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MiR-125b-mediated BAK1 downregulation contributes 
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Abstract: Objective: To investigate the roles of microRNAs-125b (miR-125b) in drug resistance of gastric cancer 
cells, and assess the mechanisms involved. Methods: The resistance of SGC-7901/DDP cells to chemotherapy was 
studied. Apoptosis of the cancer cells was induced by fluorouracil (5-FU). MiR-125b inhibitor and BAK1 siRNA (20 
nM) were applied to decrease miR-125b and BAK1 expression. 48 h after miR-125b and/or BAK1 silencing, the 
cells were treated by 5-FU for 24 h, and cell viability was then assayed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2-H-tetrazolium bromide (MTT). Apoptosis and cell cycle distribution were detected by flow cytometry with annexin 
V and/or propidium iodide staining. Expression of miR-125b and BAK1 was assessed by real-time PCR. Expression 
of p53 and Bcl-2 was detected by Western blotting. Results: Our data showed that 5-FU inhibited the proliferation 
of SGC-7901/DDP cells in a dose-dependent manner. BAK1 expression was promoted after miR-125b inhibition 
in 5-FU-treated and -untreated cells. The expression of p53 and Bcl-2 was not altered after miR-125b inhibition. 
Interestingly, miR-125b inhibition promoted 5-FU-induced apoptosis, proliferation-inhibition and cell cycle arrest. 
By contrast, co-application of BAK1 siRNA with miR-125b inhibitor reversed the effects of miR-125b inhibition on 
sensitivity to chemotherapy. Conclusion: miR-125b played a critical role in alleviating drug resistance in gastric can-
cer cells through decreasing BAK1 expression. MiR-125b and BAK1 could be potential targets to chemosensitize 
gastric cancer cells.
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Introduction

Gastric cancer is one of the heterogeneous 
malignancies, causing tremendous therapeutic 
burden in China. Age, diet, and stomach dis-
ease are the potential factors determining the 
development and progression of gastric cancer 
[1]. Although a series of biomarkers are avail-
able for the diagnosis of gastric cancer [2-4], 
malignant cancer cells are difficult to be elimi-
nated once the cancer is confirmed. Multiple 
signaling pathways are involved in the develop-
ment of gastric cancer, for example, the mito-
gen-activated protein kinase (MAPK), Wnt and 
p53 signaling pathways [5-7]. Therefore, spe-
cific compounds for antagonizing those signal-
ing pathways have been designed to kill the 
cancer cells [8, 9]. However, a question regard-
ing drug resistance is raised, which disturbs  
the application of chemotherapeutic drugs. 

MiRNAs were found to regulate the develop-
ment of many types of cancers and have 
become potential therapeutic candidates for 
cancers. MiR-125b was proposed as the onco-
gene or anti-oncogene in several types of can-
cers [10]. Moreover, abnormal expression of 
miR-125b was found in gastric cancer [11-13]. 
Experimental evidence showed that miR-125b 
promoted cellular proliferation, and migration 
and invasion of gastric cancer cells [12, 14], 
though the specific target molecule of miR-
125b has not been confirmed. Bcl-2 homolo-
gous antagonist/killer 1 (BAK1) belongs to the 
Bcl-2 protein family. In mammalian cells, Bcl-2 
family members form oligomers or heterodi-
mers and act as anti- or pro-apoptotic regula-
tors that are involved in a wide variety of cellu-
lar activities [15]. BAK1 is known to localize to 
mitochondria, and functions to induce apop- 
tosis through accelerating the opening of the 
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mitochondrial voltage-dependent anion chan-
nel, which leads to a loss in membrane poten-
tial and the release of cytochrome c [16]. In 
addition, BAK1 also interacts with the tumor 
suppressor p53 after exposure to cellular 
stress [17]. Moreover, BAK1 was regulated by 
miR-125b in the development of chronic my- 
eloid leukemia [18]. In addition, the regulation 
of BAK1 by miR125b was also reported to 
mediate apoptosis in neuronal cells [19, 20] 
and cardiac cells [21].

