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Dickkopf-1 induces pancreatic carcinogenesis through 
upregulation of c-Myc and cyclin D1
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Abstract: Dickkopf-1 (DKK-1) plays an important role in tumorigenesis. It has been previously demonstrated that 
DKK-1 is overexpressed in human pancreatic cancer tissues. This present study aimed to investigate the roles of 
DKK-1 in pancreatic carcinogenesis. Knockdown of DKK-1 by siRNA inhibited proliferation, migration, and apoptosis 
in PANC-1 human pancreatic cancer cells. Additionally, knockdown resulted in a decrease in mRNA and protein ex-
pression levels of DKK-1, c-Myc, and cyclin D1. Positive correlation between DKK-1, c-Myc and cyclin D1 expression 
was observed. Present data suggests that DKK-1, c-Myc and cyclin D1 promote pancreatic carcinogenesis.
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Introduction

Wnt signaling plays a critical role in cell prolif-
eration, differentiation, and tumorigenesis. Wnt 
signaling is classified as either canonical 
(β-catenin-dependent) or non-canonical (β-ca- 
tenin-independent) [1]. In canonical pathways 
[2], Wnt binds to members of the Frizzled (Fz) 
family of transmembrane cell surface recep- 
tors and low-density lipoprotein receptor-relat-
ed proteins, 5 and 6 (LRP5/6), to form a terna- 
ry complex (Fz-LRP5/6). This complex triggers 
the activation of Wnt signaling and expression 
of Wnt target genes, including c-Myc, cyclin D1, 
and c-Jun [3]. Non-canonical Wnt signaling 
pathways promote planar cell polarity, activa-
tion of small GTPases, and kinases, including 
JNK and PKC, and induces calcium mobilization 
[4]. Wnt signaling is regulated by both intra-  
and extra-cellular factors, including members 
of the Dickkopf (DKK) proteins family [2]. DKK 
proteins are secreted Wnt/β-catenin antago-
nists. The DKK family consists of four iso- 
forms (DKK-1 to 4) and DKK-3-related protein 
Dkkl1 (soggy) [5]. DKK-1 inhibits canonical Wnt 
signaling by disrupting Wnt-induced Fz-LRP6 
complex formation, leading to developmental 

abnormalities and tumorigenesis [6, 7]. Several 
studies [8-12] have demonstrated that DKK-1 
has a role in tumorigenesis. However, DKK-1 
expression and function vary depending on the 
histological type of the tumor and tissue 
microenvironment. 

Pancreatic cancer accounts for over 85% of 
pancreatic tumors, with a 5-year survival rate of 
less than 5% [13]. It is characterized by rapid 
growth and invasion, a high degree of malignan-
cy, advanced-stage diagnosis, and poor prog-
nosis [14]. Several studies have demonstrated 
that DKK-1 is overexpressed in pancreatic can-
cer tissues and is a diagnostic biomarker [15-
17]. It can promote pancreatic cancer aggres-
siveness and tumor cell migration [17]. It has 
been previously demonstrated that DKK-1 ex- 
pression was higher in pancreatic cancer tis-
sues, compared to benign pancreatic lesions, 
suggesting that it may promote tumorigenesis 
[18]. This present study aimed to investigate 
the roles of DKK-1 in pancreatic carcinogene-
sis. This study analyzed the effects of DKK-1 
knockdown by siRNA on DKK-1, c-Myc, and 
cyclin D1 expression, as well as cell growth in 
human PANC-1 pancreatic cancer cells. 
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Materials and methods

Cell culture and transfection 

Human PANC-1 pancreatic cancer cells (CAS 
Shanghai Life Sciences Research Institute, 
China) were cultured in DMEM (HyClone, GE 
Healthcare, Chicago, IL, USA), supplemented 
with 12% fetal bovine serum (Hangzhou 
Evergreen, China) and penicillin/streptomycin. 
Cells were cultured in 6- or 96-well plates at 
37°C in a humidified incubator with 5% CO2. 
Once cells reached 30-50% confluence, the 
medium was replaced with serum- and antibiot-
ic-free DMEM. Cells were cultured for an addi-
tional 4 hours prior to transfection. They were 
randomly divided into three groups: DKK-1 
siRNA (transfected with siDKK-1-1, siDKK-1-2, 
or siDKK-1-3), NC (transfected with negative 
control siRNA), and blank (non-transfected) 
groups. Oligonucleotides were designed and 
synthesized by the Shanghai Jima Company 
(Shanghai, China). Sequences are shown in 
Table 1. Cell transfection was performed using 
LipofectamineTM2000 (Thermo Fisher Scientific 
Inc., Waltham, MA, USA). Transfection efficien-

fection. All experiments were repeated three 
times.

