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Abstract: Bronchopulmonary dysplasia (BPD) is a chronic lung disease that most commonly occurs in premature 
infants who have needed mechanical ventilation and oxygen therapy for acute respiratory distress, but can also 
occur in immature infants who have had few signs of initial lung disease. Vascular endothelial growth factor (VEGF) 
has been shown to play a central role in vascular development. VEGF is a potent endothelial cell-specific mitogen 
and survival factor that stimulates angiogenesis, promotes vessel remodeling, and enhances endothelial survival. 
VEGF signaling is absolutely critical for vascular development and embryonic survival, and appears to protect the 
lung against hyperoxia or cytokine-induced endothelial cell injury. Whether disruption of VEGF signaling impairs lung 
vascular growth and contributes to the pathogenesis of BPD has been uncertain. Since the establishment of “vas-
cular hypothesis of BPD”, vascular endothelial growth factor (VEGF) has been adopted as one of the means for the 
treatments of BPD. However, the time of using VEGF is not unified. In this review, we firstly introduced the definition 
of BPD, and then explored the pathology, roles and mechanisms of VEGF in BPD, and finally briefly summarized the 
timing of using VEGF to treat BPD.
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Introduction

Bronchopulmonary dysplasia (BPD) is the most 
common disease among surviving premature 
infants and is associated with poor outcomes 
of long-term lung maturity and neuro-develop-
ment [1-4]. Fortunately, various treatments for 
BPD have been developed, greatly increasing 
the survival rate of premature infants. The “old” 
BPD focuses mainly on lung injury resulting 
from oxygen therapy and mechanical ventila-
tion, while the “new” BPD, on abnormalities in 
the lung development [1, 5, 6]. Recent reviews 
have shown that pulmonary vascular disease 
has become the new frontier of BPD research 
[5, 7]. According to the “vascular hypothesis of 
BPD”, disruption of angiogenesis during lung 
maturity could impair lung development by 
decreasing alveolarization and pulmonary arte-
rial density [8]. VEGF is a major mediator of vas-
cular permeability, endothelial cell proliferation 
and migration, which is very important in vascu-
logenesis and angiogenesis [9, 10]. Previous 
studies have demonstrated that the expression 
of VEGF mRNA and protein decreased in alveo-
lar lavage fluid or peripheral blood in children 

with BPD or in animal models [11, 12]. 
Researchers have begun to explore the use of 
VEGF replacement therapy in BPD [13, 14]. 
However, the diagnosis of BPD is currently 
based on the need for supplemental oxygen for 
at least 28 days after birth, and BPD is classi-
fied into several grades according to the respi-
ratory support required at 36 postmenstrual 
weeks [15, 16]. So will it be late to take VEGF at 
36 postmenstrual weeks? Is it necessary to 
give VEGF treatment in 24 hours after birth? 
The earlier the better? With the above ques-
tions in mind, we reviewed the pathophysiologi-
cal process of BPD, the mechanism of VEGF 
involved in angiogenesis and stabilization, and 
the status quo of VEGF application in the treat-
ment of BPD, aiming to determine the right time 
of taking VEGF.

Definition of BPD

Bronchopulmonary dysplasia (BPD) was first 
defined by Northway and his coworkers in 1967 
[17]. It was described as prolongation of the 
healing phase of respiratory-distress syndrome 
combined with a generalized pulmonary oxygen 
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toxicity involving mucosal, alveolar and vascu-
lar tissues. They stressed the need of neonates 
for the oxygen therapy 28 days after birth, pres-
ence of clinical symptoms and visible chest 
changes revealed by X-ray as the diagnostic cri-
teria for BPD [18]. The incidence of BPD ranged 
from 6% to 57% between 1978 and 2015, 
depending on the definition chosen [19, 20]. 
“BPD” is an operational definition in which the 
treatment (oxygen therapy at 28th day or 36th 
week postmenstrual age) is used to define the 
disease [21], so with the improvement of treat-
ment, the definition of BPD varies. According to 
Hine’s review, the definition by Shennan and his 
coworkers was adopted in 45% of a total of 628 
papers reviewed [22], the NICHD definition, in 
30% [15] (Table 1), and the physiological defini-
tion indicated by the oxygen challenge test, in 
approximately 6%. BPD is associated with sig-
nificant morbidity and mortality in the neonatal 
intensive care unit [23] and is also associated 
with worse long-term outcomes such as 
increased airway hyperresponsiveness in child-
hood, abnormal lung function in young adults, 
and potentially earlier come up of chronic 
obstructive pulmonary disease [21, 24, 25].

