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Abstract: Astragalus polysaccharide (APS) is a natural compound extracted from astragalus membranaceus which 
has an antidepressant activity. Initially APS was studied for its immunomodulatory potential, and later was found 
to exhibit multiple pharmacological effects, including anti-inflammatory activity. More recently APS was shown to 
attenuate the lipopolysaccharide (LPS) induced neuroinflammation and improve the learning and memory ability of 
rats. The major objectives of this study were to investigate whether APS would exhibit antidepressant effects in an 
animal model of depression induced by LPS, and whether this effect might be associated with regulating nuclear 
factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Three groups of Wistar 
rats were injected LPS (i.p.), two groups of which were pretreated with APS (200 mg or 400 mg, i.p.). Behaviors 
were evaluated by forced swim test, saccharin preference test and open field test. Levels of NF-κB p65, phospho-
NF-κB p65, phospho-IκBα, ERK1/2, JNK, p38 MAPK, phospho-ERK1/2, phospho-JNK and phospho-p38 MAPK in 
hippocampus and hypothalamus were measured to assess the activities of NF-κB and MAPK signaling pathways. 
In addition, levels of TNF-α, IL-1β and IL-6 (both protein and mRNA levels) in hippocampus and hypothalamus were 
determined. Results showed LPS induced depressive behaviors, as well as activated the NF-κB and MAPK signaling 
pathways in rats. APS treatment dose-dependently alleviated depressive-like symptoms and inhibited the activation 
of NF-κB and MAPK signaling pathways induced by LPS. The data indicate an antidepressant-like activity of APS in a 
LPS-induced animal model of depression possibly via inhibition of NF-κB and MAPK signaling pathways.

Keywords: Astragalus polysaccharide, depression, inflammation, lipopolysaccharide, NF-κB, MAPK

Introduction

Major depressive disorder (MDD) is a recurrent 
and incapacitating mood disorder being related 
to high mortality and morbidity, affecting about 
15% of the population worldwide [1, 2]. It is 
generally accepted that the pathogenesis of 
MDD is complex and has not been completely 
elucidated yet, which is far more beyond the 
typical “monoamine hypothesis”. Based on the 
complexity of the pathogenesis, novel thera-
peutic strategies targeting at specific patho-
genesis are required.

It has been proved that inflammatory mediators 
can interact with pathophysiologic pathways 
relevant to mood regulation, such as neu-
rotransmitter metabolism, neuroendocrine fun- 
ction, synaptic plasticity and regional brain 
activity. To date, more and more studies 
revealed the association between the immune 
system activation and MDD [3-5]. Depressive 
patients and animal models of depression have 
been found to exhibit increased levels of inflam-
matory biomarkers in the periphery and the 
brain, for example TNF-α, IL-1 and IL-6 [6-8]. 
Furthermore, data from laboratory animals 
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showed that administration of IFN-α or TNF-α 
could induce depressive behaviors in rodents 
[9-11]. These data confirmed the role of inflam-
matory response in the pathophysiology of 
depression.

Regarding the signaling pathways through 
which the stimuli induce inflammatory response 
and depressive behaviors, there is a growing 
body of research that has begun to clarify the 
roles of NF-κB and MAPK signaling pathways 
[12, 13]. Extracellular signal-regulated kinases 
(ERK) 1/2 and p38 MAPK have been found to 
influence both the expression and the activity 
of the membrane reuptake pumps for both 
dopamine and serotonin which are neurotrans-
mitters playing crucial roles in depression. 
MAPK signaling pathway has also been well 
demonstrated to mediate the LPS-induced neu-
roinflammation [14, 15] which is associated 
with depression. Besides, studies showed 
IFN-α and TNF-α induced depression was com-
panied by p38 MAPK activation [16]. NF-κB sig-
naling pathway is another one which promotes 
inflammation. Many studies have proved the 
activation of the NF-κB signaling pathway in 
depressive patients and animal models of 
depression [17, 18]. The activation of the NF-κB 
signaling pathway can lead to the overproduc-
tion of inflammatory cytokines, such as TNF-α, 
IL-1 and IL-6. The NF-κB activation also influ-
ences neurotransmitters, neurogenesis and 
the glucocorticoid receptor signaling which are 
involved in depression. Therefore, NF-κB is 
regarded as a critical mediator of stress-
induced and LPS-induced depressive behav-
iors [18, 19]. Based on the crucial role of NF-κB 
and MAPK in depression, suppressing the acti-
vation of these inflammation associated signal-
ing pathway has been tested as new therapeu-
tical targets for depression [19-21].

