## Original Article Global gene expression profile of schizosaccharomyces pombe cells to sodium fluoride

Xueyan Li<sup>1\*</sup>, Jing Zhang<sup>2,3,4\*</sup>, Dongrong Chen<sup>2,3,4</sup>, Youcheng Yu<sup>1</sup>

<sup>1</sup>Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; <sup>2</sup>Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China; <sup>3</sup>Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; <sup>4</sup>Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China. <sup>\*</sup>Equal contributors and co-first authors.

Received January 21, 2018; Accepted March 15, 2018; Epub July 15, 2018; Published July 30, 2018

**Abstract:** Objective: Fluoride is essential for human and animal health and at recommended dosage in the millimolar range. In the appropriate dosage range, fluoride is safe and effective for the treatment of caries, but excessive administration usually results in tissue damage. Fluoride's physiological functions and mechanisms of toxicity are complex and incompletely understood. The aim of this study was to investigate the physiological response of fission yeast to sodium fluoride (NaF). Methods: Using microarrays and real-time PCR, we assayed the transcriptional response of wild-type fission yeast cells to NaF. Results: We found that NaF caused differential expression of genes encoding transporters, stress response proteins, and transcription factors in *Schizosaccharomyces pombe*. We also identified catalytic activities, including those of dehydrogenase, kinase, phosphatase, and other enzymes. Moreover, analysis of previously identified environmental stress response genes revealed that many of the NaF-sensitive genes we identified are NaF-specific. Conclusions: These results suggest that *S. pombe* cells respond to sodium fluoride through global gene expression changes. These findings would improve the general understanding of the molecular function of NaF in cells.

Keywords: Gene expression, fission yeast, S. pombe cells, sodium fluoride, transporter

#### Introduction

Existing widely in soil, water, air, and the earth's crust [1-3], fluoride is essential for human and animal health. In a millimolar range, fluoride can affect diverse physiological functions [4], but excessive intake is toxic to a variety of organisms. It is commonly used for the treatment of oral diseases [5], such as dental caries, dentin allergies, and periodontitis. In an appropriate range, fluoride is safe and effective for the treatment of caries, but excessive administration usually results in tissue damage [5, 6]. Recently, it has been found that fluoride activates responsive riboswitches in eubacteria and archaea [7], and CLCF genes encoding F\_/H\_ antiporters in eubacteria, Fluc in bacteria, and FEX2 in eukaryotes [8]. The physiological functions of fluoride and the mechanisms of its toxicity are complex and incompletely understood.

Schizosaccharomyces pombe has been used as model organism to investigate basic biologi-

cal processes [9-11], and a comprehensive database on its biology, 'PomBase', is available. This database provides literature curation, functional annotation, and access to genomic sequence and features as well as genome-wide data sets. Moreover, in recent years, various studies using microarray analysis have probed the global gene expression profiles and regulatory mechanisms of *S. pombe* in response to environmental stress.

In this study, we aimed to investigate the physiological response of *S. pombe* to sodium fluoride (NaF) in order to elucidate the mechanisms of NaF activity.

#### Materials and methods

#### Subjects of study

Wild type (WT) S. pombe 972h<sup>-</sup> was cultured in accordance with the methods previously described by Petersen et al [12]. NaF was used at concentration of 0  $\mu$ M, 30  $\mu$ M, 300  $\mu$ M, 3 mM,

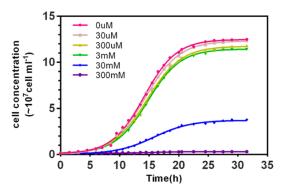



Figure 1. Growth curve of fission yeast cells in the presence of NaF. Wild type cells were grown in the presence of 0, 30  $\mu$ M, 300  $\mu$ M, 3 mM, 30 mM, and 300 mM NaF. Cell density was measured every 1.5 or 2 hours. The growth curve shows that addition of 300 mM NaF totally inhibits the growth of wild type cells.

30 mM, and 300 mM to treat yeast cells in log phase.

#### RNA extraction and purification

Following RNA extraction, reverse transcription was carried out with an appropriate kit (Takara). Real-time PCR reactions contained 250 nM of forward and reverse primers, 1 ml cDNA (5 ng), 10 ml 26SYBR-green Real time PCR Master Mix (SYBR Premix Ex TaqTM, Takara) in a total volume of 20 ml.

#### DNA microarray

Microarray experiments were done using the Affymetrix Yeast Genome 2.0 ArravThis array is comprised of 5,021 probe sets for 5,031 genes identified in S. pombe. The principal stages of these experiments were RNA purification, cDNA probe preparation, hybridization, washing, scanning, and image analysis, with normalization and other processing of data as described in the Technical Manual of Affymetrix GeneChip\_Expression Analysis. We performed three biological replicates for the microarray experiments. Data were analyzed as in Xu Jia, et al [13]. Genes identifi-ed by the microarray were an-notated with "gene ID" and "gene symbol" using the NetAffxTM Analysis Center. To effectively screen differentially expressed genes, the parameters of Significance Analysis of Microarrays (SAM) and fold change were used to pick out significant genes among the different groups, with the False Discovery Rate (FDR) set less than 0.1, and fold change greater than 1.5. The statistical significance (p value) of overlaps between two gene groups was evaluated by the Fisher Test. Functional classification was accomplished with the online software PANTHER [14, 15], and cluster 3.0 [16], and then visualized using TreeView, version 3 [15].

#### Real-time PCR

RNA used for Real-time PCR was from the same samples taken for microarray experiments. Real-time PCR was performed on an iQ5 Continuous Fluorescence Detector System (Bio-Rad). PCR reactions were done with 250 nM forward and reverse primers (<u>Table S1</u>), 1  $\mu$ L cDNA (5 ng), and 10  $\mu$ L 26 SYBR-green Real time PCR Master Mix (SYBR Premix Ex Taq<sup>TM</sup>, TaKaRa) in a total volume of 20  $\mu$ L. For all of our experiments, we performed at least three independent biological replicates, and for each of these, four technical replicates were performed.

#### Statistical analysis

Data are presented as mean  $\pm$  SD unless otherwise indicated. The data were analyzed by Student's t-test or one-way analysis of variance (ANOVA) using Prism version 5 (GraphPad Software, Inc.). Values of p < 0.05 were considered statistically significant.

#### Results

# Response of S. pombe cells to NaF at varying concentrations

Fluoride, as an antimicrobial agent, has been widely shown to improve oral health because of its toxic effects on bacteria or fungi, but its effects on S. pombe cells have not been studied. In this study, S. pombe cells were treated with NaF in different concentrations (0 µM, 30  $\mu$ M, 300  $\mu$ M, 3 mM, 30 mM and 300 mM) to determine genome-wide response to NaF. As shown in **Figure 1**, NaF could inhibit the growth of S. pombe cells in a dose-dependent manner; after being treated with varying concentrations of NaF, cells reached their maximal density after 24 h, with the exception that growth was completely inhibited in the presence of 300 mM NaF. No substantial changes in cell density were observed under the microscope until more than 0.5 h had elapsed. Because we wished to perform RNA analysis following two contrasting doses, on cells whose growth was only slightly affected, we chose to treat them with 30  $\mu$ M or 300  $\mu$ M NaF for 0.5 h.

