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Abstract: Background and aim: Previous findings have indicated that abnormal expression level of microRNA in en-
dothelial progenitor cells (EPCs) is correlated with dysfunction of EPCs. EPCs have a beneficial effect on endothelial 
repair and integrity which fight against coronary artery disease (CAD). This study aimed to determine the role that 
microRNA-222 plays on human EPC functions and investigate the underlying mechanisms. Methods: EPCs were 
separately collected from peripheral blood mononuclear cells of patients with CAD and healthy donors. EPC func-
tions (proliferation, adhesion and migration) were performed by CCK-8 assay, cell counting, and Transwell migration 
assay. Identification of the target gene of miR-222 was studied by bioinformatics and Western blot analysis. Expres-
sion of miR-222 was measured by quantitative real-time polymerase chain reaction. Protein levels were analyzed by 
Western blot. Furthermore, vascular endothelial growth factor (VEGF) production was quantified by enzyme-linked 
immunosorbent assay. Results: miR-222 was significantly higher in CAD EPCs than in healthy donor-derived EPCs. 
Overexpression of miR-222 in healthy donor-derived EPCs contributed to decreases in proliferation, adhesion, and 
migration in vitro. Conversely, downregulation of miR-222 effectively reverted CAD EPC functions. STAT5A is a target 
of miR-222 in EPCs. The overexpression or inhibitory level of miR-222 regulated VEGF production and p38 mitogen-
activated protein kinase (MAPK) activation in human EPCs. Conclusions: Downregulation of miR-222 might facilitate 
CAD EPC function through the activation of p38 MAPK/VEGF signal pathway. Thus, inhibition of miR-222 might have 
important medical applications in EPC-based therapy for CAD.
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Introduction

Coronary artery disease (CAD) is among the 
main causes of morbidity and mortality around 
the world [1]. Endothelial function and integri- 
ty play a key role in maintaining vascular 
homeostasis which leads to control and delay 
in CAD progression [2-4]. Since the initial dis-
covery of EPCs deriving from human peripheral 
blood in 1997, circulating EPCs have been con-
sidered important in maintaining endothelial 
function and mediating postnatal vasculogen-
esis. Circulating EPCs originate from bone ma- 
rrow. These cells can directly contribute to 
regenerating vasculature and possess the ca- 
pacity to secrete various paracrine cytokines 
including vascular endothelial growth factor 

(VEGF) and endothelial nitric oxide synthase to 
promote the function of pre-existing ECs [5-8]. 
Accumulating evidence has indicated that CAD 
can diminish the number and function of EPCs, 
leading to impaired vascular homeostasis and 
associated angiogenesis [9-11]. Thus, enhanc-
ing the quality and quantity of EPCs is of clini- 
cal significance and is important in making 
progress against CAD.

microRNAs (miRNAs) are endogenous, short, 
and highly conserved endogenous oligonucle-
otides (18-23 nucleotides) that downregulate 
target gene expression through mRNA degra- 
dation and translational inhibition [12, 13]. 
miRNAs are well known to affect key functions 
of human cells including proliferation, adhe-
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sion, migration, apoptosis, and angiogenesis 
[14-16]. Evidence for the crucial role of miR- 
NAs (miR-27a, miR-27b, miR-126, miR-130a, 
miR-221 and miR-222) in CAD [17, 18] conti- 
nuously exists. Among these miRNAs, miR-222 
has been reported to be upregulated in CAD 
EPCs [19, 20]. miR-222 has been proven to 
inhibit EC proangiogenic activation, prolifera-
tion, and migration [21, 22]. However, the ba- 
sic mechanism by which miR-222 modulates 
EPCs has yet to be examined.

The signal transducer and activator of tran-
scription 5A (STAT5A) are members of the ST- 
AT family of transcription factors which act as 
targets of various growth factors and cytokin- 
es [23]. The STAT protein family plays a crucial 
role in normal cell decision, modulating cell 
growth, and homeostasis [24]. STAT5A is link- 
ed to modulation of the various aspects of ce- 
llular transformation, cell proliferation, hema- 
topoiesis, anti-apoptosis, differentiation, cell 
cycle, and cell survival. Moreover, STAT5A is 
especially associated with the maintenance, 
engraftment, and enlargement of human st- 
em/progenitor cells [25-27]. One previous st- 
udy revealed that STAT5A acted as an impor-
tant regulator of inflammation-mediated neo-
vascularization in human umbilical vein endo-
thelial cells [28]. Thus, this study suggested 
that STAT5A might play a major role in inflam-
mation and CAD.