Many natural compounds possessing anti-
inflammatory activities have been tested to 
treat depression. For example, resveratrol, sali-
droside and EGb761 respectively attenuated 
the depressive-like behaviors induced LPS in 
rodents [22-24]; Apigenin exhibited antidepres-
sant effect in the chronic mild stress-induced 
rat model of depression [25]. Herbal drug 
astragalus membranaceus has a long history 
of medical use for various diseases. Astragalus 
injection, a crude extract from astragalus mem-
branaceus, has been reported to attenuate the 
depressive-like behaviors induced by chronic 
stress in rats [26]. APS, a natural compound, is 

one of the active pharmacological constituents 
of Astragalus membranaceus. APS has been 
found to have multiple pharmacological actions, 
including anti-inflammatory activity, and has 
been used to treat inflammation associated 
diseases such as asthma, diabetic nephropa-
thy and liver injury in preclinical and clinical tri-
als. Our laboratory also has tested its renopro-
tective, anti-inflammatory and neuroprotective 
effects in our previous studies [27-29]. A recent 
study found APS attenuated LPS-induced neu-
roinflammation by regulating NF-κB signaling 
[30]. It is also has been proved that APS could 
regulate the p38 MAPK signaling pathway [31, 
32]. In addition, a study reported APS improved 
the learning and memory ability of the rats [33]. 
Based on the antidepressant activity of As- 
tragalus membranaceus as well as the anti-
inflammatory and neuroprotective effects of 
APS, we suppose that APS might have an anti-
depressant effects in inflammation induced 
depression. In this study, we induced depres-
sive behaviors in rats by LPS injection and 
treated the rats with APS to assess its antide-
pressant effect. Moreover, we also investigated 
the effects of APS on NF-κB and MAPK signal-
ing pathways to explore the possible mecha-
nisms by which APS exerted its antidepressant 
effect in the LPS-induced depression model.

Material and methods

Animals

Wistar rats (200-220 g upon arrival) were 
obtained from the Laboratory Animal Center of 
Shandong University (Jinan, China). Animals 
were subjected to a 1-week acclimatization 
period upon the arrival and all efforts were 
made to minimize the number of animals used. 
Throughout the study, the rats were provided 
food and water ad libitum with the exception of 
behavioral tests. The animal room was main-
tained at 23-26°C on a 12-h light/dark cycle. 
Behavioral testing and drug injections occurred 
during the light phase of the cycle. All studies 
conformed to the requirements of the National 
Institutes of Health Guide for the Care and Use 
of Laboratory Animals, as approved by the 
Committee of Animal Care and Use in our 
university.

APS pretreatment and LPS administration

After the acclimation period, rats were random-
ly assigned to control group, LPS group, APS-
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200 group and APS-400 group (n=10 each). 
LPS (dissolved in saline at a concentration of 
200 µg/ml) (Sigma Chemical Company, St 
Louis, MO, USA.) was intraperitoneally injected 
to rats in LPS group, APS-200 group and APS-
400 group at a dose of 200 µg/kg, which could 
induce depressive-like behaviors in rats accord-
ing to previous reports [34, 35]. Prior to the LPS 
injection, rats were pretreated with two doses 
of APS (APS-200 group: 200 mg/day; APS-400 
group: 400 mg/day) or saline (control group 
and LPS group) for 5 days, and the treatments 
were further given for another 2 days post LPS 
administration. 