| Gene symbol              | Regulation<br>(30 µM) | Fold Change<br>(30 µM) | Gene products                                                                     |
|--------------------------|-----------------------|------------------------|-----------------------------------------------------------------------------------|
| Stress response          |                       |                        |                                                                                   |
| psu1                     | Down                  | 0.5727                 | Cell wall protein Psu1, beta-glucosidase (predicted)                              |
| SPAC19B12.01             | Down                  | 0.6234                 | TPR repeat protein, TTC27 family                                                  |
| Pyp2                     | Up                    | 1.8216                 | Tyrosine phosphatase Pyp2                                                         |
| Rrp9                     | Down                  | 0.659                  | U3 snoRNP-associated protein Rrp9 (predicted)                                     |
| Spacunk4.17              | Up                    | 1.7131                 | NAD binding dehydrogenase family protein                                          |
| Spbc660.05               | Up                    | 3.0347                 | WW domain containing conserved fungal protein                                     |
| Spbc725.03               | Up                    | 1.5227                 | Pyridoxamine 5'-phosphate oxidase (predicted)                                     |
| Oca2                     | Up                    | 2.0162                 | Serine/threonine protein kinase 0ca2                                              |
| Gut2                     | Up                    | 1.9038                 | Glycerol-3-phosphate dehydrogenase Gut2 (predicted)                               |
| Set5                     | Down                  | 0.5381                 | Histone lysine methyltransferase Set5 (predicted)                                 |
| Cox3                     | Up                    | 1.6161                 | Cytochrome c oxidase 3 (predicted)                                                |
| ransporter activity (tra | ansmembrane tra       | nsporter/iron tran     | sporter)                                                                          |
| Str3                     | Down                  | 0.47                   | Siderophore-iron transporter Str3                                                 |
| Spac24h6.13              | Down                  | 0.6611                 | DUF221 family protein implicated in Golgi to plasma Membrane transport (predicted |
| Gti1                     | Up                    | 1.6527                 | Gluconate transmembrane transporter inducer                                       |
| Spac869.03C              | Up                    | 1.5235                 | Urea transmembrane transporter (predicted)                                        |
| Ght5                     | Up                    | 3.5221                 | Hexose transmembrane transporter Ght5                                             |
| Ght1                     | Up                    | 2.2091                 | Hexose transmembrane transporter Ght1                                             |
| Pfl8                     | Down                  | 0.5928                 | Cell surface glycoprotein, flocculin Pfl8                                         |
| Binding activity (DNA c  |                       |                        |                                                                                   |
| Sfp1                     | Down                  | 0.5406                 | Transcription factor Sfp1 (predicted)                                             |
| SPAC2H10.01              | Up                    | 4.4577                 | Transcription factor, zf-fungal binuclear cluster type (predicted)                |
| Cbf12                    |                       | 1.6599                 | CBF1/Su(H)/LAG-1 family transcription factor Cbf12                                |
| Spac683.02C              | Up<br>Down            |                        |                                                                                   |
|                          |                       | 0.5505                 | Zf-CCHC type zinc finger protein (predicted)                                      |
| Pof15                    | Up                    | 2.5744                 | F-box protein (predicted)                                                         |
| Lsd90                    | Up                    | 2.2633                 | Lsd90 protein                                                                     |
| Catalytic Activity (dehy |                       |                        |                                                                                   |
| Spac22a12.17C            | Up                    | 1.7317                 | Short chain dehydrogenase (predicted)                                             |
| lsp7                     | Down                  | 0.6444                 | 2-OG-Fe(II) oxygenase superfamily protein                                         |
| Srx1                     | Down                  | 0.6121                 | Sulfiredoxin                                                                      |
| Nar1                     | Down                  | 0.5913                 | Iron hydrogenase Nar1 (predicted)                                                 |
| Spcc1739.08C             | Up                    | 1.8985                 | Short chain dehydrogenase (predicted)                                             |
| Zwf2                     | Up                    | 2.5825                 | Glucose-6-phosphate 1-dehydrogenase Zwf2 (predicted)                              |
| Shk2                     | Up                    | 1.757                  | PAK-related kinase Shk2                                                           |
| Ark1                     | Down                  | 0.627                  | Aurora-B kinase Ark1                                                              |
| Ctu2                     | Down                  | 0.4546                 | Cytosolic thiouridylase subunit Ctu2                                              |
| Alp41                    | Up                    | 1.545                  | GTP-binding protein involved in beta-tubulin folding Alp41                        |
| Nep2                     | Up                    | 2.7506                 | NEDD8 protease Nep2                                                               |
| Spbc336.02               | Down                  | 0.461                  | 18S rRNA dimethylase (predicted)                                                  |
| Spbpb7e8.02              | Up                    | 1.5675                 | PSP1 family protein                                                               |
| Pma2                     | Down                  | 0.4703                 | P-type proton ATPase, P3-type Pma2                                                |
| Cell Cycle (meiosis/me   | eiotic).              |                        |                                                                                   |
| Moa1                     | Up                    | 2.6792                 | Meiotic kinetochore protein (Meikin) Moa1                                         |
| Dic1                     | Down                  | 0.6284                 | Meiotic dynein intermediate chain Dic1                                            |
| Ribosome biogenesis      |                       |                        |                                                                                   |
| Imp4                     | Down                  | 0.6237                 | U3 snoRNP-associated protein Imp4(predicted)                                      |
| Sda1                     | Down                  | 0.6021                 | SDA1 family protein (predicted)                                                   |
| Bfr2                     | Down                  | 0.545                  | Traub family protein involved in ribosome biogenesis (predicted)                  |
| Rrp1402                  | Down                  | 0.6638                 | Ribosome biogenesis protein Rrp14 (predicted)                                     |
| 5.pombe Specific prote   |                       |                        |                                                                                   |
| .,                       | , eenserveu ru        |                        | p                                                                                 |

| Table 1. Genes whose expression level reached FDR < 0.1 and was changed by 1.5-fold or greater in |
|---------------------------------------------------------------------------------------------------|
| response to 30 μM NaF treatment                                                                   |

| Spac23h3.15C  | Up   | 2.567  | Schizosaccharomyces specific protein       |
|---------------|------|--------|--------------------------------------------|
| Mug114        | Up   | 2.5958 | Schizosaccharomyces pombe specific protein |
| Spapj695.01C  | Down | 0.5917 | S. pombe specific UPF0321 family protein 3 |
| Mug45         | Down | 0.6429 | Schizosaccharomyces specific protein Mug45 |
| Spac1952.04C  | Up   | 1.6079 | Conserved fungal protein                   |
| Spac4f10.17   | Up   | 2.1388 | Conserved fungal protein                   |
| Mug14         | Up   | 1.685  | Adducin,mug14                              |
| Wtf20         | Up   | 1.927  | Wtf element Wtf20                          |
| Wtf4          | Up   | 1.8948 | Wtf element Wtf4                           |
| Spac212.03    | Up   | 3.0055 | Hypothetical protein                       |
| Spap27g11.11C | Down | 0.3035 | Dubious                                    |
| Spbcpt2r1.06C | Down | 0.2018 | Unassigned                                 |
| Spbpb21e7.08  | Up   | 1.625  | Unassigned                                 |
| Wtf3          | Up   | 3.1686 | Pseudogene                                 |
| Wtf24         | Up   | 1.6178 | Pseudogene                                 |

| Table 2. Genes whose expression level reached FDR < 0.1 and was changed by 1.5-fold or greater in |
|---------------------------------------------------------------------------------------------------|
| response to 300 mM NaF treatment                                                                  |