Fortunately, the introduction of antenatal ste-
roids, natural surfactant therapy, lower supple-
mental oxygen concentrations and gentler ven-
tilation techniques altered the clinical course 
and pathology exhibited by preterm infants [26, 
27]. Vollsaeter and his coworkers compared 
preterm infants with a gestational age <28 
weeks or a birth weight <1000 g in western 
Norway from 1999-2000 with those in 1991-
1992. They found that for children with neona-
tal BPD, important lung function variables were 
better in EP1999-2000 than in EP1991-1992. 
In regression models, administration of antena-
tal corticosteroids and surfactant treatment 
improved the lung function in the EP1999-
2000 [28] but failed to benefit others in a visi-
ble way [15]. This new kind of BPD focused 
more on the interruption of normal develop-
ment than lung injury from oxygen therapy and 
mechanical ventilation. These consist of very 
low birth weight infants who initially have mild 
or no lung diseases but whose need for oxygen 
and ventilatory increase over the first several 
weeks of life [29]. Some authors have described 
that kind of BPD as a “new” BPD [15, 30].

Pathology of the new BPD

The lungs, together with the trachea, arise from 
the anterior foregut endoderm (the 4-7 week of 

gestation in humans). From 7 to 16 weeks’ ges-
tation, evagination of these epithelial cells 
result in the formation of the trachea and two 
lung buds and the beginning of the lung devel-
opment at the embryonic stage. At this stage, 
the trachea separates from the esophagus [31-
34]. In the course of the lung development, first 
the trachea is formed, which then generates 
the bronchial tree and finally the airways which 
is largely in parallel with the vasculature of the 
pulmonary circulation [35]. Subsequent lung 
development at different stages including the 
canalicular, saccular and alveolar structures 
generate the alveolar-gas exchange units [36]. 
The lung at 26 weeks of gestation is just at the 
canalicular stage and is of the saccular struc-
ture without alveoli, which does not not begin to 
develop in another 4 to 6 weeks [15]. About at 
30 to 32 weeks, the lung is at the saccular 
stage. With the growth of terminal saccules, 
extensive vessels are generated, and then the 
secondary crests occur along with the loss and 
remodel of interstitial extracellular matrix [37]. 
Although alveoli appear in some infants at 32 
weeks of gestation, they do not uniformly grow 
up to 36 weeks at the stage of alveolar, and 
they continue to grow at a slower rate during 
the first 2-3 years after birth [8]. Thus, prema-
ture births and the initiation of pulmonary gas 
exchange will interrupt the development of nor-
mal alveolar and distal vascular, thereby 
becoming the two major features of the new 
BPD [38]. The “old” BPD was characterized by 
severe lung injury, pronounced inflammation, 
lung edema, airway epithelial metaplasia, peri-
bronchial fibrosis, and remarkable hypertrophy 
of airway and pulmonary vascular smooth mus-
cle [17, 39]. However, the “new” BPD is charac-
terized by alveolar hypoplasia (fewer and larger 
alveoli), thickened alveolar septa, dysmorphic 
pulmonary microvascular networks, mild hyper-
trophy of airway and vascular smooth muscle, 
accumulation of interstitial fluid, abnormal 
deposition of extracellular matrix components 
and an arrest of lung development at the late 
canalicular to early saccular stage [40].