Forced swim test

The forced swim test consisted of two expo-
sures to a tank (46 cm tall × 20 cm in diameter) 
filled with water (24-26°C; 35 cm depth) in 
which rats could swim. The first exposure was a 
training phase, during which rats were placed in 
the water for 15 min. The test phase lasting for 
5 min was carried out 24 h after the training 
phase. The second test phase (conducted 24 h 
post LPS administration) was videotaped and 
the immobility time in the test was scored by 
experienced observers that were blind to the 
experimental conditions. Immobility was de- 
fined as: the rat remained floating in the water 
without struggling and only made movement 
necessary to keep its head above the water.  

Exploratory activity in the open-field test

Exploratory activity in the open-field test was 
conducted after the forced swim test. The 
apparatus was a wooden box (100 cm × 100 
cm × 40 cm) which had 25 same squares 
outlined by white lines on the floor of the arena. 
The rats individually underwent the test. During 
the test, the rat was placed into the center of 
the arena and left free to explore the arena for 
5 min and the exploratory activity of the rat was 
video-recorded. Rearings and crossings of the 
rats were scored by experienced observers that 
were blind to the experimental conditions. The 
area was wiped clean with a 75% alcohol solu-
tion after each trial.

Saccharin preference test 

Rats were trained for optimal saccharin prefer-
ence (0.5% solution) before testing. After 20 
hr’s deprivation of water, each rat was given 
two bottles, one containing tap water and the 

other with a 0.5% saccharin solution for 12 h in 
their individual home cages. The amount of liq-
uid consumed from each bottle was measured 
and the saccharin preference was calculated 
as a percentage of total liquid (saccharin solu-
tion intake to saccharin solution plus water 
consumed).

NF-κB and MAPK signaling activity

After the behavioral tests, left hippocampus 
and hypothalamus were immediately removed 
from the brain and homogenized. The superna-
tant of the homogenates was collected after 
centrifugation at 3000 rpm for 10 min. NF-κB 
p65, phospho-NF-κB p65, phospho-IκBα, ER- 
K1/2, JNK, p38 MAPK, phospho-ERK1/2, 
phospho-JNK and phospho-p38 MAPK in hippo-
campal and hypothalamic tissue homogenate 
were determined using enzyme-linked immuno-
sorbent assay (ELISA) kits, and the procedures 
were performed in accordance with the kit 
instructions (Bangyi Biotechnology Co. Ltd, 
Shanghai, China; Huamei Biotechnology Co. 
Ltd, Wuhan, China; R & D Systems, Inc., Min- 
neapolis, MN, USA; Cell Signaling Technology, 
Beverly, Massachusetts, USA). 

TNF-α, IL-1β and IL-6

Concentrations of inflammatory cytokines TNF-
α, IL-1β and IL-6 in hippocampal and hypotha-
lamic homogenates were assessed using radio-
immunoassay kits strictly following the ma- 
nufacturer’s instructions (Beijing North Institute 
of Biological Technology Company, China).

mRNA expression of TNF-α, IL-1β and IL-6

Total tissue RNA was extracted from the hippo-
campus and hypothalamus samples with TRIzol 
reagent (TaKaRa Bio, Dalian, China), according 
to the manufacturer’s recommended proce-
dures. The cDNA was synthesized from 2 μg 
total RNA. The cDNA was amplified through 
quantitative real-time reverse transcription 
PCR analysis to determine the expression of I 
TNF-α, IL-1β and IL-6. The sequences of prim-
ers were: β-actin, (forward) 5’-GCAGGAGTAC- 
GATGAGTCCG-3’ and (reverse) 5’-ACGCAGCTCA- 
GTAA CAGTCC-3’; IL-1β, (forward) 5’-GCTAGGG- 
AG CCCCC TTGTCGAG-3’, and (reverse) 5’-AGG 
CAGGGAGGGAAACACACGTT-3’; IL-6, (forward) 
5’-GTCAACTCCATCTGCCCTTCAG-3’, and (rever- 
se) 5’-GGCAGTGGC TGTCAACAACAT-3’; TNF-α, 
(forward) 5’-GCCACCACGCTCTTCT GTC-3’, and 
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(reverse) 5’-GCTACGGGCTTGTCACTCG-3’. The 
amplification reactions were carried out as the 
following: 1 min at 95°C, 35 cycles at 95°C for 
10 seconds, 60°C for 30 seconds, and 72°C 
for 20 seconds. The mRNA expression levels of 
the target genes were normalized to those of 
β-actin.