| · · ·                 |                  |                     |                                                                                    |  |
|-----------------------|------------------|---------------------|------------------------------------------------------------------------------------|--|
| Gene symbol           | Regulation       | Fold change         | Gene products                                                                      |  |
| Stress response       |                  |                     |                                                                                    |  |
| Pyp2                  | 1.8106           | Up                  | tyrosine phosphatase Pyp2                                                          |  |
| Spacunk4.17           | 1.6513           | Up                  | NAD binding dehydrogenase family protein                                           |  |
| Spapb1a11.03          | 1.5249           | Up                  | Cytochrome b2 (L-lactate cytochrome-c oxidoreductase) (predicted)                  |  |
| Spbc1289.14           | 1.5515           | Up                  | Adducin (predicted)                                                                |  |
| Spbc660.05            | 2.2035           | Up                  | WW domain containing conserved fungal protein                                      |  |
| Spbc725.03            | 1.515            | Up                  | Pyridoxamine 5'-phosphate oxidase (predicted)                                      |  |
| Oca2                  | 2.172            | Up                  | Serine/threonine protein kinase Oca2                                               |  |
| Gut2                  | 1.6952           | Up                  | Glycerol-3-phosphate dehydrogenase Gut2 (predicted)                                |  |
| Spcc191.01            | 1.5286           | Up                  | Schizosaccharomyces specific protein                                               |  |
| Set5                  | 0.6125           | Down                | Histone lysine methyltransferase Set5 (predicted)                                  |  |
| Transporter activity  | (transmembrar    | ne transporter/iro  | n transporter)                                                                     |  |
| Ght5                  | 3.6205           | Up                  | Hexose transmembrane transporter Ght5                                              |  |
| Ght1                  | 2.0812           | Up                  | Hexose transmembrane transporter Ght1                                              |  |
| Spcc794.04C           | 1.5674           | Up                  | Amino acid transmembrane transporter (predicted)                                   |  |
| Vtal                  | 1.8167           | Up                  | Vps20 associated protein Vta1 (predicted)                                          |  |
| Gti1                  | 1.8557           | Up                  | Gluconate transmembrane transporter inducer Gti1                                   |  |
| Str3                  | 0.4742           | Down                | Siderophore-iron transporter Str3                                                  |  |
| Spac24h6.13           | 0.5957           | Down                | DUF221 family protein implicated in Golgi to plasma membrane transport (predicted) |  |
| lsp4                  | 0.642            | Down                | OPT oligopeptide transmembrane transporter family lsp4                             |  |
| Pma2                  | 0.6186           | Down                | P-type proton ATPase, P3-type Pma2                                                 |  |
| Pfl8                  | 0.647            | Down                | Cell surface glycoprotein, flocculin pfl8                                          |  |
| Binding activity (DN  | IA or RNA bindir | ng/transcription fa | actor)                                                                             |  |
| Sfp1                  | 0.546            | Down                | Transcription factor sfp1 (predicted)                                              |  |
| Spac2h10.01           | 4.7135           | Up                  | Transcription factor, zf-fungal binuclear cluster type (predicted)                 |  |
| Cbf12                 | 1.6674           | Up                  | Cbf1/su(h)/lag-1 family transcription factor cbf12                                 |  |
| Hsp3105               | 1.8328           | Up                  | Thij domain protein                                                                |  |
| Spac683.02C           | 0.5714           | Down                | Zf-cchc type zinc finger protein (predicted)                                       |  |
| Pof15                 | 2.711            | Up                  | F-box protein (predicted)                                                          |  |
| Spbc16c6.03C          | 1.5171           | Up                  | Ribosome assembly protein (predicted)                                              |  |
| Lsd90                 | 1.7524           | Up                  | Lsd90 protein                                                                      |  |
| Catalytic Activity (d | ehydrogenase a   | ctivity/kinase/ph   | osphatase activity/others)                                                         |  |
| Spac186.07C           | 0.3884           | Down                | Hydroxyacid dehydrogenase (predicted)                                              |  |
| lsp7                  | 0.6107           | Down                | 2-Og-fe(ii) oxygenase superfamily protein                                          |  |
| Srx1                  | 0.6383           | Down                | Sulfiredoxin                                                                       |  |
| Nar1                  | 0.5974           | Down                | Iron hydrogenase nar1 (predicted)                                                  |  |
|                       |                  |                     |                                                                                    |  |

| SPCC1739.08c         | 1.8354         | Up              | Short chain dehydrogenase (predicted)                            |  |
|----------------------|----------------|-----------------|------------------------------------------------------------------|--|
| Zwf2                 | 2.8519         | Up              | Glucose-6-phosphate 1-dehydrogenase zwf2 (predicted)             |  |
| Shk2                 | 1.792          | Up              | Pak-related kinase shk2                                          |  |
| Pik1                 | 1.8212         | Up              | 1-Phosphatidylinositol 4-kinase pik1                             |  |
| Fip1                 | 0.6605         | Down            | Iron permease fip1                                               |  |
| SPAC869.04           | 5.6954         | Up              | Formamidase-like protein (predicted)                             |  |
| Ctu2                 | 2.1257         | Up              | Cytosolic thiouridylase subunit ctu2                             |  |
| SPBC2G2.17c          | 1.6601         | Up              | Beta-glucosidase psu2 (predicted)                                |  |
| Nep2                 | 3.1579         | Up              | Nedd8 protease nep2                                              |  |
| SPBC336.02           | 0.4869         | Down            | 18S rrna dimethylase (predicted)                                 |  |
| SPBPB7E8.02          | 1.6131         | Up              | Psp1 family protein                                              |  |
| Cell Cycle (meiosis/ | meiotic)       |                 |                                                                  |  |
| Moal                 | 2.7484         | Up              | Meiotic kinetochore protein (meikin) moa1                        |  |
| Mei3                 | 3.3802         | Up              | Meiosis inducing protein mei3                                    |  |
| Ribosome biogenesi   | is             |                 |                                                                  |  |
| Imp4                 | 0.553          | Down            | U3 snornp-associated protein imp4 (predicted)                    |  |
| Bfr2                 | 0.5971         | Down            | Traub family protein involved in ribosome biogenesis (predicted) |  |
| S.pombe Specific pr  | otein/Conserve | d Fungal Protei | in/other proteins                                                |  |
| SPAC13G6.13          | 3.6752         | Up              | Schizosaccharomyces pombe specific protein                       |  |
| SPAC17A2.10c         | 2.4514         | Up              | Schizosaccharomyces pombe specific protein                       |  |
| SPAC23H3.15c         | 1.6264         | Up              | Schizosaccharomyces specific protein                             |  |
| Mug114               | 3.299          | Up              | Schizosaccharomyces pombe specific protein mug114                |  |
| SPAC750.04c          | 1.6244         | Up              | S. Pombe specific 5tm protein family                             |  |
| Mug45                | 0.5398         | Down            | Schizosaccharomyces specific protein mug45                       |  |
| SPAC27D7.09c         | 1.5885         | Up              | But2 family protein                                              |  |
| SPAC4F10.17          | 2.2899         | Up              | Conserved fungal protein                                         |  |
| Mug14                | 1.8912         | Up              | Adducin                                                          |  |
| Wtf20                | 1.743          | Up              | Wtf element wtf20                                                |  |
| Wtf18                | 1.7427         | Up              | Wtf element wtf18                                                |  |
| Wtf4                 | 1.6105         | Up              | Wtf element wtf4                                                 |  |
| Wtf5                 | 1.8878         | Up              | Wtf element wtf5                                                 |  |
| Wtf9                 | 1.5352         | Up              | Wtf element wtf9                                                 |  |
| Spac4h3.12C          | 4.1804         | Up              | Putative uncharacterized protein                                 |  |
| Wtf2                 | 0.4369         | Down            | Pseudogene                                                       |  |
| Spbc3d6.01           | 2.1877         | Up              | Unassigned                                                       |  |
| Mitochondrial        |                |                 |                                                                  |  |
| Spmit.03             | 1.5343         | Up              | Mitochondrial dna binding endonuclease (predicted)               |  |
| Cob1                 | 3.2741         | Up              | Cytochrome b, cob1 (predicted)                                   |  |
| 0001                 |                | - 1-            |                                                                  |  |

The list is organized according to gene function.

#### Overview of the microarray analysis

After treatment with NaF in concentrations of 30  $\mu$ M or 300 mM for 0.5 h, total RNA was extracted for DNA hybridization. Our statistical analysis method (SAM) showed that 106 and 117 genes were differentially expressed in comparison with untreated controls (FDR < 0.1) in 30  $\mu$ M and 300 mM NaF respectively. Genes listed in **Tables 1** and **2** were both differentially expressed with FDR < 0.1 and showed fold change of 1.5 or greater, following treatment with 30  $\mu$ M or 300 mM NaF. Expression levels of 35 of the genes listed in **Table 1** were elevated by 1.5-fold or more, and

25 genes were repressed by more than 1.5-fold (FDR < 0.1). For the comparison of 300 mM NaF versus untreated control, expression of 68 genes changed more than 1.5-fold (FDR < 0.1; **Table 2**), of which 49 genes were induced and 19 genes were repressed.

For the genes upregulated by NaF, expression was elevated by 4.88-fold, while for the inhibited genes, the expression was decreased by 4.4-fold. As shown in **Figure 2A** and **2B**, cluster 3.0 was applied to cluster genes with expression levels that were elevated or decreased by at least 1.5-fold, and the results of the biological replicates were similar. Eight genes were

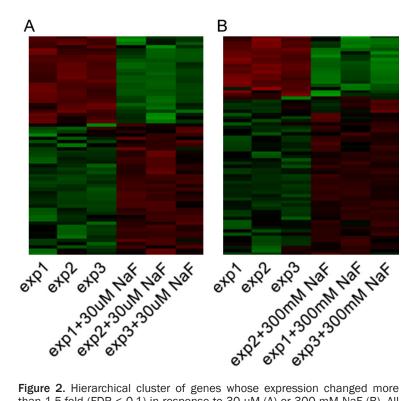


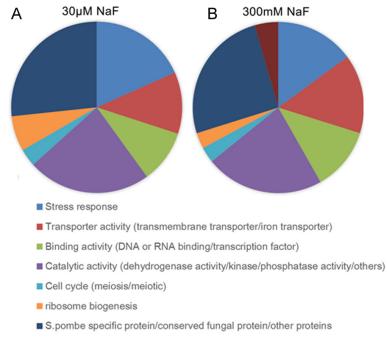

Figure 2. Hierarchical cluster of genes whose expression changed more than 1.5-fold (FDR < 0.1) in response to 30  $\mu$ M (A) or 300 mM NaF (B). All treatments were performed in three replicates. The samples that were not treated with NaF are labeled as exp1, exp2, and exp3, whereas samples treated with NaF (30  $\mu$ M or 300 mM) are labeled as exp1+ NaF, exp2+ NaF, and exp3 NaF.