Considering the critical role of miR-125b in  
cancer development, we were interested in 
investigating whether miR-125b influences BA- 
K1 to regulate the efficacy of chemotherapy in 
gastric cancer. SGC-7901/cisplatin (DDP) is a 
type of gastric cancer cell line widely applied  
to study chemoresistance. In this study, we 
selected this cell line and employed genetic 
method to inhibit miR-125b or silence BAK1 
expression to investigate the drug resistance  
of SGC-7901/DDP to 5-FU.

Materials and methods

Cell culture

SGC-7901/DDP was produced from parental 
SGC-7901 by persistence gradient exposure  
to cisplatin for about 12 months (Keygen 
Biotech Co., Ltd., Nanjing, China) and cultured 
in Dulbecco’s minimum essential medium 
(DMEM) (Gibco, NY, USA) supplemented with 
10% fetal bovine serum (FBS) and 100 U/mL 
penicillin-streptomycin (Sigma, St. Louis, MO, 
USA) in 5% CO2 at 37°C. Cells that were 60% 
confluent were applied in the following experi-
ments. 5-FU (Sigma, USA) at the concentra-
tions of 0-45 μg/mL was applied to treat can-
cer cells for 24 h. In subsequent experiments, 

15 μg/mL 5-FU was applied to study the func-
tion of miR-125b-mediated BAK1 in chemo-
therapy of SGC-7901/DDP to 5-FU. A miR- 
125b inhibitor (0.1 nM, Biomics Biotech, Nan- 
tong, China) was designed to decrease miR-
125b expression. After treatment for 48 h, the 
cells were treated by 5-FU for another 24 h. In 
BAK1 silencing experiment, BAK1 siRNA was 
designed to knock down BAK1 expression 48 h 
prior to 5-FU treatment. The sequence of BAK1 
siRNA was designed by GenePharm (Shanghai, 
China). 

MTT assays

Cancer cells in the logarithmic growth phase 
were seeded in a 96-well culture plate. MiR-
125b inhibitor or BAK1 siRNA was transfect- 
ed. After treatment with 5-FU, 20 µL MTT (5 
mg/mL, Gibco, USA) was added into the 200 µl 
culture medium of each well. Four hours later, 
the medium was removed, and 150 µL DMSO 
(Sigma, USA) was added into each well in order 
to dissolve the precipitation. Absorbance (A) 
was measured at 570 nm using an automated 
microplate reader (iMark, USA). 

Real time-PCR (RT-PCR)

Total RNA was extracted using the Trizol kit 
according to the instruction of the manufac- 
turer (Dalian Baosheng, Dalian, China) and the 
purity of RNA was confirmed by optical density 
(OD) 280/OD260. Thereafter, RNA was ampli-
fied using an one-step RT-PCR kit (Dalian 
Baosheng, Dalian, China), and the PCR prod-
ucts were detected by 2% agarose gel electro-
phoresis. The primers were added into a 25-μL 
PCR reaction system which was run at 94°C for 
60 s, 98°C for 10 s, and 72°C for 60 s for a 
total of 30 cycles. The primers were synthe-
sized by Shanghai Biotech (Shanghai, China) 
and are listed as follows: miR-125b upstream 
primer: 5’-CCACCCAACCTCCTTC-3’; downstre- 
am primer: 5’-CACGCTGCTTCTCCTG-3’; BAK1 
upstream primer: 5’-TCAGGCTTTGCGATTT-3’; 
downstream primer: 5’-CTCGGGCACTTATTGG- 
3’; GAPDH upstream primer: 5’-AGCCACATCG- 
CTCAGACA-3’ and downstream primer: 5’-TGG- 
ACTCCACGACGTACT-3’.