Statistical analyses

All values were expressed as the mean ± SD. All 
analyses were conducted using the SPSS 13.0. 
The statistical significance of differences am- 
ong groups was assessed with one-way ANOVA 
followed by the Tukey-Kramer multiple compari-
son. P<0.05 was considered to be statistically 
significant.

Results

APS had no significant effects on the locomo-
tor activity of the rats

(Figure 1) In the open field test, rats in the LPS 
group showed a significant decrease in num-
bers of rearings and crossings when compared 
to the control group (respectively P<0.05), while 
APS (both 200 mg and 400 mg) treated rats 
displayed similar levels of rearings and cross-
ings to the LPS group (respectively P>0.05).

APS reduced immobility time in forced swim 
test

(Figure 2) During the forced swim test, rats in 
the LPS group showed a significant increase in 
immobility time when compared to the control 

group (P<0.05). APS (both 200 mg and 400 
mg) treated rats displayed much shorter immo-
bility time than the LPS group (respectively 
P<0.05), and the APS-400 group displayed 
even shorter immobility time than the APS-200 
group (P<0.05).

APS increased the saccharin preference

(Figure 2) In the saccharin preference test, rats 
in the LPS group showed a significant decrease 
in saccharin preference when compared to the 
control group (P<0.05). APS (both 200 mg and 
400 mg) treated rats displayed much higher 
saccharin preference than the LPS group 
(respectively P<0.05), and the APS-400 group 
displayed higher saccharin preference than the 
APS-200 group (P<0.05).

APS inhibited the NF-κB signaling activity

(Tables 1 and 2) Rats in the LPS group had 
much higher levels of NF-κB p65, phospho-NF-
κB p65 and phospho-IκBα in hippocampal and 
hypothalamic tissue homogenate than the con-
trol group (respectively P<0.05), indicating LPS 
injection activated the NF-κB signaling. APS 
(both 200 mg and 400 mg) treated rats dis-
played much lower levels of NF-κB p65, 
phospho-NF-κB p65 and phospho-IκBα than 
the LPS group (respectively P<0.05), and the 
APS-400 group had even lower levels of these 
parameters than the APS-200 group (respec-
tively P<0.05).

APS inhibited the MAPK signaling activity

(Tables 3 and 4) LPS injection significantly 
increased levels of ERK1/2, JNK, p38 MAPK, 
phospho-ERK1/2, phospho-JNK and phospho-
p38 MAPK in hippocampal and hypothalamic 
tissue homogenate in the LPS group if com-
pared to the control group (respectively 
P<0.05). APS significantly reversed the altera-
tions of these parameters induced by LPS injec-
tion in the APS-200 group and the APS-400 
group if compared to the LPS group (respec-
tively P<0.05). Moreover, the APS-400 group 
displayed lower levels of these parameters 
than the APS-200 group (respectively P<0.05).