Table 3. Confirmation of microarray data by real-time PCR

| Concoumbol  | Microa      | array      | Real Time PCR |            |  |
|-------------|-------------|------------|---------------|------------|--|
| Gene symbol | Fold Change | Regulation | Fold Change   | Regulation |  |
| Str3        | 0.47        | Down       | 0.4           | Down       |  |
| Ctu2        | 0.45        | Down       | 0.53          | Down       |  |
| Nep2        | 3.16        | Up         | 1.82          | Up         |  |
| Ght1        | 2.08        | Up         | 2.9           | Up         |  |
| Oca2        | 2.17        | Up         | 3.32          | Up         |  |
| Zwf2        | 2.85        | Up         | 3.42          | Up         |  |
| Ght5        | 3.62        | Up         | 3.65          | Up         |  |
| Spac2h10.01 | 4.71        | Up         | 3.69          | Up         |  |

selected randomly from those with elevated (6/8) or decreased (2/8) expression for validation with real-time PCR. Results listed in **Table 3** showed reasonable consistency in fold change between microarray and real-time PCR.

Functional classification of differentially expressed genes in response to 30  $\mu M$  and 300 mM NaF


We analyzed the functional classification of differentially expressed genes whose expression level changed by greater than 1.5-fold (Figure 3A, 3B) using PANTHER. Functional classifications of genes are shown in Tables 1 and 2. In Table 1, 60 genes with varying expression were classified into groups with known or unknown functional groups. The functional classifications of the 68 genes that responded to 300 mM NaF (Table 2) were similar to those in the 30 µM treatment experiment. Interestingly, many of the genes that responded to NaF treatment are pseudo genes or those encoding hypothetical proteins or dubious proteins.

# Comparison between the 30 $\mu$ M NaF response and the 300 mM NaF response

ing significantly different expression in both treatments showed opposite trends of regulation in 30 µM and 300 mM NaF treatment (Table 4 and Figure 5A). These were all classified into the of category of 'Other Catalytic Activity'. TTo further gain insight into the response of S. pombe cells after 30 µM and 300 mM NaF treatment, we carried out a detailed comparison. As shown in Figure 4, expression of 41 genes changed in both 30 µM and 300 mM NaF response, whereas expression of 19 genes varied only in the presents of 30 µM NaF, and treatment with 300

mM NaF resulted in changes in expression of 26 genes specifically. The genes falling in these three categories are listed in **Tables 4-6** respectively.

The extent of fold change in expression wasn't significantly different among the 41 overlapping genes between the 30  $\mu$ M and 300 mM NaF treatments (p > 0.05; **Table 4**). Five of the 41 genes showhis is an interesting observation - the mechanism of how cell sense and respond to varying NaF concentration deserves further investigation.



Mitochondrial

Figure 3. Pie chart showing the percentage of different functional groups in the category of molecular function. Functional classification of differentially expressed genes in response to 30  $\mu$ M and 300 mM NaF.

**Tables 5** and **6** show gene expression fold changes specific to 30  $\mu$ M and 300 mM NaF treatments. For the 30  $\mu$ M NaF treatment, three genes (SPAC212.03, SPAP27G11.11c, and SPBCPT2R1.06c) in the category of 'other protein' showed differing fold change between the two NaF dosages with same trend of regulation. Of the genes differentially expressed following 300 mM NaF treatment, all showed the same trend of regulation as seen in the 30  $\mu$ M experiment, with the exception of two mitochondrial genes (SPMIT.03 and SPMIT.05) (**Table 6** and **Figure 5B**).

# Comparison of the responses to NaF and environmental stress

In order to explore the commonalities between the responses to NaF and environmental stress in general, we carried out comparisons between core environmental stress response (CESR) genes with expression elevated by 1.5-fold or more, and those elevated by 2-fold or more (**Figure 6A** and **6B**).

For the 30  $\mu$ M NaF treatment, the numbers of overlapping genes between these groups are shown in the Venn diagrams (**Figure 6A**). The quantity of overlapping genes in the 30  $\mu$ M NaF treatment (**Table 7**) was used to evaluate the statistical significance of overlap between groups (Fisher Test). There is some overlap between genes induced by 30 µM NaF and CESR genes (p=0.000123), and genes that are induced by hydrogen peroxide (p=0), cadmium (p=2E<sup>-06</sup>), heat shock (p= 1E<sup>-06</sup>), sorbitol (p=0.008675), and MMS (p=0.007197). Results indicated no statistical significance in differences of overlap between genes repressed by NaF (30 µM) and MMS, but 30 µM NaF induced genes were also induced by hydrogen peroxide, 25.6% by cadmium, 25.6% by heat, 14.2% by sorbitol, and 17.1% by MMS.

For the 300 mM NaF treatment, the Venn diagrams in Figure 6B show the numbers of overlapping genes between NaF treatment and the five

environmental stresses considered above. The list of overlapping genes is presented in **Table 7**; statistical significance was assessed by Fisher's Test (P < 0.05). We observed considerable overlap between genes induced by 300 mM NaF and CESR genes (p=0.049812), genes that are induced in hydrogen peroxide (p=0), cadmium (p= $3.4E^{.05}$ ), heat shock (p=0), sorbitol (p=0.005287) and MMS (p=0.011284).

#### Discussion

In this study, we analyzed the global gene expression profile response to NaF in S. pombe cells. The functional classification of differentially expressed genes in response to 30 µM or 300 mM of NaF are reported. We found that NaF causes differential gene expression in transporters, stress response proteins and transcription factors. Differences and similarities of functional classification in genes responding to 30 µM and 300 mM NaF were analyzed. Comparison between the NaF response and environmental stress response showed NaF-specificity for many of the genes we identified. We therefore anticipate that this study should enrich understanding of the molecular functions of NaF in cells.