We reviewed literatures over the past three 
decades and found the role of vascular dyspla-
sia in new BPDs, which are receiving increasing 
attention. We summarized the pathological 
manifestations of the lungs in some animal 
models in the table (Table 2), to better show 
the pathological features of the new BPD. 
Soliman et al performed a prospective cohort 
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Table 1. Definition of BPD (NICHD consensus 2001)
Gestational Age <32 wk ≥32 wk
Time point of assessment 36 wk PMA or discharge to home, whichever comes first Time point of assessment: >28 days but <56 days postnatal age or discharge to 

home, whichever comes first

Treatment with oxygen 21% for at least 28 d plus

Mild BPD Breathing room air at 36 weeks PMA or discharge, whichever comes first Breathing room air at 56 days postnatal age or discharge, whichever comes first

Moderate BPD Need for <30% oxygen at 36 weeks PMA or discharge, whichever comes first Need for <30% oxygen at 56 days postnatal age or discharge, whichever comes 
first

Severe BPD Need for ≥30% oxygen and/or positive pressure, (positive pressure ventilation or NCPAP) at 36 
weeks PMA or discharge, whichever comes first

Need for ≥30% oxygen and/or positive pressure, (positive pressure ventilation or 
NCPAP) at 56 days PMA or discharge, whichever comes first

Definition of abbreviations: BPD bronchopulmonary dysplasia; NCPAP nasal continuous positive airway pressure; PMA postmenstrual age; PPV positive-pressure ventilation.

Table 2. Pathology of the BPD
Author Model/human Pathophysiological characteristics
Northway WH Jr et al. 1967 [17] Human lung slices Severe lung injury, pronounced inflammation, lung edema, airway epithelial metaplasia, peribronchial fibrosis, and marked airway and 

pulmonary vascular smooth muscle hypertrophy

Gorenflo M et al. 1991 [98] Lung slices and barium angiogram Decreased density of peripheral pulmonary arteries.

Cherukupalli K. et al. 1996 [99] Human lung slices a. Group I was a phase of acute lung injury;
    Alveolar hyaline membrane, alveolar epithelial necrosis.
b. Group II the proliferative phase;
    Cell metaplasia, airway epithelium ulcer.
c. Group III the phase of early repair;
    Extensive type II metaplasia, pulmonary fibroblasts rich in interstitial.
d. Group IV the phase of late repair;
    Airway epithelium phosphorylation, bronchial smooth muscle fibrosis.

Husain A et al. 1998 [100] Human lung slices a. No surfactant therapy: alveolar septal fibrosis, partial to complete arrest in acinar development (alveolar saccular and alveolar).
b. Use surfactant therapy: less phosphorus-like metaplasia.

Coalson JJ et al. 1999 [101] Baboons appropriate oxygen (1-2 m) Decreased pulmonary microvasular development and alveolarization

Bhatt AJ et al. 2001 [11] Human lung slices Alve-olar capillaries were often located in the interior of thickenedsepta. dilated and lacked extensive network or-ganization.

Coalson JJ 2003 [38] Baboons and Clinical specimens “Emphysematous” distal lung structure with fewer 51 lung units, areas of septal thickening, microvascular dysplasia/hypoplasia and 
inflammation.

De Paepe ME et al. 2006 [44] Postmortem lung samples The microvasculature of ventilated lungs appeared immature, retaining a saccular architectural pattern.

Velten M et al. 2010 [102] C3H/HeN mice (85% O2, 14 dpre-
natal LPS)

Decreased alveolar number and increased size.

O’Reilly M et al. 2014 [103] Mouse (65% O2, 7 d) More smooth muscle; no effect on bronchiolar epithelium or collagen.

Firsova AB et al. 2014 [104] Mouse (95% O2, 5 d) Airspaces were significantly enlarged.