APS decreased levels of inflammatory cyto-
kines TNF-α, IL-1β and IL-6

(Tables 5 and 6) Rats in the LPS group showed 
much higher levels of inflammatory cytokines 

Figure 1. Effects of APS on the locomotor activity of 
the rats in the open field test. The locomotor activ-
ity is evaluated by the numbers of the rearings and 
crossings in the 5 min’s test. The results are ex-
pressed as means ± SD. #P<0.05, versus control; 
*P<0.05 versus LPS, ▼P<0.05 versus APS-200.
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Figure 2. Effects of APS on the depressive behaviors of the rats. The depres-
sive behaviors are evaluated by saccharin preference test and forced swim 
test. A: The saccharin preference was calculated as a percentage of total liq-
uid (saccharin solution intake/saccharin solution plus water consumed). B: 
Immobility was defined as: the rat remained floating in the water without strug-
gling and only made movement necessary to keep its head above the water. 
The immobility time in the FST was measured. The results are expressed as 
means ± SD. #P<0.05, versus control; *P<0.05 versus LPS, ▼P<0.05 versus 
APS-200.

Table 1. Effects of APS on the hippocampal NF-κB signaling activity 
of the rats

NF-κB p65  
(pg/ml)

phospho-NF-κB  
p65 (pg/ml)

phospho-IκBα 
(pg/ml)

Control 48.09±4.75 12.36±1.48 13.14±0.95
LPS 103.14±9.03a 55.26±7.01a 38.72±4.08a

APS-200 84.52±6.38b 40.33±5.17b 28.30±2.54b

APS-400 65.11±5.96b,c 26.01±3.83b,c 16.44±1.50b,c

The NF-κB signaling activity is evaluated by measuring the levels of NF-κB p65, 
phospho-NF-κB p65, phospho-IκBα in hippocampal tissue homogenate. The results 
are expressed as means ± SD. aP<0.05 versus control; bP<0.05 versus LPS, cP<0.05 
versus APS-200.

Table 2. Effects of APS on the hypothalamic NF-κB signaling activity 
of the rats

NF-κB p65 
(pg/ml)

phospho-NF-κB p65 
(pg/ml)

phospho-IκBα
(pg/ml)

Control 42.50±4.08 11.20±1.14 12.05±1.40
LPS 78.25±6.21a 36.05±5.73a 29.14±4.01a

APS-200 64.70±5.63b 26.00±3.55b 22.86±2.17b

APS-400 53.82±5.41b,c 19.22±2.10b,c 17.19±2.05b,c

The NF-κB signaling activity is evaluated by measuring the levels of NF-κB p65, 
phospho-NF-κB p65, phospho-IκBα in hypothalamic tissue homogenate. The results 
are expressed as means ± SD. aP<0.05 versus control; bP<0.05 versus LPS, cP<0.05 
versus APS-200.

TNF-α, IL-1β and IL-6 (both protein and mRNA 
levels) in hippocampus and hypothalamus than 

the control group (respec-
tively P<0.05). APS (both 
200 mg and 400 mg) treat-
ed rats displayed much lower 
levels of TNF-α, IL-1β and 
IL-6 (both protein and mRNA 
levels) than the LPS group 
(respectively P<0.05), and 
the APS-400 group had even 
lower levels of these param-
eters than the APS-200 
group (respectively P<0.05).

Discussion

Astragalus membranaceus 
has a long history of medici-
nal use in traditional Chinese 
medicine. It has been widely 
used as diuretic, antiperspi-
rant, antihypertensive, anti-
inflammatory, hypoglycemic, 
tonic and anti-depressant 
treatments. Saponins, poly-
saccharides and flavonoids 
are the active pharmacologi-
cal constituents of Astrag- 
alus membranaceus. Among 
the constituents, APS has 
been most widely studied. 
Initially APS was studied for 
its immunomodulatory po- 
tential, and later was found 
to exhibit multiple pharma-
cological effects, including 
anti-inflammatory activity. It 
has been tested to treat 
autoimmune diseases, dia-
betes, cardiovascular dis-
eases, tumor, cell damage, 
and so on, and has exhibited 
potent therapeutical effect 
[27-32]. Recently, anti-inflam- 
matory and neuroprotective 
effects were reported [30, 
33]. However, whether it has 
an antidepressant activity 
has not been investigated. 
Considering the anti-inflam-
matory effects of APS, in the 
current study, we designed 
to investigate the effects of 
APS on a LPS induced ani-

mal model of depression, an inflammation 
associated depression model. 



