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Abstract: In this current study, we screened optimal key genes and metabolic biomarkers for ankylosing spon- 
dylitis (AS) based on differentially expressed genes (DEGs) network and multi-omics composite network. The OMIM 
(https://omim.org/) ID of AS was 106300. DEGs were identified from a total of 32 samples that were divided into 
two groups, the first group (16 samples, whole blood, control) and second group (16 samples, whole blood, affect-
ed). Known disease metabolites were extracted from human metabolite database (HMDB). Through integration of 
six data sets to build a multi-group composite network, it can be expressed as six networks. A multi-omics composite 
network was then constructed using the above six network data. In order to obtain preferred candidate metabolites 
in the complex network, random walk with restart (RWR) method was used to extend screening to a multithreaded 
composite network. A total of 579 DEGs, associated with AS, were identified. Fifty AS metabolites were screened. 
In summary, our analysis based on a network multi-omics composite not only identified 579 DEGs in AS but also 
importantly discovered 50 optimal disease metabolites related to AS. Our study may provide important potential 
therapeutic targets for AS.

Keywords: Ankylosing spondylitis, disease metabolites, multi-omics, differentially expressed genes, random walk 
with restart

Introduction

Ankylosing spondylitis (AS), a chronic, systemic, 
inflammatory, and rheumatic disease, affects 
axial bones and sacroiliac joints, causing char-
acteristic inflammatory dorsal pain and leading 
to varying degrees of structural dysfunction [1]. 
Studies have reported that AS affects about 
0.1% of the general population and is more 
common in men than women [2]. Moreover, AS 
may affect surrounding joints, skin, eyes, and 
intestines and increase the risk of cardiovascu-
lar or lung morbidity [3]. AS is difficult to diag-
nose and patients can endure symptoms for 
many years before receiving appropriate treat-
ment [4]. Treatment for AS is mainly through 
use of drugs such as disease repair antirheu-
matic drugs (DMARDs) and non-steroidal anti-
inflammatory drugs (NSAIDs). There are also 
non-drug interventions such as physical thera-
py [5]. Although these interventions may have 

some effect on spinal pain, peripheral pain, and 
physical function, they do not show a change in 
progression of AS. Despite the use of various 
methods, treatment of AS has not been ideal. 
Therefore, it is necessary to further study the 
mechanism of AS in an attempt to find a new 
treatment.

To fill these gaps, better understand the patho-
logical process of AS metabolism, and improve 
clinical diagnosis of human medicine status, 
identification of related metabolites is very 
important. Metabolites are the end product of 
the cell regulation process. They are generally 
considered to be the ultimate response of a  
biological system to genetic or environmental 
changes [6]. Metabolite levels can directly 
reflect the physiological state of the human 
body [7]. Identification of disease-related me- 
tabolites is important, not only for a better 
understanding of metabolic pathological pro-
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cesses, but also for improving clinical diagno- 
sis [8]. With development of metabolomics 
technology, hundreds of metabolites can be 
identified by liquid chromatography, gas chro-
matography-mass spectrometry (GC-MS), nu- 
clear magnetic resonance (NMR), and so forth 
[9]. Identifying and determining the priority of 
high-risk disease metabolites has become a 
challenging task. Some new high-risk disea- 
ses (such as AS) lack known metabolite 
information. 

In this work, we proposed a method based on 
comprehensive multi-omics information to pre-
dict and optimize AS candidate metaboli- 
tes. Comprehensive multithreading information 
consisted of genomes, phenotypes, metabo-
lites, and interactions. 

Materials and methods

Obtaining expression data and disease infor-
mation

In the present study, the OMIM (https://omim.
org/) ID of AS was 106300. Combined with 
information entered and data collected by this 
platform, the disease-related seed genes were 
HLA-B and PHEX but related seed metabolites 
were not inquired.

A total of 32 samples were divided into two 
groups, the first group (16 samples, whole 
blood, control) and second group (16 samples, 
whole blood, affected). Each group was then 
analyzed. After pretreatment, expression pro-
files of 11,586 genes were obtained by map-
ping between the probe and gene. Differentially 
expressed genes were calculated using the 
Limma package. Student’s t-test and F-test 
were performed by gene expression matrix. We 
used the lmfit function to linearly fit the data 
and eBayes statistics and false discovery rate 
(FDR) to correct raw p values. We sorted by p 
value and the top 5% were selected. 