Belcastro R et al. 2015 [105] Rat lung (60% O2, 14 d) Impairments of lung cell proliferation, secondary crest formation, and alveologenesis.

Mankouski A et al. 2016 [2] Sprague-Dawley rats (60% O2, 14 d) Decreased numbers of secondary crests and peripheral vessels.

Jiménez J et al. 2016 [106] Rabbits Fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation.

Chou HC et al. 2016 [56] Prenatal LPS (85% O2, 14 d) Reduced vascular density
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fetal liver kinase-1 [Flk-1] or kinase domain 
region [KDR] in humans) [52, 53]; as well as two 
co-receptors: neuropilin-1 (NRP1) and neuropi-
lin-2 (NRP2). NRP1 enhanced VEGF signaling 
has been shown to be important for p38/MAPK 
activation, and is thus central to vessel branch-
ing [54, 55]. The expression of VEGFR3 is main-
ly restricted by the lymphatic endothelium in 
adult tissues. It binds VEGF-C and VEGF-D but 
not VEGF-A. And VEGFR3 is considered to con-
trol lymphangiogenesis [56]. VEGF mRNA can 
be firstly detected in fetal tissues at 16 weeks 
of gestation [57]. The expression of VEGF is 
particularly high in the lung, where it is essen-
tial in lung development and maintaining the 
structure of lung [58]. In human fetal lung, 
VEGF is localized in alveolar epithelial cells and 
myocytes, which suggested that VEGF acts a 
paracrine in modulating the activity of adjacent 
vascular endothelium [57]. In patients with 
BPD, VEGF also arises in Type II pneumocytes.  

Roles of VEGF in BPD

In a comparative study of the causes between 
infants dying with BPD and non-pulmonary dis-
eases, Bhatt found the former group had lower 
VEGF mRNA level and VEGF immunostaining 
than did the latter group [11]. Another study 
which investigated the expression of VEGF in 
tracheal aspirates revealed that preterm in- 
fants who developed BPD had lower VEGF lev-
els during the early postnatal days than those 
without BPD. That suggests a prolonged and 
more severe respiratory distress [57]. Ad- 
ministration of anti-angiogenic agents to neo-
natal rats impairs both pulmonary angiogene-
sis and alveolarization [59-63]. Over-expression 
of proangiogenic factors, such as vascular 
endothelial growth factor (VEGF), alleviates the 
adverse effects of hyperoxia on Alveolarization 
[7, 42]. Inactivation of the VEGF- A gene in respi-
ratory epithelium results in an absence of pul-
monary capillaries, suggesting that the devel-
opment of pulmonary capillary is in a VEGF-A 
dependent manner [64]. As a matter of fact, 
previous treatments for BPD with inhibitors of 
VEGF-A have shown that inhibition of angiogen-
esis seriously affected the formation of alveolar 
[59, 65].

Expression of VEGF-A is regulated by many fac-
tors including hypoxia (hypoxia-inducible fac- 
tors-1α, HIF-1α), oncogene and tumor suppres-

study, from January 2007 to June 2010 at a 
single tertiary care center, with infants less 
than 32 weeks’ gestation born to mothers with 
preeclampsia, and found that preeclampsia, an 
antiangiogenic state, is an independent risk 
factor of bronchopulmonary dysplasia (BPD) 
[41]. Baud et al found that angiogenesis 
blocked by vascular endothelial growth factor 
(VEGF)-Trap decreased the number of lung cap-
illaries and enlarged the size of alveoli, which is 
similar to pathological manifestations of BPD 
[7, 42]. This suggests that angiogenesis plays 
an important role in alveolarization. It is noted 
that glucocorticoids are widely administered to 
accelerate the maturation of AEC2 cells and 
production of surfactant in premature babies, 
which appear to inhibit secondary septation 
and vascular development [33]. So far, the only 
consistent vascular findings in new BPD pathol-
ogy are that the structural configuration of the 
distal microvasculature is abnormal, namely 
dysmorphic [37]. This kind of dysmorphica 
shows an abnormal distribution of alveolar cap-
illaries in lungs, the vessels being far away from 
the air surface [43] and the dysmorphia being 
of a saccular architectural pattern [44].