The members (mainly including ERK, SAPK/
JNK, and p38 MAPK) of the mitogen-activated 
protein kinase (MAPK) superfamily play an 
essential role in cellular signaling pathways. 
Several reports have shown that p38 MAPK si- 
gnaling pathway is involved in endothelial pr- 
ogenitor cell function in response to activa- 

In our present study, we demonstrate that -222 
is upregulated in EPCs in patients with CAD.  
We also examined the regulatory relationship 
between miR-222 and STAT5A in human EPCs. 
In addition, a mechanism involving p38 MA- 
PK/VEGF signaling pathways regulated the ef- 
fect of miR-222 on EPC functions. Thus, our 
findings show critical roles for miR-222 in dys-
regulation of EPCs and demonstrate its pot- 
ential application in clinical transplantation for 
CAD treatment and early diagnosis.

Materials and methods

Patient recruitment and blood collection 

Fifteen patients with stable CAD, conforming  
to the criteria of the American College of 
Cardiology (ACC)/American Heart Association 
(AHA), and 15 healthy controls were recruited 
into this study. Study participants were exclud-
ed if they had a history of acute coronary syn-
drome, heart failure, heart transplantation, 
immunosuppressant use, treatment with st- 
atins, malignancy, sepsis, large surgical ope- 
ration in the previous two months, or other 
severe diseases. Clinical characteristics of the 
two groups are presented in Table 1. This stu- 
dy conformed to the principles drafted in the 
Declaration of Helsinki for the use of human 
blood. All experiments were performed in acc- 
ordance with the Ethics Committee of the 
Affiliated Hospital of Jiangsu University, Jiang- 
su University. Informed consent was acquired 
from all patients before blood collection.

Isolation and cultivation of EPCs

Isolation and culture of the EPCs were execut- 
ed as described previously [33, 34]. Concisely, 
peripheral blood mononuclear cells were iso-

Table 1. Demographic and clinical characteristics of 
CAD and healthy groups

CAD group 
(n=15)

Healthy 
group (n=15) P

Sex, male/female 8/7 8/7 1.000
Age, years 65±7 61±5 0.088
Hypertension, n (%) 6 (40) 4 (26.7) 0.700
Hyperlipidemia, n (%) 7 (46.7) 2 (13.3) 0.109
Diabetes Mellitus, n (%) 5 (33.3) 2 (13.3) 0.215
Smoker, n (%) 7 (46.7) 5 (33.3) 0.71
Note: Calculated using Fisher’s exact test for categorical covari-
ates. P values < 0.05 were considered statistically significant.

tion by high glucose or pro-inflammatory 
cytokines [29]. Recently, one finding has 
confirmed that the role of miR-26a modu-
lates EPC function through p38 MAPK/VE- 
GF signaling pathway [30]. Moreover, other 
reports have revealed that VEGF is a cruci- 
al mitogen of EPCs which promotes EPC 
functions (proliferation, migration, adhesi- 
on, and tube formation) [31, 32]. In light of 
these studies, we hypothesized that acti- 
vation of the p38 MAPK/VEGF pathway 
might play an important role in the effect of 
miR-222 on EPC functions.
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Table 2. Sequences of primers used in qRT-PCR as follows
Forward (5’- to 3’) Reverse (5’- to 3’)

miR-222 GCGGCAGCTACATCTGGC AGTGCGTGTCGTGGAGTC
RNU6B ACTCAAGACAATGGTGATAATGGTT TAAAGAACAGAAAGGAATACGCAG
STAT5A GATGGAGGTGTTGAAGAAGCA TGATGAGCAGGTCGTGGG
GAPDH TCAACGGATTTGGTCGTATTG TGGGTGGAATCATATTGGAAC

lated from patients with CAD and healthy con-
trols by Ficoll-Isopaque Plus (Histopaque-1077, 
Sigma-Aldrich, USA) centrifugation. Cells were 
then seeded into human fibronectin-coated 
(Sigma-Aldrich, Saint Louis, USA) six-well pla- 
tes in endothelial basal medium-2 (EBM-2) 
(Clonetics, Lonza, MD, USA) supplemented with 
EGM-2-MV single aliquots containing hydro- 
cortisone, insulin-like growth factor-1, VEGF, 
human fibroblast growth factor-2, human epi-
dermal growth factor, ascorbic acid, and 20% 
fetal bovine serum (FBS) (Gibco, Grand Island, 
NY, USA) at 37°C in a 5% CO2 incubator. After  
4 hours, non-adherent cells were removed fr- 
om fresh medium and EBM-2 was refreshed 
every 3 days. These cells were cultured for 7 
days and subjected to subsequent experim- 
ents (cell viability assay, adhesion assay, cell 
migration assay, and transfection).