RT-PCR 

Total RNA was extracted using TRIzol (Thermo 
Fisher Scientific Inc.) and the one-step method. 
Samples were digested with DNase I to degra- 
de any DNA present in isolated RNA samples. 
RNA concentrations and purity were quantifi- 
ed using a spectrophotometer. RNA was used 
in experiments if the ratio of absorbance at 
260 and 280 nm was between 1.8-2.0. This 
study reversely transcribed 2 µg of total RNA 
using a reverse transcription kit (Thermo Fish- 
er Scientific Inc.), according to manufacturer 
protocol. 

RT-PCR was performed with a PCR instrument 
(Dongsheng International Trade Company, 
China). PCR primers for DKK-1, c-Myc, cyclin 
D1, and GAPDH were designed based on pub-
lished genomic sequences in GenBank and 
synthesized by the Nanjing GenScript Com- 
pany (Table 2). Amplification conditions were  
as follows: denaturation at 95°C for 3 minutes, 
followed by amplification of the target DNA for 
35 cycles (denaturation at 95°C for 30 sec-
onds; annealing for 30 seconds at 59.9°C 
[DKK-1], 59.9°C [c-Myc], 58.7°C [cyclin D1], or 
54.4°C [GAPDH]; extension at 72°C for 1 min-
ute), and a final extension at 72°C for 10 min-
utes. The total reaction volume was 50 μL:5 μL 
10 × PCR buffer, 3 μL MgCl2, 1 μL 10 mM 
dNTPs, 1 μL forward primer, 1 μL reverse prim-
er, 2.0 μL cDNA, and 37 μL double distilled 
water. 

DNA products were subjected to agarose gel 
electrophoresis on a 2% agarose gel, contain-

Table 1. Oligonucleotide sequences
siRNA Sequence (5’ to 3’)
siDKK-1-1 Sense GAUGGGUAUUCCAGAAGAATT

Anti-sense UUCUUCUGGAAUACCCAUCTT
siDKK-1-2 Sense GCCGGAUACAGAAAGAUCATT

Anti-sense UGAUCUUUCUGUAUCCGGCTT
siDKK-1-3 Sense GUACCAAGCAUAGGAGAAATT

Anti-sense UUUCUCCUAUGCUUGGUACTT
NC siRNA Sense UUCUCCGAACGUGUCACGUTT

Anti-sense ACGUGACACGUUCGGAGAATT
Fluorescently-labeled siRNA Sense UUCUCCGAACGUGUCACGUTT

Anti-sense ACGUGACACGUUCGGAGAATT

Table 2. Primer sequences

Gene Primer sequence (5’ to 3’) Amplified 
length (bp)

GAPDH F: GTGAAGGTCGGAGTCAACG 300
R: GGTGAAGACGCCAGTGGACTC

DKK-1 F: CCAGCGTTGTTACTGTGGAG 128
R: AGGAGTTCACTGCATTTGGA

c-Myc F: CACAGCAAACCTCCTCACAG 101
R: GGATAGTCCTTCCGAGTGGA

Cyclin D1 F: CATTGATTCAGCCTGTTTGG 103
R: GAATTCATCGGAACCGAACT
R: CTCTCTGGGCTTGTTTCCTC

cy was compared using differ-
ent ratios of siRNA to Lipofec- 
tamineTM2000 (1:1, 1:1.5 and 
1:2) using fluorescence micros-
copy. Relative levels of DKK-1 
mRNA after transfection with 
indicated siRNAs were ana-
lyzed using RT-PCR. Proli- 
feration and migration assays 
were performed after transfec-
tion of PANC-1 cells for 24 or 
48 hours. This study analyzed 
mRNA and protein expression 
after 48 hours. Apoptosis was 
analyzed 48 hours after trans-
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ing 0.4 μg/mL ethidium bromide in Tris/Bo- 
rate/EDTA buffer. DKK-1, c-Myc, and cyclin D1 
levels were quantified by imaging the bands 
under UV light and quantifying band intensity in 
gray scale images. Target gene expression was 
normalized to that of GAPDH as an internal 
control. 