| Gene symbol                       | Regulation<br>(30 µM) | Fold change<br>(30 µM) | Regulation (300 mM) | Fold change<br>(300 mM) | Gene products                                                                      |
|-----------------------------------|-----------------------|------------------------|---------------------|-------------------------|------------------------------------------------------------------------------------|
| Stress response                   |                       |                        |                     |                         |                                                                                    |
| SPAC19D5.01                       | Up                    | 1.8216                 | Up                  | 1.8106                  | Tyrosine phosphatase Pyp2                                                          |
| SPACUNK4.17                       | Up                    | 1.7131                 | Up                  | 1.6513                  | NAD binding dehydrogenase family protein                                           |
| SPBC660.05                        | Up                    | 3.0347                 | Up                  | 2.2035                  | WW domain containing conserved fungal protein                                      |
| SPBC725.03                        | Up                    | 1.5227                 | Up                  | 1.515                   | Pyridoxamine 5'-phosphate oxidase (predicted)                                      |
| SPCC1020.10                       | Up                    | 2.0162                 | Up                  | 2.172                   | Serine/threonine protein kinase Oca2                                               |
| SPCC1223.03c                      | Up                    | 1.9038                 | Up                  | 1.6952                  | Glycerol-3-phosphate dehydrogenase Gut2 (predicted)                                |
| SPCC1739.05                       | Down                  | 0.5381                 | Down                | 0.6125                  | Histone lysine methyltransferase Set5 (predicted)                                  |
| Transporter Activity              | / (transmembra        | ane transporter/i      | iron transporte     | r)                      |                                                                                    |
| SPAC1751.01c                      | Up                    | 1.6527                 | Up                  | 1.8557                  | Gluconate transmembrane transporter inducer Gti1                                   |
| SPAC1F8.03c                       | Down                  | 0.47                   | Down                | 0.4742                  | Siderophore-iron transporter Str3                                                  |
| SPAC24H6.13                       | Down                  | 0.6611                 | Down                | 0.5957                  | DUF221 family protein implicated in Golgi to Plasma membrane transport (predicted) |
| SPCC1235.14                       | Up                    | 3.5221                 | Up                  | 3.6205                  | Hexose transmembrane transporter Ght5                                              |
| SPCC548.07c                       | Up                    | 2.2091                 | Up                  | 2.0812                  | Hexose transmembrane transporter Ght1                                              |
| SPAC1F8.06                        | Down                  | 0.5928                 | Down                | 0.647                   | Cell surface glycoprotein, flocculin Pfl8                                          |
| Binding activity (DI              |                       |                        |                     |                         |                                                                                    |
| SPAC16.05c                        | Down                  | 0.5406                 | Down                | 0.546                   | Transcription factor Sfp1 (predicted)                                              |
| SPAC2H10.01                       | Up                    | 4.4577                 | Up                  | 4.7135                  | Transcription factor, zf-fungal binuclear cluster type (predicted)                 |
| SPCC1223.13                       | Up                    | 1.6599                 | Up                  | 1.6674                  | CBF1/Su(H)/LAG-1 family transcription factor Cbf12                                 |
| SPAC683.02c                       | Down                  | 0.5505                 | Down                | 0.5714                  | Zf-CCHC type zinc finger protein (predicted)                                       |
| SPAPB1A10.14                      | Up                    | 2.5744                 | Up                  | 2.711                   | F-box protein (predicted)                                                          |
| SPBC16E9.16c                      | Up                    | 2.2633                 | Up                  | 1.7524                  | Lsd90 protein                                                                      |
| Catalytic Activity (d             |                       |                        |                     |                         |                                                                                    |
| SPAC25B8.13c                      | Down                  | 0.6444                 | Down                | 0.6107                  | 2-OG-Fe(II) oxygenase superfamily protein                                          |
| SPBC106.02c                       | Down                  | 0.6121                 | Down                | 0.6383                  | Sulfiredoxin                                                                       |
| SPCC1450.10c                      | Down                  | 0.5913                 | Down                | 0.5974                  | Iron hydrogenase Nar1 (predicted)                                                  |
| SPCC1739.08c                      | Up                    | 1.8985                 | Up                  | 1.8354                  | Short chain dehydrogenase (predicted)                                              |
| SPCC794.01c                       | Up                    | 2.5825                 | Up                  | 2.8519                  | Glucose-6-phosphate 1-dehydrogenase Zwf2 (predicted)                               |
| SPAC1F5.09c                       | Up                    | 1.757                  | Up                  | 1.792                   | PAK-related kinase Shk2                                                            |
| SPBC19C2.13c                      | Up                    | 2.1257                 | Down                | 0.4546                  | Cytosolic thiouridylase subunit Ctu2                                               |
| SPCC1020.01c                      | Up                    | 2.7506                 | Down                | 0.6186                  | P-type proton ATPase, P3-type Pma2                                                 |
| SPBC32H8.02c                      | Down                  | 0.461                  | Up                  | 3.1579                  | NEDD8 protease Nep2                                                                |
| SPBC336.02                        | Up                    | 1.5675                 | Down                | 0.4869                  | 18S rRNA dimethylase (predicted)                                                   |
| SPBPB7E8.02                       | Down                  | 0.4703                 | Up                  | 1.6131                  | PSP1 family protein                                                                |
| Cell Cycle (meiosis               |                       | 0.4700                 | θp                  | 1.0101                  |                                                                                    |
| SPAC15E1.07c                      |                       | 2.6792                 | Lin                 | 2.7484                  | Meiotic kinetochore protein (Meikin) Moa1                                          |
| Ribosome biogene                  |                       | 2.0792                 | Up                  | 2.1404                  |                                                                                    |
| SPAC19A8.07c                      | Down                  | 0.6237                 | Down                | 0.553                   | U3 snoRNP-associated protein Imp4 (predicted)                                      |
| SPAC19A8.070<br>SPAC664.08c       |                       | 0.545                  |                     | 0.553                   | Traub family protein involved in ribosome biogenesis (predicted)                   |
| SPAC664.080<br>S.pombe Specific p | Down                  |                        | Down                |                         | Tradb family protein involved in hoosome biogenesis (predicted                     |
|                                   |                       | -                      |                     |                         | Sabizassasharamusas namba anasifia protain                                         |
| SPAC17A2.10c                      | Up                    | 4.3801                 | Up                  | 2.4514                  | Schizosaccharomyces pombe specific protein                                         |
| SPAC23H3.15c                      | Up                    | 2.567                  | Up                  | 1.6264                  | Schizosaccharomyces specific protein                                               |
| SPAC4F8.08                        | Up                    | 2.5958                 | Up                  | 3.299                   | Schizosaccharomyces pombe specific protein Mug114                                  |
| SPBP8B7.04                        | Down                  | 0.6429                 | Down                | 0.5398                  | Schizosaccharomyces specific protein Mug45                                         |
| SPAC4F10.17                       | Up                    | 2.1388                 | Up                  | 2.2899                  | Conserved fungal protein                                                           |
| SPBC359.06                        | Up                    | 1.685                  | Up                  | 1.8912                  | Adducin                                                                            |
| SPCC1906.04                       | Up                    | 1.927                  | Up                  | 1.743                   | Wtf element Wtf20                                                                  |
| SPCC548.03c                       | Up                    | 1.8948                 | Up                  | 1.6105                  | Wtf element Wtf4                                                                   |

In our study, genes encoding different proteins with varying functions were classified as fol-

lows: (1) Eleven genes are identified with known or predicted function in stress responses; (2)

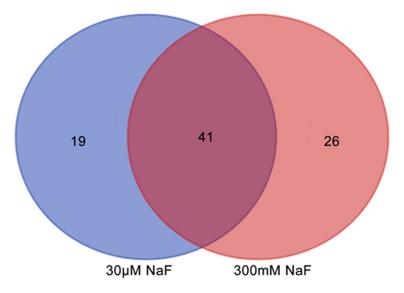



Figure 4. Venn diagram representing the overlap of gene sets under 30  $\mu$ M and 300 mM NaF treatment. Numbers refer to gene that belong to each group. Forty-one genes were differentially expressed following treatment with both concentrations of NaF.

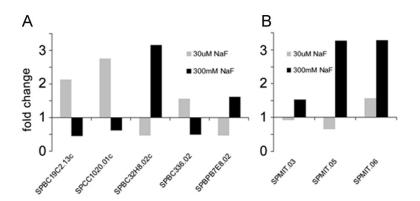



Figure 5. Bar graphs showing opposing trends in fold change in gene expression for 30  $\mu M$  and 300 mM NaF treatments.

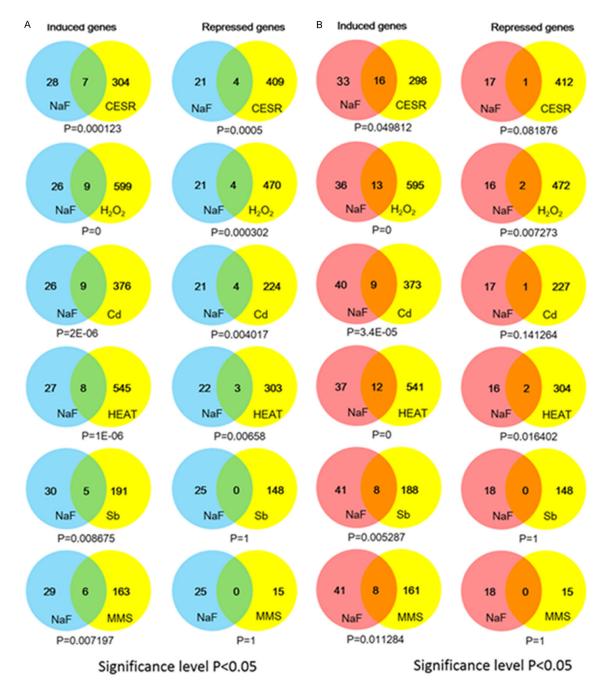
Seven genes encode putative or known transporters including siderophore iron transporter Str3, plasma membrane transporter (SPAC 24H6.13, which is a DUF221 family protein involved in Golgi to plasma membrane transport), and four transmembrane transporters which function as gateways to permit gluconate, urea and hexose across the biological membrane (Gti1, SPAC869.03c, Ght1 and Ght5). Fluoride may relate to pathologies through its effect on secretion and vesicular traffic via transport proteins that are synthesized in the ER and subsequently transported to the Golgi and plasma membrane [9]. All the transporters identified in our Gene Ontology Term analysis are in the category of integral components of the plasma membrane. Interestingly, fluoride sensing riboswitch genes coding for fluoride channels Fex 1 and Fex 2 did not respond to NaF, but the expression level of FEX was consistently high in 0, 30  $\mu$ M and 300 mM NaF conditions.