Identification of EPCs

After 7 days of cultivation, these adherent ce- 
lls gradually turn to elongated spindle-shaped 
morphology. They could gradually develop so- 
me clusters with spindle-shaped cells sprout-
ing from the central core, which we called co- 
lony forming units. The characterization and 
surface maker phenotype of EPCs were ana-
lyzed by fluorescence microscopy and flow cy- 
tometry, respectively. Expression of the surfa- 
ce marker of EPCs was assessed by FACSCali- 
bur flow cytometer (BD Biosciences, Franklin 
Lakes, USA) after staining with anti-CD31, anti-
34, and anti-CD45 (all antibodies conjugated 
with PE were from eBioscience, CA, USA). The 
data were performed using CellQuest softwa- 
re. To determine the early EPC phenotype, 
adherent cells cultured for 7 days were incu-
bated with 30 μg/mL 1,1’-dioctadecyl-3,3,3’,3’-
tetramethyl-indocarbocyanine perchlorate-ace- 
tylated low-density lipoprotein (Dil-Ac-LDL; Yi- 
yuan Biotechnologies, Guangzhou, China) for  
4 hours at 37°C. After washing with probe- 
free medium and fixation with 2% paraformal-
dehyde, cells were counterstained with 10 μg/
mL FITC-labeled Ulex europaeus agglutinin-I 
(FITC-UEA-I, Sigma) for 1 hour. Cells were ob- 

Cell transfection

miR-222 was overexpressed or inhibited in 
human EPCs using 50 nM miR-222 mimic  
(miR-222), negative control mimic (miR-NC), 50 
nM miR-222 inhibitor (anti-miR-222), or its ne- 
gative control (anti-NC) for miR-222 inhibitor 
(Genepharma, Shanghai, China). EPCs were 
cultured to 40% confluence and Lipofectami- 
ne 2000 reagent (Life Technologies, CA, USA) 
for each transfection. EPCs were collected for 
24 hours after transfection and the level of 
miR-222 was verified by qRT-PCR. All of the 
transfections were stable in EPCs for at least  
7 days, allowing for further study. Sequences 
used were as follows (5’ to 3’): miR-222 
(AGCUACAUCUGGCUACUGGGU), miR-NC (CCA- 
GUAGCCAGAUGUAGCUUU), anti-miR-222 (AC- 
CCAGUAGCCAGAUGUAGCU), and anti-NC (CA- 
GUACUUUUGUGUAGUACAA). 

Target gene prediction

To identify the potential targets of miR-222  
that mediated its antiangiogenic role in EP- 
Cs, in-silico data analysis was performed by 
TargetScan (www.targetscan.org), miRTarBase 
(mirtarbase.mbc.nctu.edu.tw), miRTargetLink 
(ccb-web.cs.uni-saarland.de/mirtargetlink), 
RNA22 (cm.jefferson.edu/rna22), and miRPa- 
thDB (mpd.bioinf.uni-sb.de).

RNA isolation and qRT-PCR

Total RNA was extracted from EPCs using 
RNAiso plus (Takara, Tokyo, Japan) according  
to the manufacturer’s directions. Subsequent- 
ly, RNA was diluted with RNase-free water and 
stored at -80°C. RNA concentrations were  
analyzed by NanoDrop spectrophotometry (Th- 
ermo Fisher Scientific, Wilmington, USA). Then, 
cDNA was synthesized using 3 µg of total RNA 
in 20 µL volume, oligo (dT) primers, and rever- 
se transcriptase. The qRT-PCR was performed 
using SYBR® Premix Ex TaqTM Perfect Real Time 
(Takara, Tokyo, Japan) in the Real-time PCR 
Mx3000PTM System (Genetimes Technology, 
Shanghai, China). PCR conditions comprised an 