Cell transfection

When the cell confluence reached 50-70%, 
LipofectamineTM 2000 (Invitrogen, USA) was 
applied to transfect scramble control (SC) and 

Figure 1. 5-FU inhibits cell growth in a concentration-
dependent manner. The data are expressed as mean 
± SD. *P<0.05 compared with control (0 μg/ml). 
**P<0.01 compared with control. Student’s t-test.
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miR-125b inhibitor. Six h later, the medium  
was changed into DMEM. MiR-125b inhibitor 
and SC were designed by Shanghai Gene- 
Pharma. The cells were then cultured in DMEM 
containing 10% FBS for another 48 h. RT-PCR 
was applied to detect miR-96 expression.

Flow cytometry

After treatment for 24 h, the cells were collect-
ed for Annexin V/propidium iodide (PI) staining 
(Beyotime, Jiangsu, China) and detected within 
1 h by FACSCalibur (BD Co., New York, USA).

After treatment for 24 h, the cells were collect-
ed for PI staining and detected within 1 h by 
FACSCalibur (BD Co., New York, USA). The cell 
cycle was analyzed.

Western blotting assays

After treatment for 24 h, the cells were collect-
ed for biochemical experiments. Protein con-
centration was quantified by BCA method (Be- 
yotime, Jiangsu, China), and an equal amount 
of protein (20 µg) was loaded onto 10% so- 
dium dodecyl sulfate-polyacrylamide gel elec-
trophoresis gels (SDS-PAGE). After electropho-

resis, proteins were transferred to the nitro- 
cellulose membrane. Non-specific protein bin- 
ding was blocked by 4% defat milk. The mem-
branes were incubated with antibodies against 
the following proteins: P53 (1:2000, mouse 
monoclonal antibody) (Abcam, USA), Bak1 
(1:2000, monoclonal antibody) (Abcam, USA), 
Bcl-2 (1:2000, monoclonal antibody) (Abcam, 
USA) and GAPDH (1:2000, monoclonal anti-
body) (Beyotime, China). After washing, the 
membranes were incubated with peroxidase-
labeled secondary antibody (1:4000, goat anti 
mouse, Abcam, USA). The signal was detected 
using an enhanced chemiluminescence det- 
ection kit (Amersham ECL RPN 2106 Kit, 
Amersham Pharmacia Biotech, QC, Canada) 
and scanned by ChemiDocTM XRS (Bio-Rad, 
Hercules, CA, USA). The densities of the blots 
were analyzed by Quantity One Software.

Statistical analysis 

The data were presented as mean ± stand- 
ard deviation (S.D.). Statistical analyses of the 
data were performed using Student’s t-test. 
P<0.05 was considered as significant diffe- 
rence.

Figure 2. MiR-125b inhibitor promotes BAK1 expression and chemotherapy of 5-FU in gastric cancer cells. A. miR-
125b inhibitor significantly decreases miR-125b expression. B. miR-125b inhibitor promotes BAK1 expression. C. 
miR-125b inhibitor promotes 5-FU-induced proliferation-inhibition. D. miR-125b inhibitor promotes 5-FU-induced 
apoptosis. E. 5-FUmiR-125b inhibitor does not affect p53 and Bcl-2 expression, but promoted BAK1 expression in 
5-FU treated cells. Left panel showed the representative blots; Right panel were the quantification data. *P<0.05 
compared with control. ***P<0.001 compared with control. Student’s t-test.
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Figure 3. MiR-125b inhibitor attenuates 5-FU-
induced cell cycle arrest at the G2/M phase. A. 
Representative flow cytometry result from the 
control and miRNA-125b inhibitor group. B. 
Quantification data. *P<0.05 compared with 
control. Student’s t-test.

Figure 4. siBAK1 decreases BAK1 expression, but does not affect miR-
125b expression. A. BAK1 expression; B. miR-125b expression. **P<0.01 
compared with siBAK1(-). Student’s t-test.