Getting comprehensive multi-omics informa-
tion

Known disease metabolites were extracted 
from human metabolite database (HMDB). 
HMDB collects detailed information on human 
small molecule metabolites and disease phe-
notype information described in the OMIM 
entry. Known disease gene information was 

obtained from the morbid map file of OMIM 
database, containing a comprehensive descrip-
tion of human genes and phenotypes and their 
relationships. 

Through integration of six data sets to build a 
multi-group composite network, it can be 
expressed as six networks which were i) a 
genetic network, ii) a metabolic network, iii) a 
phenotypic network, iv) a gene-metabolite 
action network, v) a phenotype-gene action 
network, and vi) a phenotype-metabolic action 
network.

i) Gene Network (AG). We obtained data from 
the human protein interaction network (con-
taining 1,048,576 interactions) from STRING. 
Protein ID was transformed with gene name. 
We then removed repeated interactions and a 
PPI gene network containing 16,785 nodes and 
1,515,370 pairs of interactions was obtained.

ii) Metabolic network (AM). First, the metabolic 
pathways were collected from KEGG and 
HMDB. Human metabolites pathways were col-
lected from Reactome, MSEA, and SMPDB. 
Then, we collected 4,994 human metabolites. 
Next, we collected human metabolites and 
interrelationships between human metabolites 
from STITCH, which must be included in 4,994 
human metabolites. Eventually, we obtained 
3,764 human metabolites and 74,667 interac-
tions with human metabolites (not all metabo-
lites are associated in STITCH).

iii) Phenotype network (AP). Using a phenotypic 
network from van Driel, it stores 5,080 pheno-
types and their interactions [10].

iv) Gene-metabolite network (AGM). Extract- 
ed chemical substances, human genes, and 
STITCH-related information, according to 4,994 
kinds of human metabolites. We filtered out 
metabolites not in metabolic network and 
genes not in gene network. 12,342 genes and 
3,278 metabolites and 192,763 pairs of gene-
metabolites interactions were obtained.

v) Phenotype-gene Interaction Network (AGP). 
Phenotypic-gene association was obtained 
from planned morbid map file of OMIM. Filtering 
phenotypes not in our phenotypic network and 
genes not in our gene network, we obtained 
1,886 phenotypes, 1,715 genes, and 2,603 
interactions.
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vi) Phenotypic-metabolic action network (APM). 
Phenotypic-metabolite association was ob- 
tained from HMDB. Similarly, 149 phenotypes, 
388 metabolites, and 664 pairs of interactions 
were retained after filtration.

Construction of multi-omics composite network

In order to construct a multi-omics composite 
network, the above six network data were inte-
grated into composite network A.
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W was the transition matrix of composite net-
work A, which was a column normalized adja-
cency matrix and can be inferred from adjacen-
cy matrix A.
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Wij represents the probability of jump from 
node i to node j. x, y, and z are the probabilities 
of jump between gene network and phenotype 
network, gene network and metabolic network, 
and phenotypic network and metabolic net-
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Similarly, the probability from gene i (gi) to phe-
notype j (pj) was defined as
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The probability from gene i (gi) to metabolite j 
(mj) was defined as
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In the phenotypic network, the probability from 
phenotype i (pi) to phenotype j (pj) was defined 
as
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The probability from phenotype i (pi) to gene j 
(gj) was defined as
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The probability from phenotypic i (pi) to metabo-
lite j (mj) was defined as
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In the metabolite network, the probability from 
metabolite i (mi) to metabolite j (mj) was defined 
as
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The probability from metabolite i (mi) to gene j 
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The probability from metabolite i (mi) to pheno-
type j (pj) was defined as
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Random walk with restart (RWR)

In order to obtain preferred candidate metabo-
lites in the complex network, RWR method [11] 
was used to extend screening to a multithread-
ed composite network. This method selects 
preferred candidate metabolites based on the 
proximity of each candidate to seed candidate 
metabolite (the known metabolite) and simu-
lates a random walk process from the seed 
node. Each step of the walk moves from the 
current node to its immediate neighbor at prob-
ability 1-α, or returns to seed node at probabil-
ity α. The calculated formula was as follows:

Pk+1 = (1-α) WPk+αP0

P0 was the initial probability vector. Pk repre-
sents the probability vector remains at node i 
where the i-th element at step k.
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(1) The initial probability vector P0.

u0, v0, and w0 were supposed to be the ini- 
tial probabilities of the genetic network, pheno-
type network, and metabolic network, respec-
tively. For a phenotype (ie disease), the seed 
nodes consisted of i) phenotypes, ii) corre-
sponding known metabolites, and iii) known 

genes. Initial probability of the genetic network 
u0 was calculated by giving an equal probability 
to gene nodes in the gene network. The sum 
was equal to 1, meaning that the random walk-
er starts at the same probability from each 
seed node. Similarly, initial probabilities v0 and 
w0 were calculated, among them a = 1/3, b = 
1/3.

Figure 1. Flow chart of MetPriCNet. A. Construction of the multi-omics composite network. The multi-omics compos-
ite network is composed of six sub-networks. White circles indicate metabolites, white squares indicate genes, and 
white triangles indicate phenotypes. The thickness of an edge indicates the weight score. B. Flow chart of MetPriC-
Net to optimize the candidate metabolite. First, the interested candidate metabolites and seed nodes were mapped 
to the multi-omics composite network. Then, a global extended RWR method was used to score the candidate 
metabolites according to their proximity to seed nodes. Finally, the candidate metabolites were ranked by scores. 
Orange circles represent candidate metabolites of interest. Red triangles indicate the disease phenotype of interest 
(phenotype seed) from the OMIM data base, red squares represent known disease genes (gene seeds) from the 
OMIM database, and red circles indicate known disease metabolites (metabolite seeds) from the HMDB database.



Metabolic biomarkers in ankylosing spondylitis based on multi-omics

8058 Int J Clin Exp Med 2018;11(8):8054-8064

0

0

a

b

1 a b

P v

0

0 =

- -

)

)

)

n

~^ h

(2) k-step probability vector Pk.

After multiple iterations, the change between 
Pk+1 and Pk was less than 10-10. At this moment, 
the probability reached a steady state and iter-
ation stopped.

below. Statistical information of the composite 
network is shown in Table 1.

Candidate differential genes

First, we identified differentially expressed 
genes (DEGs) between AS and normal samples 
using t-test and F-test. Based on FDR < 0.05 
and |log FC| ≥ 0.05, a total of 579 candi- 
date genes were screened. We then built a 
genetic network. The top 10 DEGs are shown  

Table 1. Statistical information of the composite network
Statistics of the composite Network Node Edge
Gene network 516 3325
Metabolite network 3764 74667
Phenotype network 5080 10140046
Gene-metabolite association network 516 genes, 3764 metabolites  5966
Phenotype-gene association network 5080 phenotypes, 516 genes 73
Phenotype-metabolite association network 149 phenotypes, 388 metabolites 664
All 9360 10224741

Table 2. List of top 10 differentially expressed genes 
(DEGs)
Genes |log (fold change)| False discovery rate (FDR)
PTPN1 0.541708409 0.006354508
LAMTOR2 0.456185459 0.006354508
IL27RA 0.479655086 0.006354508
XPC 0.499038398 0.006354508
FAM222B 0.350544393 0.006354508
TCEAL9 0.317543 0.006354508
AAMDC 0.290132672 0.006354508
MRI1 0.391011129 0.007153737
HOXB1 0.306503564 0.007508667
DGKQ 0.681929291 0.007921708

Table 3. List of top 10 preferred metabolites

Rank Metabolite 
CID Metabolite Name Score

1 1567 2-mercaptoethanol 0.006739923
2 888 Magnesium ion 0.006243695
3 123762 Aerobactin 0.003147908
4 5283588 SM (d18:1/18:0) 0.002561754
5 23964 TUNGSTEN 0.001647578
6 439503 Salicin 0.001243961
7 5280453 Rocaltrol (TN) 0.000934286
8 5280795 Colecalciferol (INN) 0.000805469
9 2526 Beta-Glycerophosphoric acid 0.000755857
10 33032 Gulutamine (USP) 0.000709295

Identifying preferred metabolites and 
their co-expression genes

After the random walk to steady state, 
each metabolite in the complex net-
work had a probability corresponding 
to it. After removal of seed metabolite 
nodes and sequencing the probability, 
the top 50 metabolites were screened 
out as preferred metabolites. We iden-
tified genes that interacted with pre-
ferred metabolites and analyzed their 
scores. The top 100 genes were found, 
with scores greater than the mean. 
These were recognized as co-expres-
sion genes.