MTT assays

Cells were transfected for 24 hours in 96-well 
plates. Following transfection, the medium was 

replaced with serum-containing medium. Next, 
10 μL of 5 mg/mL MTT solution (Beyotime 
Biotechnology, Nantong, China) was added to 
the cells for 4 hours prior to the end of days 1, 
2 and 3. Supernatant was removed and 100 μL 
of DMSO was added for 10 minutes in the dark 
to dissolve the formazan crystals. Optical den-
sities at 490 nm were measured using a micro-
plate reader. Each experiment was performed 
in triplicate.

Scratch-wound assays

Cells were transfected for 24 hours in 6-well 
plates. Following transfection, the medium was 
replaced with serum-containing medium. A 
sterile pipette tip was used to scratch a straight 
line (1 cm in length) down the middle of the cell 
monolayer. Cells were then incubated for 24 
hours and imaged using an inverted micro-
scope to analyze cell migration.

Flow cytometry

Cell culture media were discarded 48 hours 
after transfection. Cells were then washed 
twice with phosphate-buffered saline (PBS) 
and digested with 1 mL trypsin for 45 seconds. 
Serum-containing media were added to termi-
nate the digestion. The cells were collected  
and centrifuged at 800 rpm for 4 minutes. 
Supernatant was discarded, then the cell pel-
lets were washed twice and resuspended in 
PBS. Apoptosis was analyzed using the Annexin 
V-FITC Apoptosis Detection Kit (Beyotime 
Biotechnology). Briefly, 1 × 106 cells/mL in 100 
μL were stained at 4°C for 30 minutes in the 
dark, washed three times with PBS, and fixed 
with 1% paraformaldehyde. Labeled cells were 

Figure 1. Analysis of transfection efficiency. Human PANC-1 pancreatic cancer cells were transfected with DDK-1-
1 siRNA. Ratios of DDK-1-1 siRNA to LipofectamineTM2000 were as follows: (A) 1:1; (B) 1:1.5; (C) 1:2. Transfection 
efficiency was analyzed by fluorescence microscopy. Typical pictures are shown in a phase contrast mode. Original 
magnification, × 100.

Figure 2. Effects of DKK-1 knockdown with siD-
KK-1-1, siDKK-1-2 and siDKK-1-3 on DKK-1 mRNA 
expression. PANC-1 cells were transfected with 
siDKK-1-1, siDKK-1-2 or siDKK-1-3 for 48 hours. 
Total RNA was extracted and DKK-1 mRNA expres-
sion analyzed by RT-PCR. Data are shown as mean 
± SEM (n = 3). *, P < 0.01 vs. the NC group. Lane 1, 
marker; lane 2, siDKK-1-1; lane 3, siDKK-1-2; lane 4, 
siDKK-1-3; lane 5, NC; lane 6, blank.
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analyzed by flow cytometry using a FACSCalibur 
instrument (Becton Dickinson, Germany) and 
CellQuest analysis software (BD Biosciences, 
Franklin Lakes, NJ, USA). 

Western blotting

Cells were harvested 48 hours after transfec-
tion, as described above. Cells were resus-
pended in 150 μL of cell protein lysis buffer 
(RIPA buffer to PMSF ratio of 100:1). Total pro-
tein was quantified using Bradford assays  
and 80 μg was analyzed by western blotting 
with anti-DKK-1 (Cell Signaling Technology Inc, 
Danvers, MA, USA), anti-c-Myc (Beyotime Bio- 
technology), or anti-cyclin D1 (Beyotime Biote- 
chnology) polyclonal antibodies. Immunoreac- 
tive bands were visualized using an enhanced 
chemiluminescence detection kit (Amersham 
Biosciences, Piscataway, NJ, USA), then ex- 
posed to x-ray film. Photographs were digitized 
and protein expression was normalized to 
β-actin. The magnitude of the immune signal 
was shown as a percentage of internal control.

Statistical analysis

Data are expressed as mean ± standard er- 
ror of the mean (SEM). Statistical analysis was 
performed with SPSS software. Tukey’s-b in 

one-way analysis of variance was used to 
assess differences in cell proliferation, mRNA, 
and protein levels. Correlation of DKK-1, c-Myc, 
and cyclin D1 gene expression was assessed 
using Pearson’s correlation analysis. P < 0.05 
indicates that differences are statistically 
significant.