The role of VEGF in BPD

VEGF family

Vascular endothelial growth factor (VEGF) is a 
multifunctional cytokine which plays a key role 
in many physiological (angiogenesis, growth 
and organ repair) and pathological (vascular 
disease) processes [45]. The VEGF gene is 
located on chromosome 6q21.3, and consists 
of eight exons and seven introns [46]. Multiple 
isoforms of VEGF, ranging from 121 to 206 
amino acids [47], can be generated by alterna-
tive exon splicing, and these isoforms differ in 
their ability to bind heparin, which determines 
their bioavailability and may play distinct roles 
in angiogenesis during development [48-50]. In 
humans, VEGF is made up of five secreted gly-
coproteins which include VEGF-A, VEGF-B, 
VEGF-C, VEGF-D and placental growth factor 
(PlGF) [48]. VEGF-E is encoded by certain virus-
es and its gene is not contained within the 
human genome [51]. VEGF-A activates intracel-
lular signaling pathways by binding to one of the 
two receptors: VEGF receptor-1 (VEGFR-1, pre-
viously termed fms-like tyrosine kinase-1 [Flt-
1]) and VEGFR-2 (previously termed murine 
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Table 3. VEGF in BPD

Author Model/human Deal with 
VEGF levels Time of VEGF 

changingmRNA Protein Location
Bhatt AJ et al. 2001 [11] Human Dead form BPD ↓ ↓ Autopsy samples P*65 ± 34 d

Tambunting F et al. 2005 [107] Baboon 125 days gestation O2 ↓ ↓ Lung specimens P14 d

Balasubramaniam V et al. 2007 [12] Neonatal mice 80% O2 10 d ↓ Blood, lung, and bone marrow P10 d

Been JV et al. 2010 [93] Preterm infants __ ↓ BALF concentrat-ions P0 d, P3 d

Grisafi D et al. 2013 [108] Rats 60%O2, 14 d ↓ ↓ Lung sections P14 d

Keenaghan M et al. 2013 [97] Rats 10%, 21%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% FiO2 for 2 h. ↓ Serum and lung 40% O2 2 h

Firsova et al. 2014 [104] Neonatal mice 95% O2, 5 d N# Lung sections p5, p28, and p56 d

Yang WC et al. 2015 [109] Preterm infants __ N Cord blood P0 d

Lajko M et al. 2016 [110] Neonatal mice 75% o2, P0-P14. room air 1 (P15), 7 (P21), or 14 days (P28) ↑ Retinal p21 d

Kumar VH et al. 2016 [66] Newborn mouse 85% O2, P3-P15
Room air 15 weeks

↑ Lung sections P15 w

Jin M et al. 2016 [111] Newborn rats 21% or 85% O2 7 d, room air 14 d  ↓          Lung tissues P7 d

Procianoy RS et al. 2016 [112] Preterm neonates  72 h collected blood  ↑ Peripheral blood P72 h
Definition of abbreviations: P*: postnatal day; N#: normal.
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sor dysregulation, transcription factors (TGF-α, 
TGF-β), inflammatory mediators (IL-1α, IL-1β, 
IL-6, TNFα), and mechanical forces of shear 
stress [47]. Therefore, mechanical ventilation 
and hyperoxia will, theoretically, increase in- 
flammatory factors [66] and shear stress, and 
consequentially, the level of VEGF. But most 
studies showed that expression of VEGF in his-
tological sections of BPD patients or animal 
models decreased (Table 3). However, Tom- 
anek’s study on explanted embryonic quail 
hearts indicates that vascular formation can be 
enhanced by hypoxia (5-10% O2) and inhibited 
by hyperoxia [67]. Nevertheless, why does not 
VEGF increase in BPD? We proposed three pos-
sible reasons according to previous reports: 1. 
Severe lung injury may render VEGF incapable 
of responding to the inflammatory stimuli. 2. An 
increased level of VEGF after birth is locally 
secreted, since VEGF acts as a mediator of 
paracrine. And when lungs were injured by post-
partum ventilators, infections, and oxygen/
nitrogen free radicals, locally increased VEGF 
do not well accelerate vascular development; 
3. Hyperoxia (Postpartum oxygen or ventilator 
support) inhibited HIF-1α which can enhance 
the expression of VEGF [68]. 