The mechanism and function of NaF in S. pombe cells require further investigation. (3) Of the genes we identified being NaF-responsive, three encode transcription factors. (4) Three other genes encode DNA or RNA binding proteins. (5) Fourteen encode genes with catalytic activities including dehydrogenase, kinase, phosphatase, and dimethylase. (6) Two meiosis or meiotic cell cycle related genes were also identified. (7) Four genes encoding proteins involved in ribosome biogenesis were all downregulated. (8) The other genes we identified encodefiveS.pombe-specificproteins, five conserved fungal proteins, and six other uncharacterized proteins.

It has been reported that membrane transporters are associated with transportation of NaF [17, 18]. Although

in our experimental system we used 30  $\mu$ M or 300 mM NaF to treat cells, we did not measure the real intercellular concentration of NaF. Our observation that fold changes of the 41 genes identified in both 30  $\mu$ M and 300 mM NaF conditions are similar indicate that the intracellular response to NaF may be largely indifferent to concentration. However, it is notable that the 30 min treatment time we used is short in comparison to fission yeast cell generation time, and therefore likely to be too short to cause substantially detrimental effects on gene expression.

Genes with varying expression levels in response to five different environmental stresses


| Gene symbol            | Regulation<br>(30 µM) | Fold Change<br>(30 µM) | Regulation (300 mM) | Fold Change<br>(300 mM) | Gene Products                                              |
|------------------------|-----------------------|------------------------|---------------------|-------------------------|------------------------------------------------------------|
| Stress response        |                       |                        |                     |                         |                                                            |
| Psu1                   | Down                  | 0.5727                 | Down                | 0.6801                  | Cell wall protein Psu1, beta-glucosidase (predicted)       |
| Spac19b12.01           | Down                  | 0.6234                 | Down                | 0.7095                  | TPR repeat protein, TTC27 family                           |
| Rrp9                   | Down                  | 0.659                  | Down                | 0.6921                  | U3 snoRNP-associated protein Rrp9 (predicted)              |
| Cox3                   | Up                    | 1.6161                 | Up                  | 1.2636                  | Cytochrome c oxidase 3 (predicted)                         |
| Transporter activity   | (transmembrar         | ne transporter/ird     | on transporter)     |                         |                                                            |
| SPAC869.03c            | Up                    | 1.5235                 | Up                  | 1.6479                  | Urea transmembrane transporter (predicted)                 |
| Catalytic activity (de | hydrogenase a         | ctivity/kinase/ph      | osphatase act       | ivity/others)           |                                                            |
| SPAC22A12.17c          | Up                    | 1.7317                 | Up                  | 1.4453                  | Short chain dehydrogenase (predicted)                      |
| Ark1                   | Down                  | 0.627                  | Down                | 0.7185                  | Aurora-B kinase Ark1                                       |
| Alp41                  | Up                    | 1.545                  | Up                  | 1.248                   | GTP-binding protein involved in beta-tubulin folding Alp41 |
| Cell cycle (meiosis/   | meiotic)              |                        |                     |                         |                                                            |
| Dic1                   | Down                  | 0.6284                 | Down                | 0.7048                  | Meiotic dynein intermediate chain Dic1                     |
| Ribosome biogenes      | is                    |                        |                     |                         |                                                            |
| Sda1                   | Down                  | 0.6021                 | Down                | 0.6973                  | SDA1 family protein (predicted)                            |
| Rrp1402                | Down                  | 0.6638                 | Down                | 0.7445                  | Ribosome biogenesis protein Rrp14 (predicted)              |
| S.pombe specific pr    | otein/Conserve        | ed Fungal Protein,     | /other proteins     | 6                       |                                                            |
| SPAPJ695.01c           | Down                  | 0.5917                 | Down                | 0.8465                  | S. pombe specific UPF0321 family protein 3                 |
| SPAC1952.04c           | Up                    | 1.6079                 | Up                  | 1.3879                  | Conserved fungal protein                                   |
| SPAC212.03             | Up                    | 3.0055                 | Up                  | 1.7681                  | Hypothetical protein                                       |
| SPAP27G11.11c          | Down                  | 0.3035                 | Down                | 0.7917                  | Dubious                                                    |
| SPBCPT2R1.06c          | Down                  | 0.2018                 | Down                | 0.8626                  | Unassigned                                                 |
| SPBPB21E7.08           | Up                    | 1.625                  | Up                  | 1.5739                  | Unassigned                                                 |
| Wtf3                   | Up                    | 3.1686                 | Up                  | 2.2707                  | Pseudogene                                                 |
| Wtf24                  | Up                    | 1.6178                 | Up                  | 1.4358                  | Pseudogene                                                 |

| Table 5. Genes that showed altered | d expression specifically | in response to 30 µM NaF treatment |
|------------------------------------|---------------------------|------------------------------------|
|------------------------------------|---------------------------|------------------------------------|

#### Table 6. Genes that showed altered expression specifically in response to 300 mM NaF treatment

| Gene symbol           | Regulation (300 mM) | Fold Change<br>(300 mM) | Regulation (30 mM) | Fold Change<br>(30 mM) | Gene Products                                                          |
|-----------------------|---------------------|-------------------------|--------------------|------------------------|------------------------------------------------------------------------|
| Stress Responsing     |                     |                         |                    |                        |                                                                        |
| SPAPB1A11.03          | Up                  | 1.5249                  | Up                 | 1.1729                 | Cytochrome b2 (L-lactate cytochrome-c oxidoreductase) (pre-<br>dicted) |
| SPBC1289.14           | Up                  | 1.5515                  | Up                 | 1.3096                 | Adducin (predicted)                                                    |
| SPCC191.01            | Up                  | 1.5286                  | Up                 | 1.4839                 | Schizosaccharomyces specific protein                                   |
| Transporter activity  | (transmembr         | ane transporter/        | iron transport     | er)                    |                                                                        |
| vta1                  | Up                  | 1.8167                  | Up                 | 1.0823                 | Vps20 associated protein Vta1 (predicted)                              |
| lsp4                  | Down                | 0.642                   | Down               | 0.6725                 | OPT oligopeptide transmembrane transporter family lsp4                 |
| SPCC794.04c           | Up                  | 1.5674                  | Up                 | 1.2063                 | Amino acid transmembrane transporter (predicted)                       |
| Binding activity (DI  | NA or RNA bind      | ling/transcriptio       | n factor)          |                        |                                                                        |
| Hsp3105               | Up                  | 1.8328                  | Up                 | 1.3638                 | ThiJ domain protein                                                    |
| SPBC16C6.03c          | Up                  | 1.5171                  | Up                 | 1.298                  | Ribosome assembly protein (predicted)                                  |
| Catalytic Activity (d | ehydrogenase        | activity/kinase/        | phosphatase a      | activity/others)       |                                                                        |
| SPAC186.07c           | Down                | 0.3884                  | Down               | 0.3962                 | Hydroxyacid dehydrogenase (predicted)                                  |
| Pik1                  | Up                  | 1.8212                  | Down               | 0.9975                 | 1-phosphatidylinositol 4-kinase Pik1                                   |
| Fip1                  | Down                | 0.6605                  | Down               | 0.6768                 | Iron permease Fip1                                                     |
| SPAC869.04            | Up                  | 5.6954                  | Up                 | 2.8507                 | Formamidase-like protein (predicted)                                   |
| SPBC2G2.17c           | Up                  | 1.6601                  | Up                 | 1.4058                 | Beta-glucosidase Psu2 (predicted)                                      |
| Cell Cycle (meiosis   | /meiotic)           |                         |                    |                        |                                                                        |
| SPBC119.04            | Up                  | 3.3802                  | Up                 | 2.6655                 | Meiosis inducing protein Mei3                                          |
| S. pombe Specific     | protein/Conse       | rved Fungal Prot        | ein/other prote    | eins                   |                                                                        |
| SPAC13G6.13           | Up                  | 3.6752                  | Up                 | 1.1817                 | Schizosaccharomyces pombe specific protein                             |
| SPAC750.04c           | Up                  | 1.6244                  | Up                 | 1.4872                 | S. pombe specific 5Tm protein family                                   |
| SPAC27D7.09c          | Up                  | 1.5885                  | Up                 | 1.3953                 | But2 family protein                                                    |
| SPCC285.07c           | Up                  | 1.7427                  | Up                 | 1.4286                 | Wtf element Wtf18                                                      |