Results

MetPriCNet 

The general idea of MetPriCNet is 
depicted in Figure 1. First, we con-
structed a composite network which 
integrated omics data including the 
genome, phenome, metabolome, and 
interactome. Then, we proposed a 
global computational method to cap-
ture interaction information between 
the multi-omics composite network to 
prioritize candidate metabolites acc- 
ording to their proximity with known 
disease seed nodes. Details are given 
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in Table 2. The most significant DEGs were 
PTPN1, LAMTOR2, IL27RA, XPC, and FAM22- 
2B.

Disease preferred metabolites complex net-
work construction

We used RWR to screen 50 disease meta- 
bolites of AS. The top 10 are shown in Table 3. 
The most significant disease metabolites we- 
re 2-mercaptoethanol, magnesium ion, and 
aerobactin.

In order to further probe the biological activity 
of disease metabolites of AS, we built a net-
work using the above 50 metabolites. In topo-
logical analysis of the constructed network, 
distribution of network nodes degree was the 
measure of connectivity. Assortativity exam-
ines whether nodes with similar values tend to 
connect with each other. Assortativity coeffi-
cient is a kind of “degree” based on Pearson’s 
correlation coefficient, used to measure rela-
tionship between connected nodes. If the result 
of assortativity coefficient is positive, it repre-

Figure 2. AS preferred metabolites complex network. The pink node represents the metabolite, red node represents 
the top 5 metabolites, and the yellow represents the seed node.
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sents some kind of synergy between the points 
with the same degree. Negative values indicate 
that there is some connection between the 
nodes with different degrees. Connection bet- 
ween metabolites is represented by the corre-
sponding entry in the matrix. In general, value 
of the assortativity coefficient is between -1 
and +1. +1 indicates that the network has a 
good homology, 0 indicates the network is non-
assortative, and -1 indicates the network is 
negatively correlated (Figure 2). If there is a 
connection between nodes, value of the edge 
is 1. Otherwise, it is 0. The closer the value is  
to 0 means that the connection is weaker and 
the closer it is to 1 indicates a stronger con- 
nection.

Clustering and AS preferred metabolites analy-
ses

Results of 2D clustering analyses of 100 co-
expression genes: As shown in Figure 3, control 
and affected patients can be largely separated 
into two clusters. We obtained top 50 AS pre-

sider similarity between candidate metabolites 
and seeds under the global composite network. 
We further inspected direct and indirect inter-
action (we only considered two-step neighbors) 
between the five top-ranked metabolites and 
seed nodes. The top-ranked metabolite is ex- 
pected to have more and stronger direct and 
indirect interactions with seeds. This seems 
inconsistent with our methods. However, Met- 
PriCNet is based on a global distance measure, 
which considers not only strong direct interac-
tions but also indirect and weak interactions. 

Discussion

Many genetic association studies have identi-
fied genes that contribute to AS susceptibility 
but these methods have provided little informa-
tion on changes in gene activity that occur in 
the process of AS. Transcriptional spectroscopy 
results in a snapshot of sampled cell activity, 
thus providing an understanding of molecular 
processes that drive the disease process. In 
this work, we used multi-omics and genome-

Figure 3. Heat map of AS candidate metabolite co-expression genes. Two 
groups of patients (columns) of the disease preferred metabolites co-expres-
sion gene (line) expression. Blue represents: Whole blood, control; Red Rep-
resents: Whole blood, affected.

ferred metabolites and top 
100 co-expression genes. A 
matrix was obtained that 
used co-expression genes as 
row name and AS patients  
as column name. Relationship 
between genes and metabo-
lites was represented by the 
corresponding entry in 2D 
clustering.

