neuron cells apoptosis 
through regulation of TGF-β-mediated Akt/
GSK3β signal pathway

The TGF-β-mediated AKT/GSK3β signal path-
way was analyzed in neurons. As shown in Fig- 
ure 4A, 4B, BZA decreased TGF-β, Akt, pAKT, 
GSK3β expression as well as pAkt/Akt ratio in 
neurons. Addition of 2 mg/ml BZA could mark-

edly increase viability of neurons, therefore,  
2 mg/ml BZA was used for the in vitro as- 
says (Figure 4C). TGF-β overexpression (pTGF- 
β) up-regulated both Akt and GSK3β expres-
sion levels, and abolished BZA-regulated Akt 
and GSK3β expression in neurons (Figure 4D). 
TGF-β overexpression abolished BZA-decrea- 
sed pAkt/Akt ration in neurons (Figure 4E). 
TGF-β overexpression (pTGF-β) also canceled 
BZA-decreased apoptosis of neurons (Figure 
4F) thus indicating that BZA can decrease  
neuron cells apoptosis through down-regula-
tion of TGF-β-mediated Akt/GSK3β signal pa- 
thway.

Discussion

Currently, neuronal apoptosis plays essential 
role in the behavioral function loss in patients 

Figure 3. BZA treatment decreases neuron cells apoptosis via regulation of apoptosis-related protein. A. Neuronal 
viability in BZA and vehicle group under light microscope. B. BZA decreases TUNEL-positive neurons in hippocampus 
treatment compared to control group. C. BZA regulates apoptosis-related protein of Bcl-2, Bcl-xl, Caspase-3, and 
Caspase-8 in neuron cells.
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with cerebral hemorrhage [24]. Therefore, in- 
creasing anti-apoptosis effects may be con- 
tribute to the excitability in the hippocampus in 
the treatment of cerebral hemorrhage-induced 
nerve cell injury. In this study, the therapeutic 
effects of BZA were first analyzed in cerebral 
hemorrhage rat model induced by reperfusion 
injury. Findings in this study found that BZA ef- 
ficiently decreased hippocampus cells apopto-
sis via down-regulation of TGF-β-mediated Akt/
GSK3β signal pathway that is one of the novel-
ties in this study. 

A previous report has identified that alleviation 
of neural apoptosis can improve anti-BBB dis-
ruption after subarachnoid hemorrhage [25]. 
Dong et al. have identified that inhibition of 
apoptosis signaling attenuated early brain inju-
ry induced by subarachnoid hemorrhage [26]. 
Cerebral hemorrhage in the rat model increased 
apoptosis of nerve cells in the hippocampus. 
Evidence has also indicated that BZA amelio-
rates homocysteine-induced apoptosis and it 
may be a potent therapeutic drug for prevent-
ing Hcy-induced bone fragility [10]. In this work, 
we observed that BZA attenuated neuron cells 
apoptosis via increasing anti-apoptosis protein 
Bcl-2 and Bcl-xl, as well as decreasing pro-
apoptosis protein caspase-3 and caspase-8. In 
vivo assays found that BZA improved cerebral 
hemorrhage-induced symptoms, such as cogni-
tive ability, motor functions, and body weight 
loss, which may be an efficient drug for the 
treatment of cerebral hemorrhage rat model 
induced by reperfusion injury. However, further 
study should be performed to evaluate the th- 
erapeutic effects of BZA in the pathological 
processes in cerebral hemorrhage.

TGF-β can modulate microglial phenotype and 
promote recovery after intracerebral hemor-
rhage, suggesting that TGF-β1 may be a thera-
peutic target for the treatment of acute brain 
injury [27]. Here we found that BZA down-regu-
lated TGF-β1 expression in neuron cells in hip-
pocampus in cerebral hemorrhage rat model. 
Hong et al. have shown that hydrogen-rich sa- 
line can attenuate neuronal apoptosis in early 
brain injury and improve the neurofunctional 

outcome after subarachnoid hemorrhage via 
the Akt/GSK3β pathway [28]. Li et al. have 
found that NGF attenuated high glucose-indu- 
ced endoplasmic reticulum stress, which could 
prevent Schwann cells against apoptosis by 
activating the PI3K/Akt/GSK3β and ERK1/2 
pathways [29]. We found that 2 mg/ml of BZA 
could markedly improve viability of neuron cells 
in hippocampus in vitro assay. In this work, we 
found that BZA treatment down-regulated Akt/
GSK3β signal pathway in neuron cells in hippo-
campus. Importantly, BZA treatment regulated 
neuron cells apoptosis in hippocampus via 
TGF-β1-mediated Akt/GSK3β signal pathway.

In conclusion, down-regulation of TGF-β1-me- 
diated Akt/GSK3β signal pathway can be ben-
eficial for inhibiting neuronal cell apoptosis in 
cerebral hemorrhage. Administration of BZA to 
disrupt TGF-β1-mediated Akt/GSK3β signal pa- 
thway resulted in neuroprotective for ische- 
mia reperfusion-induced cerebrovascular inju-
ry, suggesting BZA may be a potential thera-
peutic agent for cerebral hemorrhage therapy.
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