| SPCC794.02    | Up   | 1.8878 | Up   | 1.5346 | Wtf element Wtf5                                   |
|---------------|------|--------|------|--------|----------------------------------------------------|
| SPCC970.11c   | Up   | 1.5352 | Up   | 1.4903 | Wtf element Wtf9                                   |
| SPAC4H3.12c   | Up   | 4.1804 | Up   | 2.8087 | Putative uncharacterized protein                   |
| SPBC1706.02c  | Down | 0.4369 | Down | 0.9833 | Pseudogene                                         |
| SPBC3D6.01    | Up   | 2.1877 | Up   | 1.6914 | Unassigned                                         |
| Mitochondrial |      |        |      |        |                                                    |
| SPMIT.03      | Up   | 1.5343 | Down | 0.9189 | Mitochondrial DNA binding endonuclease (predicted) |
| SPMIT.05      | Up   | 3.2741 | Down | 0.6543 | Cytochrome b, Cob1 (predicted)                     |
| SPMIT.06      | Up   | 3.2834 | Up   | 1.5739 | Mitochondrial DNA binding endonuclease (predicted) |
|               |      |        |      |        |                                                    |



**Figure 6.** Comparison between the NaF response and the environmental stress response. Comparison between the genes induced or repressed more than 1.5-fold (FDR, < 0.1; A) and genes differentially expressed by more than 2-fold (FDR, < 0.1; B) in response to NaF and CESR genes are illustrated by Venn diagrams. Statistical significance was inferred where p < 0.05.

|                               | 30 µN                                   | ∕I NaF                     | 300 mM NaF                                                                           |                 |  |
|-------------------------------|-----------------------------------------|----------------------------|--------------------------------------------------------------------------------------|-----------------|--|
|                               | Induced genes                           | Repressed genes            | Induced genes                                                                        | Repressed genes |  |
| CESR                          | Spacunk4.17                             | SPAC19B12.01               | SPACUNK4.17                                                                          | set5            |  |
|                               | Spbc660.05                              | Psu1                       | SPAPB1A11.03                                                                         |                 |  |
|                               | Spbc725.03                              | Rrp9                       | SPBC1289.14                                                                          |                 |  |
|                               | Cox3                                    | Set5                       | SPBC660.05                                                                           |                 |  |
|                               | Gut2                                    |                            | SPBC725.03                                                                           |                 |  |
|                               | Oca2                                    |                            | SPCC191.01                                                                           |                 |  |
|                               | Pyp2                                    |                            | Gut2                                                                                 |                 |  |
|                               |                                         |                            | Oca2                                                                                 |                 |  |
|                               |                                         |                            | Pyp2                                                                                 |                 |  |
| H <sub>2</sub> O <sub>2</sub> | Spac2h10.01                             | SPAC19B12.01               | SPAC2H10.01                                                                          | set5            |  |
|                               | Spac4f10.17                             | SPBC336.02                 | SPAC4F10.17                                                                          | SPBC336.02      |  |
|                               | Spacunk4.17                             | Rrp9                       | SPACUNK4.17                                                                          |                 |  |
|                               | Spbc660.05                              | Set5                       | SPAPB1A11.03                                                                         |                 |  |
|                               | Spbc725.03                              |                            | SPBC1289.14                                                                          |                 |  |
|                               | Cbf12                                   |                            | SPBC660.05                                                                           |                 |  |
|                               | Mug14                                   |                            | SPBC725.03                                                                           |                 |  |
|                               | Oca2                                    |                            | SPCC191.01                                                                           |                 |  |
|                               | Pyp2                                    |                            | Cbf12                                                                                |                 |  |
|                               |                                         |                            | Mug14                                                                                |                 |  |
|                               |                                         |                            | Oca2                                                                                 |                 |  |
|                               |                                         |                            | Pyp2                                                                                 |                 |  |
|                               |                                         |                            | Wtf5                                                                                 |                 |  |
| IEAT                          | Spac4f10.17                             | Set5                       | SPACUNK4.17                                                                          | set5            |  |
|                               | Spacunk4.17                             | SPBC336.02                 | SPAC4F10.17                                                                          | SPBC336.02      |  |
|                               | Spbc660.05                              | SPAC19B12.01               | SPCC191.01                                                                           |                 |  |
|                               | Spbc725.03                              |                            | SPBC1289.14                                                                          |                 |  |
|                               | Spbpb7e8.02                             |                            | SPBC725.03                                                                           |                 |  |
|                               | Mug14                                   |                            | SPBC660.05                                                                           |                 |  |
|                               | Oca2                                    |                            | SPBC359.06                                                                           |                 |  |
|                               | Pyp2                                    |                            | SPAPB1A11.03                                                                         |                 |  |
|                               |                                         |                            | SPBPB7E8.02                                                                          |                 |  |
|                               |                                         |                            | SPAC19D5.01                                                                          |                 |  |
|                               |                                         |                            | SPBC119.04                                                                           |                 |  |
|                               |                                         |                            | SPCC1020.10                                                                          |                 |  |
| Cd                            | Spacunk4.17                             | SPAC19B12.01               | SPACUNK4.17                                                                          | SPBC336.02      |  |
|                               |                                         |                            |                                                                                      |                 |  |
|                               | Spac19d5.01                             | SPAC2E1P5.05               | SPAC19D5.01                                                                          |                 |  |
|                               | Spac19d5.01<br>Spbc725.03               | SPAC2E1P5.05<br>SPBC947.07 | SPAC19D5.01<br>SPCC191.01                                                            |                 |  |
|                               |                                         |                            |                                                                                      |                 |  |
|                               | Spbc725.03                              | SPBC947.07                 | SPCC191.01                                                                           |                 |  |
|                               | Spbc725.03<br>Spbc660.05                | SPBC947.07                 | SPCC191.01<br>SPBC1289.14                                                            |                 |  |
|                               | Spbc725.03<br>Spbc660.05<br>Spbpb7e8.02 | SPBC947.07                 | SPCC191.01<br>SPBC1289.14<br>SPBC725.03                                              |                 |  |
|                               | Spbc725.03<br>Spbc660.05<br>Spbpb7e8.02 | SPBC947.07                 | SPCC191.01<br>SPBC1289.14<br>SPBC725.03<br>SPBC660.05                                |                 |  |
|                               | Spbc725.03<br>Spbc660.05<br>Spbpb7e8.02 | SPBC947.07                 | SPCC191.01<br>SPBC1289.14<br>SPBC725.03<br>SPBC660.05<br>SPAPB1A11.03                |                 |  |
| Sb                            | Spbc725.03<br>Spbc660.05<br>Spbpb7e8.02 | SPBC947.07                 | SPCC191.01<br>SPBC1289.14<br>SPBC725.03<br>SPBC660.05<br>SPAPB1A11.03<br>SPBPB7E8.02 | /               |  |

**Table 7.** Overlapping genes that showed altered expression inresponse to NaF treatment and 5 environmental stresses

(hydrogen peroxide, cadmium, heat, sorbitol and MMS) re defined as the core envionmental stress response CESR) genes [19]. Our resus revealed that NaF induces xpression changes in these ESR genes, which is consisent with the notion that NaF t non-physiological concenrations can be regarded as a pe of environmental stress or cells. We note that 300 M NaF induces more genes nan 30 µM NaF. NaF as a pe of salt is predicted to ause osmotic stress to cells t high concentration and, herefore, causes a similar esponse to sorbitol as an nvironmental stress. Accordng to our data, there are 8 enes induced by 300 mM laF that are also induced by orbitol stress out of 49 inuced genes, suggesting that ne toxicity of NaF at 300 mM have a more dominant ffect. In addition, stress reponse genes are secondary o genes related to growth ates [20]. This phenomenon as also been observed in the tf1/Pcr1 transcriptional resonse to oxidative stress in ssion yeast [21]. Only three enes encoding transcription actors were found among the 5 H<sub>2</sub>O<sub>2</sub> stress responsive enes identified here, indicatng the toxicity of NaF was tronger than that of other tressors.