served with fluorescence mi- 
croscopy (Olympus BX51 Fl- 
uorescence Microscope, To- 
kyo, Japan). Adherent cells, 
dual positive for both Dil-Ac-
LDL and FITC-UEA-I, were 
identified as EPCs.
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initial holding at 95°C for 10 minutes, then 40 
cycles at 95°C for 10 seconds and 60°C for  
20 seconds (for miRNAs), and at 95°C for 15 
seconds and 60°C for 20 seconds (for mR- 
NAs). Data analyses were performed by the 
comparative threshold cycle (Ct) method, as 
described previously [35]. All reactions were 
executed in triplicate. U6 small nucleolar RNA 
and GAPDH were used as an endogenous con-
trol for sample normalization. The primer se- 
quences used for cDNA are shown in Table 2.

Enzyme-linked immunosorbent assay (ELISA)

The total concentrations of VEGF after transfec-
tion were determined by 96-well enzyme im- 
munoassay ELISA kits (MultiSciences, Zheji- 
ang, China) with a sensitivity of at least 3.66  
pg mL, according to the manufacturer’s instr- 
uctions. Each experiment was independently 
repeated in triplicate. 

Western blotting analysis

For total cellular protein, EPCs were lysed with 
300 µL lysis buffer (Beyotime, Shanghai, China) 
and supplemented with phenylmethanesulfo-

nyl fluoride (Sigma) and protein phosphatase 
inhibitors (Sigma). After centrifugation for 15 
minutes at 12,000 g (4°C), the protein conc- 
entration was detected using a Biomate 3s 
(Thermo Fisher Scientific, USA). Protein lysates 
were electrophoresed in 10% SDS-PAGE gels 
and then transferred onto polyvinylidene difl- 
uoride membranes (Millipore, MA, USA) by ele- 
ctrophoresis. After blocking for 1 hour in 5% 
BSA at room temperature, the membranes 
were incubated with primary antibodies aga- 
inst β-actin (β-actin, 1:1000, Cell Signaling 
Technology, CA, USA), STAT5A (1:500, Abcam, 
USA), phospho-p38 MAPK and p38 MAPK 
(1:1000, Cell Signaling Technology, CA, USA), 
and secondary goat anti-rabbit antibodies 
(1:5000, PerkinElmer, USA). Finally, immunob-
lot signals were visualized using Pierce ECL-
plus substrate (Thermo Fisher Scientific, 
Rockford, USA) and then imaged and quanti-
tated using a Fluor ChemFC3 camera system 
(Protein Simple, CA, USA).

Cell viability assay 

Viability of EPCs was evaluated by using the 
Cell Counting Kit-8 assay (CCK-8, Sigma). EPCs 

Figure 1. Identification of EPCs and analysis of miR-222 expression levels in healthy controls and patients with CAD. 
A. The human peripheral blood total mononuclear cells showed a round and small morphology at 0 day (a). After 7 
days of culture, the attached early EPCs began to show an elongated spindle-shaped morphology (b). B. qRT-PCR 
quantification of miR-222 from total RNA extracted from healthy and CAD EPCs (**: p < 0.01 by Mann-Whitney U 
test, compared with the healthy group). The expression levels of miR-222 were normalized to RNU6B. C. Expression 
of EPC surface antigens (CD31/CD34/CD45) by flow cytometric analysis.
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were seeded in each well of 96-well plates at  
a density of 5000 cells in 100 µL culture medi-
um and were cultured at 37°C in a 5% CO2 in- 
cubator for 24 hours. Cells were then detect- 
ed using Cell Counting Kit-8 for 2 hours. The 
absorbance (OD 450 nm) of the medium value 
in each well was determined using a microplate 
reader which assessed the cell viability. 

Cell adhesion assay 

EPC adhesion was done as previously report- 
ed [36, 37]. Human EPCs were briefly washed 
with phosphate-buffered saline (PBS) and gen-
tly detached with 0.25% trypsin after treatm- 
ent overnight with transfection. An equal num-
ber of EPCs (2×104 cell/well in 100 µL) was 
seeded into fibronectin-coated 96-well plates. 
Then, EPCs were incubated for 30 minutes at 
37°C in 5% humidified CO2. Adhesion was 
quantified by independently counting adhe- 
rent cells in five randomly selected fields per 
well (×200).