Results

Transfection efficiency 

This study varied the volume of Lipofecta- 
mineTM2000 to DKK-1 siRNA and analyzed the 
transfection efficiency of PANC-1 pancreatic 
cancer cells after 48 hours by imaging the cells 
using an inverted fluorescence microscope. 
Transfection efficiency was 70%, 30% and 50% 
with volume ratios of 1:1, 1:1.5, and 1:2, 
respectively. Thus, the optimal ratio was cho-
sen as 1:1 (Figure 1A-C).

DKK-1 mRNA expression

DKK-1 mRNA expression was analyzed aft- 
er knockdown with siDKK-1-1, siDKK-1-2, or 
siDKK-1-3 using RT-PCR. DKK-1 mRNA expres-
sion was lower in the siDKK-1 group, compared 
to the blank and negative control (NC) groups 
(Figure 2). It was found that siDKK-1-1 resulted 

Figure 3. Effects of DKK-1 knockdown on cell migration. PANC-1 cells were transfected with siDKK-1-1 in 6-well 
plates for 24 hours. A sterile pipette tip was used to scratch-wound the cell monolayer in (A, D) blank group, (B, E) NC 
group and (C, F) siDKK-1-1 group. Cells were cultured for an additional 24 hours and then imaged using an inverted 
microscope. The migration ability of the cells was analyzed at 0 (A-C) and 24 hours (D-F). Original magnification, × 
100.
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in the greatest reduction in DKK-1 mRNA 
expression, compared to siDKK-1-2 or siDKK-1-
3. Therefore, cells were transfected with siDKK-
1-1 in all subsequent experiments. 

DKK-1 knockdown reduces PANC-1 cell migra-
tion

Scratch-wound assay was employed to ev- 
aluate the effects of DKK-1 knockdown on 
PANC-1 cell migration. In all three groups,  
gradual migration of cells into cell-free areas 
was observed 1 day after scratching. How- 

ever, the number of cells that migrated into  
the scratched area was lower in the siDKK-1-1 
group, compared to the blank and NC groups 
(Figure 3A-F).

DKK-1 knockdown reduces PANC-1 cell prolif-
eration

To investigate the effects of DKK-1 knockdown 
on PANC-1 cell proliferation, this study trans-
fected PANC-1 cells with siDKK-1-1 and ana-
lyzed cell proliferation after 24, 48 and 72 
hours. No differences in cell proliferation were 
observed between blank, NC, and siDKK-1-1 
groups after 24 hours. However, cell prolifera-
tion was reduced in the siDKK-1-1 group, com-
pared to the blank and NC groups after 48 and 
72 hours (Figure 4). 

Cell apoptosis 

To study the influence of DKK-1 knockdown  
on PANC-1 cell apoptosis, this study analyz- 
ed early, late, and total apoptosis rates in PANC-
1 cells in response to DKK-1 knockdown. 
Results showed that rates of early, late, and 
total apoptosis were higher in the siDKK-1-1 
group, compared to the blank and NC groups 
(Figure 5).

Analysis of DKK-1, c-Myc and cyclin D1 mRNA 
expression

To investigate the effects of DKK-1 knockdown 
on expression of Wnt target genes, including 
c-Myc and cyclin D1, mRNA levels of DKK-1, 
c-Myc, and cyclin D1 were analyzed in PANC-1 
cells 48 hours after transfection with siDKK-1-1 
via RT-PCR. DKK-1, c-Myc, and cyclin D1 mRNA 
levels were lower in the siDKK-1-1 group, com-
pared to the blank and NC groups (Figure 6A). 
Positive correlation was observed among DKK-
1, c-Myc, and cyclin D1 expression in the siDKK-
1-1 group (Figure 6B).

DKK-1, c-Myc and cyclin D1 protein expression

The effects of DKK-1 knockdown on protein 
expression of Wnt target genes was examin- 
ed, including c-Myc and cyclin D1. Western  
blot analysis confirmed that levels of DKK-1, 
c-Myc, and cyclin D1 were lower in the si- 
DKK-1-1 group, compared to blank and NC 
groups (Figure 7A). Positive correlation am- 
ong DKK-1, c-Myc, and cyclin D1 protein ex- 

Figure 4. Effects of DKK-1 knockdown on cell prolif-
eration. MTT assays were performed 24 hours after 
transfection of PANC-1 cells with siDKK-1-1. Prolif-
eration capacity was compared between the blank, 
NC and siDKK-1-1 groups after 1, 2 and 3 days. Data 
are shown as mean ± SEM (n = 3). *, P < 0.01 vs. 
the NC group.