Astragalus polysaccharide attenuates depressive-like behaviors

2366	 Int J Clin Exp Med 2018;11(3):2361-2370

Table 3. Effects of APS on the hippocampal MAPK signaling activity of the rats
ERK1/2  
(pg/ml)

JNK 
(pg/ml)

p38 
(pg/ml)

phospho-ERK1/2 
(pg/ml)

phospho-JNK
(pg/ml)

phospho-p38 
(pg/ml)

Control 25.12±4.35 33.92±3.40 43.07±3.67 7.08±1.25 10.15±1.46 12.27±2.12
LPS 57.19±4.11a 69.27±5.38a 91.25±8.28a 28.37±4.88a 38.07±4.11a 46.82±6.40a

APS-200 45.55±3.02b 55.08±4.72b 75.22±5.07b 19.13±3.08b 24.75±3.40b 28.18±3.44b

APS-400 36.06±3.79b,c 46.99±4.51b,c 61.70±5.33b,c 13.01±2.10b,c 16.51±2.53b,c 19.50±2.29b,c

The NF-κB signaling activity is evaluated by measuring the levels of ERK1/2, JNK, p38 MAPK, phospho-ERK1/2, phospho-JNK 
and phospho-p38 MAPK in hippocampal tissue homogenate. The results are expressed as means ± SD. aP<0.05 versus con-
trol; bP<0.05 versus LPS, cP<0.05 versus APS-200.

Table 4. Effects of APS on the hypothalamic MAPK signaling activity of the rats
ERK1/2  
(pg/ml)

JNK 
(pg/ml)

p38 
(pg/ml)

phospho-ERK1/2 
(pg/ml)

phospho-JNK
(pg/ml)

phospho-p38  
(pg/ml)

Control 36.09±5.63 40.95±5.85 55.09±7.38 8.89±1.33 11.70±1.88 14.47±2.11
LPS 76.01±6.40a 91.66±7.23a 124.53±10.92a 40.36±6.25a 43.01±5.53a 60.05±8.51a

APS-200 60.77±4.08b 73.54±6.20b 97.80±9.08b 26.17±3.54b 31.29±4.20b 41.35±5.49b

APS-400 48.38±5.21b,c 58.14±4.97b,c 80.72±7.11b,c 18.70±2.21b,c 22.80±3.66b,c 25.70±4.11b,c

The NF-κB signaling activity is evaluated by measuring the levels of ERK1/2, JNK, p38 MAPK, phospho-ERK1/2, phospho-JNK 
and phospho-p38 MAPK in hypothalamic tissue homogenate. The results are expressed as means ± SD. aP<0.05 versus con-
trol; bP<0.05 versus LPS, cP 0.05 versus APS-200.

Table 5. Effects of APS on the protein and mRNA expressions of inflammatory cytokines in hippocam-
pus

TNF-α (pg/ml) IL-1β (pg/ml) IL-6 (pg/ml) TNF-α mRNA IL-1β mRNA IL-6 mRNA
Control 55.07±4.17 63.16±5.90 45.30±6.55 1.00±0.12 1.00±0.15 1.00±0.13
LPS 162.59±13.22a 180.15±20.05a 119.48±14.36a 2.49±0.30a 2.82±0.39a 2.27±0.19a

APS-200 115.28±12.99b 136.62±15.44b 88.12±12.80b 1.99±0.14b 2.04±0.18b 1.86±0.15b

APS-400 82.11±10.25b,c 97.27±14.31b,c 65.83±7.60b,c 1.55±0.11b,c 1.63±0.17b,c 1.50±0.11b,c

Levels of TNF-α, IL-1β and IL-6 in the hippocampal tissue homogenate were measured; the mRNA levels of the target genes 
were normalized to those of β-actin. The results are expressed as means ± SD. aP<0.05 versus control; bP<0.05 versus LPS, 
cP<0.05 versus APS-200.