Results

MiR-125b inhibitor promoted BAK1 expression 
and chemotherapy of 5-FU in gastric cancer 
cells

SGC-7901/DDP cell line was treated by differ-
ent concentrations of 5-FU (0-45 μg/mL) for  
24 h. As shown in Figure 1, 5-FU inhibited  
SGC-7901/DDP proliferation in a concentra-
tion-dependent manner. Fifteen μg/mL 5-FU 

caused a 25% inhibition. In the 
subsequent experiments, 15 
μg/mL 5-FU was used. 

To investigate the effect of 
miR-125b on chemoresistan- 
ce, we designed a miR-125b 
inhibitor. As shown in Figure 
2A, the miR-125b inhibitor sig-
nificantly decreased miR-125b 
expression. Moreover, the miR-
125b inhibitor promoted BA- 
K1 expression (Figure 2B). We 
also detected the effects of 
miR-125b inhibitor on 5-FU- 
mediated proliferation-inhibiti- 

on, apoptosis and cell cycle distribution. As 
shown in Figure 2C, 5-FU at 15 μg/mL caused 
a 25% inhibition of cell proliferation. However, 
the miR-125b inhibitor enhanced the prolifera-
tion-inhibition to 42%. As shown in Figure 2D, 
the miR-125b inhibitor promoted 5-FU-induced 
apoptosis. The apoptotic rate in the 5-FU-treat- 
ed group was 9%, while with the addition of  
the miR-125b inhibitor, 5-FU-induced apopto- 
tic rate increased to 12%. 5-FU The miR-125b 
inhibitor did not affect p53 and Bcl-2 expres-
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sion, while promoted BAK1 expression–in 5- 
FU-induced apoptosis (Figure 2E). Cell cycle 
distribution analysis showed that the miR-125b 
inhibitor arrested the cell cycle at G2/M phase 
(Figure 3). 

BAK1 siRNA reversed the effect of miR-125b 
inhibitor on 5-FU-induced apoptosis

As miR-125b inhibitor promoted BAK1 expres-
sion, we therefore aimed to determine the ro- 
les of BAK1 in the process. A BAK1 siRNA  
was designed to decrease BAK1 expression.  
As shown in Figure 4A, BAK1 was remarkab- 
ly down-regulated after application of BAK1 
siRNA. By contrast, silencing of BAK1 did not 
affect miR-125b expression (Figure 4B). Im- 

BAK1 siRNA reversed the effect of miR-125b 
inhibitor on cell cycle distribution

As shown in Figure 7, BAK1 siRNA reversed the 
effect of miR-125b inhibitor on cell cycle distri-
bution. By contrast, BAK1 siRNA did not affect 
p53 and Bcl-2 expression (Figure 8).

Discussion

Chemoresistance is a daunting challenge for 
chemotherapy of various cancers. Much atten-
tion has been paid on this study area. However, 
the mechanisms were still unconfirmed. In this 
study, a chemoresistant gastric cancer cell li- 
ne was used to study the mechanisms of che-
moresistance in gastric cancer cells. We found 
that miR-125b inhibitor effectively promoted 
the chemotherapeutic effects of 5-FU. Impor- 
tantly, we disclosed that chemoresistance was 
through miR-125b-mediated BAK1 expression.  

MiRNAs have been proposed as oncogenes or 
anti-oncogenes. Therefore, miRNA inhibitors or 
mimics are widely designed to treat cancers. 
For example, miR-194 was reported to inhibit 
gastric cancer cell proliferation [22]. MiR-502 
promoted gastric cancer development [23]. 
MiR-187 regulated gastric cancer progression 
by targeting tumor suppressor CRMP1 [24]. 
MiRNAs were also proposed to regulate che- 
moresistance. MiR-30a decreases multidrug 
resistance (MDR) of gastric cancer cells [25].  
In our study, we disclosed that miR-125b also 
functioned as an important factor in mediating 

Figure 5. BAK1 siRNA reverses the effect of miR-125b inhibitor on 5-FU-
induced apoptosis.

portantly, the effect of the miR-
125b inhibitor on 5-FU-induc- 
ed apoptosis was reversed by 
BAK1 silencing compared with 
the miR-125b inhibitor (10% 
vs. 5.5%) (Figure 5).