In conclusion, our results showed that NaF causes differential expression of genes encoding transporters, stress response proteins, and transcription factors. Comparison of the responses to NaF and environmental stress revealed that many stress response genes were specific to NaF.

|     | SPAC19D5.01  |   | SPAC19D5.01  |   |     | es         |
|-----|--------------|---|--------------|---|-----|------------|
|     | SPBC725.03   |   | SPAPB1A11.03 |   |     | 2 fa       |
|     | SPCC1020.10  |   | SPCC191.01   |   |     | cel        |
|     |              |   | SPBC1289.14  |   |     | Co         |
|     |              |   | SPBC725.03   |   |     | 91         |
|     |              |   | SPCC1020.10  |   | [5] | De         |
| MMS | SPACUNK4.17  | / | SPACUNK4.17  | / |     | Ch<br>dei  |
|     | SPBC660.05   |   | SPBC660.05   |   |     | Ora        |
|     | SPAC19D5.01  |   | SPAC19D5.01  |   | [6] | Ch         |
|     | SPAPB1A10.14 |   | SPAPB1A10.14 |   |     | and        |
|     | SPBC725.03   |   | SPCC191.01   |   |     | me         |
|     | SPCC1020.10  |   | SPBC1289.14  |   |     | ity:<br>me |
|     |              |   | SPBC725.03   |   |     | altl       |
|     |              |   | SPCC1020.10  |   |     | 13         |
|     |              |   |              |   | [7] | Da         |

These results suggest that NaF induces global gene expression changes in *S. pombe* cells, and this finding is expected to improve the general understanding of the molecular function of NaF in cells.

#### Acknowledgments

This work was supported by National Natural Science Foundation of China 81670956 to Y.Y., 31370107 to D.C., 31400050 to J.Z, The State Key Program 14JC1490600 to Y.Y., City of Shanghai Chen Guang Plan to J.Z.

#### Disclosure of conflict of interest

#### None.

Address correspondence to: Youcheng Yu, Department of Stomatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road Shanghai 200032, China. Tel: 86-21-64041990; E-mail: Yu.Youcheng@ zs-hospital.sh.cn; Dongrong Chen, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China. Tel: +86-21-54237517; E-mail: drchen@fudan.edu.cn

#### References

- [1] Bunce HW. Fluoride in air, grass, and cattle. J Dairy Sci 1985; 68: 1706-1711.
- Jagtap S, Yenkie MK, Labhsetwar N and Rayalu
  S. Fluoride in drinking water and defluoridation of water. Chem Rev 2012; 112: 2454-2466.
- [3] Shailaja K and Johnson ME. Fluorides in groundwater and its impact on health. J Environ Biol 2007; 28: 331-332.
- [4] Yang S, Wang Z, Farquharson C, Alkasir R, Zahra M, Ren G and Han B. Sodium fluoride induc-

es apoptosis and alters bcl-2 family protein expression in MC3T3-E1 osteoblastic cells. Biochem Biophys Res Commun 2011; 410: 910-915.

- [5] Denbesten P and Li W. Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci 2011; 22: 81-96.
- [6] Choi AL, Sun G, Zhang Y and Grandjean P. Developmental fluoride neurotoxicity: a systematic review and meta-analysis. Environ Health Perspect 2012; 120: 1362-1368.
- [7] Baker JL, Sudarsan N, Weinberg Z, Roth A, Stock-

bridge RB and Breaker RR. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 2012; 335: 233-235.

- [8] Stockbridge RB, Lim HH, Otten R, Williams C, Shane T, Weinberg Z and Miller C. Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proc Natl Acad Sci U S A 2012; 109: 15289-15294.
- [9] Mellman I and Warren G. The road taken: past and future foundations of membrane traffic. Cell 2000; 100: 99-112.
- [10] Mata J, Lyne R, Burns G and Bahler J. The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet 2002; 32: 143-147.
- [11] Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P and Bahler J. Periodic gene expression program of the fission yeast cell cycle. Nat Genet 2004; 36: 809-817.
- [12] Petersen J and Russell P. Corrigendum: growth and the environment of schizosaccharomyces pombe. Cold Spring Harb Protoc 2016; 2016: pdb corr095232.
- [13] Jia X, He WZ, Murchie AIH and Chen DR. The global transcriptional response of fission yeast to hydrogen sulfide. PLoS One 2011; 6: e28275.
- [14] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM and Sherlock G. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000; 25: 25-29.
- [15] Zhai YF, Tchieu J and Saier MH. A web-based Tree View (TV) program for the visualization of phylogenetic trees. J Mol Microbiol Biotechnol 2002; 4: 69-70.
- [16] Eisen MB, Spellman PT, Brown PO and Botstein D. Cluster analysis and display of ge-

nome-wide expression patterns. Proc Natl Acad Sci U S A 1998; 95: 14863-14868.

- [17] Ahn T, Kim M, Yun CH and Chae HJ. Functional regulation of hepatic cytochrome p450 enzymes by physicochemical properties of phospholipids in biological membranes. Curr Protein Pept Sci 2007; 8: 496-505.
- [18] Shimazaki Y and Sato Y. Retaining activity of enzymes after capture and extraction within a single-drop of biological fluid using immunoaffinity membranes. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021: 108-113.
- [19] Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N and Bahler J. Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 2003; 14: 214-229.
- [20] Regenberg B, Grotkjaer T, Winther O, Fausboll A, Akesson M, Bro C, Hansen LK, Brunak S and Nielsen J. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in saccharomyces cerevisiae. Genome Biology 2006; 7:
- [21] Eshaghi M, Lee JH, Zhu L, Poon SY, Li JT, Cho KH, Chu ZQ, Karuturi RKM and Liu J. Genomic binding profiling of the fission yeast stress activated MAPK sty1 and the BZIP transcriptional activator Atf1 in Response to H2O2. PLoS One 2010; 5: e11620.

| Gene ID       | Forward (5'-3')         | Reverse (5'-3')        |  |  |
|---------------|-------------------------|------------------------|--|--|
| SPCC794.01c   | ACCTTGTCCCATGTTTGCGG    | ACCTTGTCCCATGTTTGCGG   |  |  |
| SPBC19C2.13c  | GCGGTCTGCGATTCATGCTT    | ACCACCGGAAATAGCCAGCA   |  |  |
| SPCC1235.14   | GATGGATGTTTGGCGCCGAT    | CCGCGCCGAAGAATACGAAT   |  |  |
| SPCC1020.01c  | ACTGCCGCACCTAACACTCA    | AGGACGGGCAGGCTTTTCAT   |  |  |
| SPAC1F8.03c   | CGGAGGAGAAAAGCGAAAATGGA | TGGTATTGTAGCCCGATCCT   |  |  |
| SPCC1020.10   | GAACCTGTTTCTCGTCGTCT    | TGTTGGACTATGACTGACGGGG |  |  |
| SPBC23E6.06c  | CGATGAAACGCGTGAAAACG    | CAGTCATGGGTACGCAGACA   |  |  |
| SPAC25B8.04c  | CCATCCTTTATCGCGTTCTCCC  | TTCCCGAAATTGGACACCGA   |  |  |
| SPCC548.07c   | GCAGTATCCCCGCATTTGGT    | CCTGCGAAGGGTAAGTTTAGGA |  |  |
| SPAC2H10.01   | TGTGCTCACTTTCTCGCTCA    | AAGGGAAGGATTGACTCGGC   |  |  |
| SPBC17D11.04c | CAGCCGAGAGAAGAGATTCCCT  | AAGAATCACGAAGGCCTGCA   |  |  |
| SPBC32H8.02c  | CCACCCATCTCCATCTTCACCT  | AAAAGGAGCCGGCAATGACC   |  |  |
| SPMIT.01      | TGCTCCAGATGTTGCTTACCCT  | ATACCGTCCAACCACCACCA   |  |  |
| β-actin       | CCGGTATTCATGAGGCTACT    | GGAGGAGCAACAATCTTGAC   |  |  |

Table S1. Sequences of primers used in real-time PCR