Table 6. Effects of APS on the protein and mRNA expressions of inflammatory cytokines in hypothala-
mus

TNF-α (pg/ml) IL-1β (pg/ml) IL-6 (pg/ml) TNF-α mRNA IL-1β mRNA IL-6 mRNA
Control 46.87±6.55 56.00±6.21 43.92±5.87 1.00±0.09 1.00±0.12 1.00±0.14
LPS 123.05±14.36a 138.65±16.27a 101.08±14.69a 2.10±0.20a 2.76±0.29a 2.05±0.16a

APS-200 91.89±10.22b 101.13±13.41b 77.44±7.01b 1.70±0.11b 2.11±0.15b 1.77±0.13b

APS-400 65.24±8.67b,c 76.77±8.20b,c 59.10±5.89b,c 1.46±0.08b,c 1.72±0.12b,c 1.41±0.11b,c

Levels of TNF-α, IL-1β and IL-6 in the hypothalamic tissue homogenate were measured; the mRNA levels of the target genes 
were normalized to those of β-actin. The results are expressed as means ± SD. aP<0.05 versus control; bP<0.05 versus LPS, 
cP<0.05 versus APS-200.

We administrated LPS (i.p.) to the Wistar rat at 
dose of 200 µg/kg body weight, which is a dose 
that has been reported to successfully depres-
sive-like behaviors in rats [34, 35]. Similar to 
the previous reports [22, 24, 36], we found LPS 
significantly increased the immobility time of 

the rats in the forced swim test which is a 
behavioral test widely used to evaluate the 
depressive state of rodents. Immobility time 
represents the severity of hopelessness which 
is a typical symptom of depression. Interestingly, 
rats with APS treatment (200 mg and 400 mg) 
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displayed much shorter immobility time than 
the LPS group, and the effect was dose-depen-
dent. In addition, anhedonia, another common 
symptom of depression, was assessed by sac-
charin preference test. In line with the forced 
swim test, APS also dose-dependently improved 
the anhedonia induced by LPS. These findings 
indicated the dose-dependent antidepressant 
activity of APS in the LPS induced depression 
model. However, according to previous reports, 
LPS may elicit sickness behavior in animals 
which is a usual response to infection charac-
terized by endocrine, autonomic, and behavior-
al changes triggered by the activation of the 
peripheral innate immune system [38]. As is 
known, sickness behavior may influence the 
performance of rodent animals in other behav-
ioral tests, resulting in false results. In order to 
exclude the influence of sickness on other 
behavioral tests, sickness behavior was ac- 
cessed in open field test. No differences in 
locomotor activity were observed between the 
LPS treated animals and LPS+APS treated ani-
mals. The result indicated that the attenuation 
of the behavioral performance in forced swim 
test was specific to the antidepressant effects 
of APS without influence from locomotor activi-
ty. All the behavioral tests confirmed the antide-
pressant activity of APS in LPS induced rat 
model of depression.

The evidence from preclinical and clinical stud-
ies supports that depression is usually accom-
panied by the activation of the inflammatory-
response system [3-8]. And overproduction of 
inflammatory cytokines plays a role in the 
pathophysiology of depressive disorders. The 
cytokines has been found to influence neuro-
genesis and the HPA axis activity, which are 
both associated with depression. In preclinical 
studies, administration of IFN-α or TNF-α has 
been tested to establish animal model of 
depression [9-11, 16, 38]. And suppressing the 
over-production of these cytokines has exhibit-
ed a potent antidepressant effect [23, 39]. LPS 
can activate TLR-4 and induce systemic inflam-
mation and neuroinflammation. After LPS 
administration, overproduction of IL-1, IFN-α 
and TNF-α in the peripheral tissue and brain 
has been found in rodents. In the current study, 
we analyzed the expression of IL-1β, IL-6 and 
TNF-α in hippocampus and hypothalamus 
which play a crucial role in mode regulation. 
Consistently with previous reports [18, 19, 40], 
we also found the rats in LPS group had much 