Cell migration assay

The migration ability of EPCs was assessed 
using Transwell cell migration assays. A total  
of 5×104 EPCs in 100 µL of serum-free medium 

All data from three independent experiments 
were expressed as mean ± standard devia- 
tion. Statistical comparisons were carried out 
using the t-test for two groups, Mann-Whitney 
test for non-normally distributed data, and one-
way ANOVA for multiple groups. P < 0.05 was 
deemed statistically significant. GraphPad Pr- 
ism version 6.01 (GraphPad, San Diego, CA, 
USA) was used for statistical analyses.

Results

Baseline characteristics of subjects

CAD and healthy groups were mainly matched 
by age, gender, smoking history, hypertension, 
diabetes mellitus, and lipid profile (Table 1).  
No statistically significant differences were 
observed between CAD and unhealthy groups 
for baseline characteristics.

Characterization of EPCs and expression of 
miR-222 in EPCs from CAD patients

EPCs were isolated from the blood of patients 
with CAD and healthy groups. After 6 hours  
of initial culture, the human peripheral blood 
total mononuclear cells showed a round and 
small morphology (Figure 1Aa). After 7 days, so- 

Figure 2. Characterization of EPCs by confocal microscopy. A. The attached 
cells displayed an endothelial and spindle morphology after 7 days of cul-
ture. B. Adherent cells were positive for Dil-Ac-LDL uptake (red, exciting 
wavelength 543 nm). C. Adherent cells were positive for binding of FITC-
UEA-I (green, exciting wavelength 477 nm). D. Double positive cells were 
judged to be EPCs (yellow). Magnification at ×100.

was loaded into the upper 
chambers of a 24-well Trans- 
well plate with 8.0 μm pore 
size (Corning, NY, USA). The 
lower chamber was filled with 
the medium containing 20% 
FBS, which served as a che-
moattractant. Then, EPCs we- 
re incubated for 24 hours at 
37°C in a 5% CO2 incubator. 
After 24 hours, the non-migr- 
ated cells from the upper ch- 
amber of the membrane we- 
re washed with PBS. Migrat- 
ed cells were fixed with 4% 
paraformaldehyde for 20 min-
utes and stained with hema-
toxylin for 30 minutes. Mig- 
ration activity was evaluated 
as the mean number of migr- 
ated cells in five random hi- 
gh-power fields (magnification 
×100) in each chamber. 

Statistical analysis 
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Figure 3. Effect of miR-222 expression on EPC proliferation, adhesion, 
and migration which were isolated from healthy controls and CAD patients 
transfected with miR-222 mimic or inhibitor. A-D. Overexpression of miR-
222 impaired healthy EPC functions. Healthy donor-derived EPCs with no 
transfection (nontrans) or transfection of 50 nM miR-222 mimic (miR-
222). A negative control mimic (miR-NC) was cultured for 24 h. A. Expres-
sion levels of miR-222 were detected by qRT-PCR. MiR-222 levels were 
normalized to RNU6B expression (**: p < 0.01). B. Cell viability assay (**: 
p < 0.01). C. Cell adhesion assay (**: p < 0.01). D. Transwell migration as-
say (**: p < 0.01). The value of nontrans group was normalized to 1, except 
for cell adhesion assay. **P < 0.01 compared with the nontrans group. 
E-H. Knockdown of miR-222 restored CAD EPC functions. CAD EPCs had 
no transfection (control) or transfection of 50 nM miR-222 inhibitor (anti-
miR-222). Corresponding negative control (anti-NC) was cultured for 24 h. 
E. The expression levels of miR-222 were also detected by qRT-PCR. MiR-
222 levels were normalized to RNU6B expression (**: p < 0.01). F. Cell via-
bility assay (*P < 0.05). G. Cell adhesion assay (**: p < 0.01). H. Transwell 
migration assay (**: p < 0.01). The value of control group was normalized 
to 1, except for cell adhesion assay. *P < 0.05, **P < 0.01 compared with 
the control group. Data were expressed as mean ± SD. Each experiment 
was independently repeated in triplicate.

me of the adherent cells devel-
oped a spindle-shaped mor-
phology and formed cell clust- 
er as previously reported [18, 
38] (Figure 1Ab). On day 7, the 
purities of EPCs were further 
assessed by the surface mark-
ers CD31, CD34, and negative 
for hematopoietic marker CD- 
45 (Figure 1C). miR-222 ex- 
pression levels by qRT-PCR in 
EPCs were significantly higher 
in the CAD group than in the 
non-CAD group, which is similar 
to those of previous studi- 
es [19, 20] (p < 0.01, Figure 
1B). EPCs were then character-
ized by double positive cells 
identified by confocal micros-
copy (Figure 2).