Figure 5. Effects of DKK-1 knockdown on apopto-
sis. Apoptosis was analyzed in the blank, NC and 
siDKK-1-1 groups 48 hours after transfection using 
flow cytometry. Living cells are observed in the lower 
left quadrant, cells with mechanical damage in the 
upper left quadrant, late apoptotic cells in the upper 
right quadrant, and early apoptotic cells in the right 
lower quadrant. Data are shown as mean ± SEM (n = 
3). #, P < 0.05; *, P < 0.01 vs. the NC group.
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pression was found in the siDKK-1-1 group 
(Figure 7B).

Discussion

The present study found that knockdown of 
DKK-1 in pancreatic cancer cells by siRNA 

inhibited proliferation and migration, resulting 
in a decrease in DKK-1, c-Myc and cyclin D1 
mRNA and protein levels.

There were 48,960 new pancreatic cancer 
cases and 40,560 deaths in the United States 
in 2015 [5]. Although numerous studies have 

Figure 6. Effects of DKK-1 knockdown on DKK-1, c-Myc, and cyclin D1 mRNA expression. A. DKK-1, c-Myc, and cyclin 
D1 mRNA expression in the blank, NC, and siDKK-1-1 groups was analyzed 48 hours after transfection by RT-PCR. 
GAPDH was as the internal reference. Data are shown as mean ± SEM (n = 3). *, P < 0.01 vs. the NC group. Lane 1, 
blank; lane 2, NC; lane 3, siDKK-1-1. B. Analysis of the correlation between DKK-1, c-Myc and cyclin D1 expression 
using Pearson’s correlation analysis. 

Figure 7. Effects of DKK-1 knockdown on DKK-1, c-Myc, and cyclin D1 protein levels. A. Western blot analysis of 
DKK-1, c-Myc, and cyclin D1 levels in the blank, NC, and siDKK-1-1 groups 48 hours after transfection. β-actin as the 
internal control. Data are shown as mean ± SEM (n = 3). #, P < 0.05; *, P < 0.01 vs. the NC group. Lane 1, blank; 
lane 2, NC; lane 3, siDKK-1-1. B. Analysis of the correlation between DKK-1, c-Myc and cyclin D1 expression using 
Pearson’s correlation analysis. 
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investigated the etiology of pancreatic cancer, 
there has been limited progress in treatment of 
the disease, partly due to the location of the 
tumor within the abdominal cavity and difficult-
ly in diagnosing the disease at an early stage. 
Several studies have demonstrated that DKK-1 
is overexpressed and is a diagnostic biomarker 
of pancreatic cancer [15-17]. This study also 
demonstrated elevated DKK-1 expression in 
pancreatic cancer tissues, hypothesizing that 
DKK-1 could play a role in tumorigenesis [18].

Multiple roles of DKK-1 in tumorigenesis have 
been described, indicating there may be differ-
ences in DKK-1 activity depending on tumor 
histological type and native tissue microenvi-
ronment [8-12]. High DKK-1 expression has 
been associated with enhanced tumor cell 
migration and invasion in non-small cell lung 
and esophageal cancer [17, 19, 20]. The pres-
ent study demonstrated that DKK1 knockdown 
reduced pancreatic cancer cell proliferation 
and migration.

Activation of canonical Wnt/β-catenin signaling 
promotes expression of Wnt target genes, 
including c-Myc and cyclin D1 [2, 3]. The c-Myc 
proto-oncogene promotes cell proliferation, dif-
ferentiation, and tumorigenesis. Azmi et al. 
demonstrated high c-Myc expression in BxPC-3 
and Colo-357 pancreatic cancer cells. They 
also showed that siRNA knockdown of c-Myc 
inhibited tumor growth [21]. Cyclin D1 is over- 
expressed in many tumors, including liver, lung, 
breast, and colon cancer [22-25]. Overex- 
pression of cyclin D1 in pancreatic cancer cells 
has been correlated with reduced survival  
[26, 27]. DKK-1 inhibits canonical Wnt signaling 
to promote tumor progression [6, 7]. The pres-
ent study found that DKK-1 knockdown reduc- 
ed pancreatic cancer cell proliferation and 
migration by reducing c-Myc and cyclin D1 
expression. Thus, DKK-1 may promote pancre-
atic carcinogenesis by inducing c-Myc and 
cyclin D1 expression. Further studies are nec-
essary to investigate the regulatory function of 
DKK-1 on c-Myc and cyclin D1 genes in a mice 
model.
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