BAK1 siRNA reversed the 
effect of miR-125b inhibitor 
on 5-FU-induced proliferation-
inhibition

We also examined cellular pro-
liferation. As shown in Figure 
6, BAK1 siRNA also attenuat- 
ed the effects of miR-125b 
inhibitor on 5-FU-induced cell 
proliferation inhibition (0.56 
vs. 0.76).

Figure 6. BAK1 siRNA reverses the effect of miR-
125b inhibitor on 5-FU-induced proliferation-inhibi-
tion. *P<0.01 compared with siBAK1(-). Student’s 
t-test.
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chemotherapeutic response. We showed that 
5-FU inhibited cell proliferation of gastric cell 
line in a concentration-dependent manner. 
Using a miR-125b inhibitor, 5-FU-induced pro- 
liferation-inhibition and apoptosis were facili-
tated in SGC-7901/DDP cell line. Moreover, cell 
cycle was prominently arrested at the G2/M 
phase in miR-125b inhibitor treated cells com-
pared with control. Those data implicated that 
miR-125b was an important factor contributing 

the target of miR-125b in regulating chemore-
sistance, at least in gastric cancer cells. It al- 
so suggested that microRNA-125b induced 
cancer cell apoptosis through suppression of 
Bcl-2 expression [27]. In our condition, Bcl-2 
was also excluded as the downstream target of 
miR-125b. 

BAK1 is a direct target of miR-125b [28]. As 
reported previously, BAK1 was an important 

Figure 7. BAK1 siRNA reverses the effect of 
miR-125b inhibitor on 5-FU-induced cell cycle 
arrest. *P<0.01 compared with siBAK1(-). Stu-
dent’s t-test.

Figure 8. siBAK1 does not affect p53 and Bcl-2 expression in 5-FU treated 
cells. A. Representative blots of p53 and Bcl-2. B. Quantification data of p53 
and Bcl-2 expression.

to chemoresistance in gastric 
cancer cells. MiR-125b inhibi-
tor promoted the chemothera-
peutic effects of 5-FU on the 
proliferation and apoptosis of 
SGC-7901/DDP cell line. 

MicroRNA-125b was reported 
to regulate p53 mRNA transla-
tion in response to genotoxic 
stress [26]. However, in our 
study, p53 protein expression 
was not affected in gastric 
cancer cells after miR-125b 
level was reduced. These data 
implicated that p53 was not 



MiR-125b contributes to chemoresistance of gastric cancer cells

3162 Int J Clin Exp Med 2018;11(4):3156-3163

cancer related gene, performing functions in 
regulating cell proliferation, apoptosis and mi- 
gration [29, 30]. Moreover, miR-125b confers 
chemoresistance in several types of cancer 
cells, including breast cancer [28], acute pro-
myelocytic leukemia [31], and glioblastoma 
[32], etc. In those studies, BAK1 has been 
reported to be suppressed after chemothe- 
rapy. Hence, downregulation of BAK1 was like- 
ly implicated in chemoresistance. In our study, 
we also proposed that miR-125b-mediated 
downregulation of BAK1 contributed to chemo-
resistance in gastric cancer cells. BAK1 siRNA 
reversed miR-125b inhibitor-sensitized gastric 
cancer cells to 5-FU. In combination with oth- 
er publications [31, 32], miR-125b-regulated 
BAK1 expression confers a general function in 
chemoresistance in cancer treatments. 

Conclusion

In our study, we reported that miR-125b inhibi-
tor chemosensitized gastric cancer cells. The 
potential mechanisms were related to upregu-
lation of BAK1 expression, but not Bcl-2 or  
p53. These data might be of implications in the 
chemotherapy of gastric cancer. 
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