Overexpression of miR-222 
decreases proliferation, adhe-
sion, and migration of EPCs in 
vitro

Cell proliferation, adhesion, and 
migration are the key functions 
of EPCs and play crucial roles  
in angiogenesis and neovascu-
larization. Thus, we conducted 
the overexpression of miR-222 
in healthy donor-derived EPCs 
to investigate its effect on EPC 
functions. miR-222 negative co- 
ntrol mimic served as negative 
control. Then, cell viability as- 
say, adhesion assay, and Tran- 
swell migration assay were car-
ried out. Expressions of miR-
222 in both healthy and CAD 
groups were assessed by qRT-
PCR. The value of nontransfect-
ed control cells was normaliz- 
ed to 1 in Transwell migration 
assays. miR-222 showed a si- 
gnificant increase in miR-222 
mimic-transfected EPCs (P < 
0.01, compared with the non-
transfected group) (Figure 3A). 
We observed that transfection 
with miR-222 significantly inhi- 
bited EPC proliferation (P < 
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0.01, compared with the nontransfected gr- 
oup; Figure 3B), adhesion (P < 0.01, compar- 
ed with the nontransfected group; Figure 3C), 
and migration (P < 0.01, compared with the 
nontransfected group; Figure 3D). These resu- 
lts indicate an antiangiogenic effect for miR- 
222. 

Inhibition of miR-222 reverses the function of 
EPC from patients with CAD in vitro

CAD EPC functions are known to be much fee-
ble than healthy EPCs [32]. To further explore 
the effect of miR-222 on CAD EPC functions,  
we decreased levels of endogenous miR-222  
in CAD EPCs. miR-222 inhibitor with corresp- 
onding irrelevant sequences served as nega-
tive control. We conducted the same assays  
to detect the effect of miR-222 inhibitor-trans-
fected CAD EPCs. The value of CAD control ce- 
lls was normalized to 1 in Transwell migration 
assays. miR-222 showed a significant decrea- 
se in miR-222 inhibitor-transfected EPCs (P < 
0.01, compared with the control group; Figure 
3E). We observed that CAD EPCs transfected 
with a miR-222 inhibitor-rescued proliferation 

(P < 0.05, compared to the control group; 
Figure 3F), adhesion (P < 0.01, compared with 
the control group; Figure 3G), and migration  
(P < 0.01, compared with the control group; 
Figure 3H). These findings reveal that inhibiti- 
on of miR-222 might reverse CAD EPC func-
tions, which are deemed to promote vascular 
homeostasis and endothelium.

miR-222 regulates EPC functions by targeting 
STAT5A expression

STAT5A was identified as a potential target of 
miR-222 through bioinformatics approach (Fi- 
gure 4A). Notably, miRBase showed that the 
sequence of miR-222 is significantly conserv- 
ed in humans, rats, and mice. They have the 
same sequence as 5’ to 3’: AGCUACAUCU- 
GGCUACUGGGU. Then, we conducted healthy 
EPCs with no transfection (nontrans), miR-222 
mimic (miR-222), negative control mimic (miR-
NC), inhibitor of miR-222 (anti-miR-222), and 
corresponding negative control of inhibitor 
(anti-NC) and transfected for 24 hours to con-
firm the hypothesis on miR-222 target STAT5A 
in human EPCs. Expression levels of STAT5A 