Mechanisms of VEGF take 
part in vasculogenesis and 
angiogenesis

The formation of new blood 
vessels can be divided into 
two stages: vasculogenesis 
and angiogenesis [69]. Va- 
sculogenesis starts from an- 
gioblasts or endothelial pre-
cursor cells which migrate 
and differentiate into local 
cues (growth factors, extra-
cellular matrix), and further 
develop into vascular tubes, 
a process from nil to exis-
tence. Angiogenesis is the 
formation of new blood ves-
sels from preexisting ones, 
which is a process from less 
to more [70]. However, VEGF 
is involved in many aspects 
of angiogenesis, including 
survival, proliferation, migra-
tion, tubulogenesis, remod-
eling and quiescence.

Differentiation of endothe-
lial cells

Figure 1. Angioblasts differentiate into endothelial cells which are prespeci-
fied to arterial or venous phenotypes by Notch signaling. Endothelial differ-
encetitation: Arterial and venous specification. when Notch increase, the Arte-
rial tube conforming, and, when nothdecrease, the venous tube conforming.

Angioblasts are differentiated into endothelial 
cells (ECs). ECs develop into the cords and form 
a lumen, whose phenotype can be distin-
guished into artery or vein. Arterial and venous 
ECs possess the ability of identifying specific 
molecules [71, 72]. Components of the notch 
signaling pathway which is activated by VEGF 
are highly expressed in arteries and are defi-
cient in veins. Thus, inhibition of the Notch sig-
naling pathway causes loss of arterial markers 
and re-expression of specific genes in veins 
[72, 73]. The Notch signaling pathway also reg-
ulates the expression of members of Eph-
Ephrin family and Ephrin-B2. Ephrin-B2 is 
increased in response to Notch, whereas its 
receptor EphB4 in venous ECs is repressed by 
Notch (Figure 1).

Angiogenesis

Angiogenesis (neovascularization) occurs thro- 
ugh a series of steps which consist of angio-
genic stimulus, sprouting, elongation and br- 
anching, formation of vessel lumen, anastomo-
sis and finally stabilization [9]. ECs become 
motile and invasive and protrude filopodia in 
response to VEGF released by matrix metallo-
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Figure 2. A: Steps of Angiogenesis; B: The feedback loop between VEGF and Notch; C: Ang1 activates Tie2 to stabi-
lize vessels, promotes pericyte adhesion, and makes them leak.

proteinases (MMPs) [48], These so-called tip 
cells will sprout new ones; stalk cells seldom 
generate filopodia, but they establish a lumen 
and proliferate to support elongation of sprouts. 
Tip cells anastomose with cells from neighbor-
ing sprouts to set up vessel loops. Tip and stalk 
cells are affected by VEGF/Notch signaling [74] 
(Figure 2B). When blood begins to flow, the 
establishment of the basement membrane and 
the recruitment of mural cells stabilize new 
connections. The increase in oxygen and nutri-
ent decreases the expression of VEGF and inac-
tivates the sensors of endothelial oxygen with 
the blood perfusion, meanwhile the phenotype 
of endothelial behavior is shifted into a quies-
cent one (Figure 2A).