higher levels of inflammatory cytokines TNF-α, 
IL-1β and IL-6 (both protein and mRNA levels) 
than the control animals. Yet, APS effectively 
inhibited the over-expression of these cyto-
kines (both protein and mRNA levels). Thus, the 
effects of APS on these cytokines may explain 
the positive results of APS treatment in the 
behavioral tests. Besides our findings, some 
other natural products, such as resveratrol, 
salidroside, EGb761, apigenin, curcumin, also 
exhibited anti-inflammatory and antidepres-
sant effects in animal model of depression 
induced by LPS, stress and other means [22-
25, 41].

Inhibition of the NF-κB and MAPK pathways has 
been proposed to be a major mechanism 
underlying the attenuation of LPS-induced 
inflammatory cytokine production. Activation of 
NF-κB signaling is involved in LPS induced 
inflammation response. LPS combines with 
TLR-4 and triggers a cascade of signaling reac-
tions, ultimately leading to the degradation of 
transcription inhibition factor-κB (IκB) by phos-
phorylation. The phosphorylation of IκB acti-
vates NF-κB, and the activated NF-κB p65 sub-
unit (phosphorylated NF-κB p65) is translocated 
to the nucleus where it promotes the transcrip-
tion of target genes, such as TNF-α, IL-1β and 
IL-6 genes. Consistently, we observed much 
high levels of NF-κB p65, phospho-NF-κB p65 
and phospho-IκBα in hippocampus and hypo-
thalamus in the LPS treated rats in this study. 
And this was in line with the increases in levels 
of TNF-α, IL-1β and IL-6 (both protein and mRNA 
levels) LPS treated rats. In agreement with our 
results, other studies also demonstrated the 
activation of NF-κB signaling in the LPS induced 
animal model of depression [21, 42]. However, 
in this study APS (200 mg and 400 mg) inhibit-
ed the NF-κB signaling activation in a dose 
dependent manner, which was in line with the 
attenuation of inflammatory cytokine produc-
tion by APS mentioned above. Similarly to our 
findings, there is other evidence that inhibition 
of NF-κB signaling contributes to the improve-
ment of depressive-like behaviors [22, 42]. 
MAPK signaling, which includes JNK, ERK1/2 
and p38 MAPK, is another pathway that plays 
an important role in inflammatory responses 
and is involved in pathophysiology of depres-
sion. Studies have proved that MAPK signaling 
is activated at least in inflammation associated 
depression and the managements suppressing 
the over-activation of the signaling manifested 
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antidepressant effects [16, 38]. In line with the 
studies that reported peripheral administration 
of LPS triggered neuroinflammation and acti-
vated MAPK signaling [43, 44], we found much 
higher levels of ERK1/2, JNK, p38 MAPK, phos-
pho-ERK1/2, phospho-JNK and phospho-p38 
MAPK in hippocampus and hypothalamus of 
the LPS treated rats. But rats with APS treat-
ment displayed much lower levels of these 
MAPKs. All the findings suggested that APS 
inhibited the activation of NF-κB and MAPK sig-
naling pathways which could mediate the 
inflammatory cascade elicited by LPS in rats.

Conclusions

In summary, we observed for the first time that 
APS exhibited antidepressant effects in an ani-
mal model of depression induced by a single 
administration of LPS, and the antidepressant 
action of APS was paralleled by significant inhi-
bition of TNF-α, IL-1β and IL-6 expression, as 
well as the activity of NF-κB and MAPK signal-
ing pathways in hippocampus and hypothala-
mus of the Wistar rats. The findings suggest a 
therapeutic potential of APS in at least inflam-
mation associated depression. However, the 
potential effects of APS on the other aspects of 
neuroinflammation, the neurogenesis, neuro- 
transmitter and the HPA axis activity which are 
associated with depression and on other types 
of depression models needs further study in 
the future work.
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