Figure 4. STAT5A is a target of posttranscriptional repression by miR-222. Healthy donor-derived EPCs with no 
transfection (nontrans), transfection of 50 nM miR-222 mimic (miR-222), negative control mimic (miR-NC), and 
transfection of 50 nM miR-222 inhibitor (anti-miR-222) or its negative control (anti-NC) were cultured for 24 h. A. 
Predicted targeting sites with miR-222 of STAT5A 3’-UTR (Hsa, human) are emphasized in red. B. qRT-PCR analysis 
was applied to detect the mRNA expression of EPCs. C. Western blot analysis showed that the protein level of STAT5A 
was decreased after transfection with miR-222 mimic. The protein level of STAT5A was upregulated after transfec-
tion with miR-222 inhibitor. The mRNA levels of STAT5A were normalized to GAPDH. The Western blotting results 
were normalized to β-actin. Data were all expressed as mean ± SD. Each experiment was independently repeated 
in triplicate. *P < 0.05, **P < 0.01 compared with the nontrans group.
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Figure 5. miR-222 regulated the expression of the phosphorylation of p38 
MAPK, total p38 MAPK, and VEGF in EPCs. A-D. p38 MAPK/VEGF pathway 
was inhibited by the overexpression of miR-222 in healthy EPCs. A. Overex-
pression of miR-222 in healthy EPCs decreased the protein levels of phos-
phorylated p38 MAPK and total p38 MAPK. B. VEGF levels were measured 
by ELISA. C. The ratio of active phosphorylated p38 MAPK vs. β-actin was 
calculated to show the activation of p38 MAPK. D. The results of semi-
quantitative analysis of total p38 MAPK were normalized to β-actin. **P 
< 0.01 compared with the nontrans group. E-H. p38 MAPK/VEGF pathway 
was activated by the knockdown of miR-222 in CAD EPCs. E. Knockdown 
of miR-222 in CAD EPCs increased the levels of phosphorylated p38 MAPK 
and total p38 MAPK. F. VEGF levels were measured by ELISA. G. The ratio 
of active phosphorylated p38 MAPK versus β-actin was calculated to show 
the activation of p38 MAPK. H. The results of semi-quantitative analysis 
of total p38 MAPK were normalized to β-actin. *P < 0.05, **P < 0.01 
compared with the control group. Data were expressed as mean ± SD. Each 
experiment was independently repeated in triplicate.

mRNA (Figure 4B) and protein (Figure 4C) we- 
re then analyzed by qRT-PCR and Western bl- 
otting, respectively. The result shows that ST- 
AT5A protein expression level was decreased  
in healthy EPCs transfected with miR-222 mi- 

mic (P < 0.05). STAT5A prote- 
in expression was significantly 
upregulated in healthy EPCs 
transfected with the miR-222 
inhibitor (P < 0.01) compared 
with that in nontrans control. 
Moreover, miR-222 showed 
same statistic difference in the 
expression levels of STAT5A 
mRNA (P < 0.05, miR-222 gr- 
oup compared with the non-
trans group; P < 0.01, anti-
miR-222 group compared wi- 
th the nontrans group, Figure 
4B).

miR-222 modulates EPC 
functions through p38 MAPK/
VEGF signaling pathway

We also investigated whether 
miR-222 affected p38 MAPK/
VEGF signal pathway in human 
EPCs, which is reported to be  
a key regulator of EPC functi- 
on [30]. miR-222 mimic was 
transfected into healthy EPCs 
to increase miR-222 expres-
sion. miR-222 inhibitor was tr- 
ansfected into CAD EPCs to 
knock down miR-222 expres-
sion. In the present study, we 
found that miR-222 overex-
pression significantly decrea- 
sed the levels of phospho- 
p38 MAPK and total-p38 MA- 
PK and downregulated VEGF 
expression (Figure 5A-D). Me- 
anwhile, downregulated miR-
222 in CAD EPCs had a rever- 
se result (Figure 5E-H) (p < 
0.01 for all).

Discussion

In this study, we elucidated  
the role of miR-222 in human 
EPCs and investigated the un- 
derlying regulatory mechanis- 

ms. The following are the main findings of the 
study: 1) miR-222 was upregulated in EPCs 
derived from patients with CAD, which is in 
accordance with previous findings [19, 20]. 2) 
miR-222 also displays antiangiogenic miRNA 
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characteristics in EPCs as in endothelial cells. 
3) The novel target gene of miR-222 in EPCs 
was STAT5A. 4) The role of miR-222 effects on 
EPC functions is through p38 MAPK/VEGF sig-
nal pathway.