Maturation, stabilization, and quiescence of 
vessels

At the last stage of angiogenesis, the newly 
formed blood carries mural cells or pericytes to 
maintain stability of capillaries [75]. The role of 
pericytes in the function and angiogenesis of 
capillaries includes regulation of EC prolifera-
tion and migration, as well as production of 
basement membrane of capillary together with 
ECs [76]. Adherence junction molecules medi-

ate cell-cell adhesion, cytoskeletal reorganiza-
tion, and intracellular signal transduction.  
VE-cadherin is one key component of EC junc-
tions. In the case with VEGFR2 compound, VE- 
cadherin keeps EC static through dephosphory-
late VEGFR2 to further inhibit VEGF signaling. 
Different types of VE-cadherin-based adheren- 
ce junctions establish stable or transitory inter-
actions with the cytoskeletons which can either 
solidify EC adhesion or facilitate EC separation 
and movement. Angiopoietin-1 (ANG1), produ- 
ced by mural cells, activates its endothelial 
receptor TIE2 [77, 78] and plays a very impor-
tant role in stabilizing the structure of vessels, 
promoting adhesions of pericytes, and tighten-
ing endothelial junctions (Figure 2C).

Exploring the application of VEGF in BPD 
treatment

Current methods of treating BPD include caf-
feine [79], nutrients, vitamin A [80], vitamin D 
[81], glucocorticoids [82], antibiotics [19], mes-
enchymal stromal cells (MSCs) [27, 83, 84] and 
BMSCs in combination with erythropoietin [85]. 
The VEGF gene was successfully used to treat 
limb after ischemia [86]. In recent years, 
researchers tried to promote angiogenesis of 
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bone tissue and ischemic myocardium through 
the VEGF gene therapy, and have made some 
satisfying achievements [87]. The application 
of VEGF in the treatment of BPD has also been 
investigated. Kunig et al [13] observed two-day-
old Sprague-Dawley rats that were placed into 
hyperoxia or room air (RA) for 12 days. At 14 
days, rats respectively received daily treatment 
with recombinant human VEGF (rhVEGF)-165 or 
saline. And they found rhVEGF treatment during 
the period of recovery accelerated vessels 
growth and alveolarization after hyperoxic lung 
injury in neonatal rats. He found fetal lung 
explants from eNOS(-/-) mice decreased the 
formation of terminal lung buds, it was restored 
with rhVEGF treatment [14], a finding sililar to 
that of Seedorf’s study. The postnatal intratra-
cheal adenovirus-mediated VEGF gene therapy 
remarkably improves the survival, promotes 
the formation of lung capillaries, and preserves 
the development of alveolars in BPD model of 
irreversible lung injury [70]. To determine 
whether disruption of vascular endothelial 
growth factor receptor (VEGFR) signaling in the 
newborn has long-term effects on lung struc-
ture and function, Le Cras et al injected 1-day-
old newborn rat pups with a single dose of 
Su-5416, a VEGFR inhibitor, or vehicle (con-
trols). Lungs from infant (3-wk-old) and adult (3- 
to 4-mo-old) rats treated with Su-5416 showed 
reductions in arterial density (82 and 31%, 
respectively) and alveolar counts (45 and 29%) 
compared with the controls. Treatment for neo-
natals with Su-5416 increased right ventricle 
weight to body wt ratios (4.2-fold and 2.0-fold) 
and pulmonary arterial wall thickness measure-
ments (2.7-fold and 1.6-fold) in infant and adult 
rats, respectively, indicating marked pulmonary 
hypertension. We conclude that treatment of 
newborn rats with the VEGFR inhibitor Su-5416 
impairs the pulmonary vascular growth and 
postnatal alveolarization and causes pulmo-
nary hypertension and that these are long-term 
effects lasting well into adulthood [88]. As the 
expression of HLA class I and II molecules are 
very low, MSCs cannot trigger an immune 
response once administered to animals or 
humans in an allogeneic MSCs [84, 89]. 
Moreover, MSCs have been shown to effective-
ly ameliorate experimental BPD when adminis-
tered in a preventive or therapeutic way [90, 
91]. Chang studied intratracheal MSC trans-
plantation which was performed in 9 preterm 
infants, with a mean gestational age of 25.3 ± 