The role of miR-222 in cell proliferation, migra-
tion, and survival seems to be highly cell spe-
cific but the mechanisms remain poorly defin- 
ed. miR-222 has been proven to exhibit anti- 
angiogenic properties in vascular endothelial 
cells by targeting c-kit, encode cyclin-depen-
dent kinase inhibitor 1B (P27KIP1), and cyclin-
dependent kinase inhibitor 1C (P57KIP2) [21, 
39]. A recent study has demonstrated that 
overexpression of miR-222 induces heart fail-
ure through the downregulation of p27 and the 
activation of mTOR pathway [40]. Nardelli et  
al. reported that miR-222 impairs engraftment 
capacity and the stem cell activity of cord blood 
CD34+ progenitor cells coupled with the down-
modulation of kit protein [41]. Downregulation 
of miR-222 enhances angiogenesis in the rat 
refractory model [42]. Conversely, miR-222 pro-
motes the tumorigenicity of human breast can-
cer stem cells by targeting PTEN/Akt signal 
pathway [43]. miR-222 has a pro-proliferative, 
pro-migration, and anti-apoptosis effect on va- 
scular smooth muscle cells [44]. Another stu- 
dy has shown that downregulation of miR-222 
promoted VEGF expression and enhanced vas-
cular density in rat brain after bilateral carotid 
artery ligation [45]. In our present study, we 
showed that overexpression of miR-222 in he- 
althy EPCs inhibited angiogenic activity and 
VEGF expression whereas its downregulation 
promoted angiogenic capability and VEGF ex- 
pression in CAD EPCs.

We identified STAT5A as a target of miR-222  
in EPCs and showed, for the first time, that  
miR-222 overexpression downregulated STAT- 
5A protein levels in healthy EPCs whereas its 
downregulation significantly had an opposite 
effect. STAT5A, one of the direct targets of miR-
222, has been testified in two previous studi- 
es [28, 46]. Dentelli et al. showed that miR- 
222 modulated inflammation-mediated neoan-
giogenesis through targeting STAT5A, regarded 
as an important regulator of neovasculariza-
tion. The group also reported that STAT5A res-
cued the angiogenic capability of miR-222-ov- 
erexpressing EPCs [28]. STAT5A, a transcription 
factor of the family of signal transducers and 
activators of transcription, is modulated by Rh- 

oA and decreased p38 MAPK expression levels 
by SB203580 that resulted in the activation  
of STAT5A [47]. Hu et al. recently revealed that 
miR-211 modulated mesenchymal stem cell 
(MSC) migration through its target STAT5A par- 
tly through MAPK signal pathway [48]. These 
findings support the main findings of our pres-
ent study, namely that miR-222 inhibits the 
expression level of its target gene STAT5A in 
human EPCs and is the likely correlation am- 
ong miR-222, STAT5A, and p38 MAPK signaling 
pathway. 

Cumulative data are available showing that 
p38 MAPK signaling pathway and VEGF play a 
crucial role in governing EC and EPC functions. 
Moreover, Zuo et al. recently reported that  
miR-26a impairs EPC functions through inhi- 
biting the p38 MAPK/VEGF signaling pathway 
[30]. To further verify miR-222-modulating EPC 
functions by p38 MAPK signaling pathway, we 
conducted loss-of-function and gain-of-func-
tion studies. Furthermore, we used ELISA to 
detect the level of VEGF. Our findings clearly 
show that overexpression of miR-222 in heal- 
thy EPCs by miR-222 mimics inhibited the ac- 
tivation of p38 MAPK and downregulated VEGF 
expression. Meanwhile, silencing of miR-222 in 
CAD EPCs had opposite effects. Previous stud-
ies have shown that p38 MAPK is a crucial 
mediator that results in secreting various cyto-
kines [49, 50]. The secretion of VEGF in fibro-
blast cell lines is mediated by the activation of 
p38 MAPK [51]. In addition, activation of p38 
MAPK can promote the secretion of VEGF, HGF, 
and IGF-I in human mesenchymal stem cells or 
human adipose progenitor cells. Moreover, inhi-
bition of p38 MAPK results in decreased secre-
tion of cytokines [52]. These results also sup-
port miR-222 modulating EPC functions by p38 
MAPK/VEGF signaling pathway. 

A limitation of our present study is that we 
failed to further investigate the accurate me- 
chanism between p38 MAPK and STAT5A. 
Therefore, in our next study we will be focusing 
on elucidating the intrinsic mechanism betwe- 
en p38 MAPK and STAT5A in EPCs to ensure 
their completion.

Taken together, this study demonstrates that 
overexpression of miR-222 induces EPC dys-
function and the down-regulation of miR-222 
can reverse this effect. We first identified ST- 
AT5A as a target of miR-222 in human EPCs 
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and confirmed that the effect of miR-222 on 
EPCs is mediated by p38 MAPK/VEGF signal 
pathway. 
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