0.9 weeks and a mean birth weight of 793 ± 
127 g, at a mean of 10.4 ± 2.6 days after birth. 
The first 3 patients were given a low dose (1 × 
107 cells/kg) of cells, and the other 6 were 
given a high dose (2 × 107  cells/kg). Having 
compared their adverse outcomes, including 
BPD severity, with those of the historical case-
matched comparison group, they conclude that 
intratracheal transplantation of allogeneic 
hUCB-derived MSCs in preterm infants is safe 
and feasible, and warrants a larger and con-
trolled phase II study [92]. Several phase 1 and 
phase 2 trials are in progress (NCT02443961, 
NCT02381366, NCT01828957) [84]. MSCs, 
derived from bone marrow stroma with the abil-
ity of self-renewal, can be divided into meso-
dermal stem cells, and a variety of cells such as 
endothelial cells and endothelial progenitor 
cells. These cells can conjugate with VEGF and 
better to promote the formation of pulmonary 
vessels.

The timing of using VEGF to treat BPD 

We found that infants diagnosed with BPD after 
birth did not have lower levels of VEGF in umbili-
cal cord blood than infants without BPD (Table 
3). Been’s view [93] was different from other 
researcher’s. He believes that VEGF in new-
borns with BPD decreased in the first day after 
birth. The possible reason is that the patients 
in his study have basic characteristics different 
from those in other studies, a lower gestational 
age of patients, for example. The results would 
be inconsistent. Higher lavage VEGF levels on 
days 1 and 3 were also correlated with a lower 
gestational age after birth [94]. The accumula-
tion of VEGF may aggravate the body injury. 
Zeng’s study found that over-expression of 
VEGF in fetal murine lungs not only enhanced 
pulmonary vasculogenesis but also resulted in 
an abnormal alveolar development [95], It is 
not necessary to administer VEGF in the first 
day after birth. We summarized from previous 
studies that with the increase of the oxygen 
concentration, VEGF decreases sooner (Table 
3). In the condition of moderate oxygen (60%) 
[12, 96], VEGF in mice decreases on the 14th 
day after birth. Here are two key points: Firstly, 
there exist difference between the models of 
mouse with BPD and humans with BPD, We still 
do not monitor the changes of VEGF in infants 
with BPD before they died. Whereas the autop-
sy materials from non-survivors with BPD pres-
ent one avenue for the exploration of pathogen-
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ic mechanisms at play in the lungs of affected 
patients. These materials are increasingly rare 
and difficult to obtain, because the survival 
rate of BPD patients has steadily increased 
over time. Both mice and rats are delivered at 
term in the saccular stage of lung development, 
and this fact is often used to justify the superi-
ority of mice and rats as model animals for 
BPD, since preterm infants that develop BPD 
are also delivered in the saccular stage of lung 
development [1]; Secondly, the time of decline 
of VEGF is one key point in establishing the 
model of mouse with BPD. The amount of VEGF 
in lung sections still cannot be continuously 
monitored; whether VEGF is declined or not 
before BPD needs further researches. Keenag- 
han used FiO2 exposed rats for 2 hours, and 
found VEGF decreased on 40% in 2 h [97]. 

Conclusion

VEGF signaling pathway acts as one key mecha-
nism in the pathology of BPD, and treatment for 
infants with BPD by VEGF improves the out-
come. We summarized that treatment of VEGF 
for infants with BPD before preterm infants 14 
days after birth may effectively prevent BPD, 
but the exact time of treating for BPD still needs 
further researching.
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