Disease candidate metabo-
lites co-expression genes net-
work construction

To further illustrate the intrin-
sic mode of MetPriCNet, we 
dissected candidate metabo-
lites. A network was construc- 
ted by all metabolites (Figure 
4). In this network, it is easily 
noticed that there are two 
types of nodes among the 
neighbors, including metabo-
lite nodes and gene nodes. 
This consists with the intri- 
nsic mechanism of MetPri- 
CNet, which can account  
for interaction information of 
every type of node to con- 
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wide microarray to identify AS-related candi-
date genes and predict disease metabolites  
of AS.

Multi-omics compound networks plays a pivot-
al role in many important biological processes 
but research on functions of multi-omics com-
pound networks in human disease is still in its 
infancy [8]. Therefore, it is urgent to prioritize 
multi-omics compound networks that are po- 
tentially associated with diseases [12]. In this 
work, we developed a novel algorithm, RWR, 
which used a multi-level composite network to 
prioritize candidates of the multi-omics com-

pound network associated with diseases. By 
integrating genes, multi-omics, phenotypes 
and their associations, RWR achieves an over-
all performance superior to that of previous 
methods. Notably, RWR still performs well even 
when information on known disease multi-omi- 
cs compound network is lacking [13]. When 
applied to AS, RWR identified known AS-relat- 
ed multi-omics compound networks, revealed 
novel disease metabolites candidates, and in- 
ferred their functions via pathway analysis. We 
further constructed human disease metaboli- 
tes landscape, revealed the modularity of dis-
ease metabolites network, and identified sev-

Figure 4. AS candidate metabolite co-expression gene network. The blue node represents the gene, pink node rep-
resents the metabolite, and yellow represents the seed node.
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eral metabolite hotspots. In summary, RWR is a 
useful tool for prioritizing disease-related multi-
omics compound networks and may facilitate 
understanding of molecular mechanisms of 
human disease at the multi-omics compound 
network level.

According to the results of candidate genes,  
we identified some genes that interacted with 
preferred AS metabolites. PTPN1, LAMTOR2, 
IL27RA, and so on, were ranked more forward. 
Protein-tyrosine phosphatase N1 (PTPN1), also 
called PTP1B, specifically inactivates phos-
phorylated STAT5A and STAT5B, which modu-
lates self-renewal capacity and differentiation 
of memory B-cells [14]. The human PTPN1 gene 
is located in chromosome 20q13 and has been 
identified in a number of studies as a region  
of quantitative trait associated with obesity 
and type 2 diabetes [15]. Recently, association 
studies have indicated that single nucleotide 
polymorphisms within PTPN1 genes are associ-
ated with metabolic disorders and obesity [16]. 
Adapter molecule p14 is called the late endo-
some/lysosomal adapter and the mitogen-acti-
vated protein kinase (MAPK) and the mTOR 
activator/regulatory complex 2 (LAMTOR2) in 
the mammalian target. It affects weight row 
and other gene cell processes such as growth 
factor signaling and immune proliferation as 
well as immune cells [17]. The defect of p14  
is the molecular cause for development of 
unknown primary human immunodeficiency 
syndrome which shows signs of diseases such 
as Hermansky-Pudlak syndrome [18].

Identification of disease-related metabolites is 
important in obtaining a better understanding 
of the metabolic pathology process, in order to 
improve human drugs [19]. Metabolites, as end 
products of the cell regulatory process, can be 
produced by a multi-omic process [20]. In our 
study, based on comprehensive multi-omics 
information, we predicted and prioritized dis-
ease metabolites. From the results of AS pre-
ferred metabolite, we obtained some metabo-
lites such as 2-mercaptoethanol (2-ME), mag-
nesium ion, and aerobactin. 2-ME inhibits 
growth of Bacillus paraspora NRRL 3240 and 
formation of aflatoxin in fungi [21]. It is known 
that 2-ME is necessary for the activity of some 
enzymes and inhibits certain other enzymes 
[22]. Studies have reported that there are three 
potential areas in which 2-ME may be beneficial 

for disease intervention: (a) potential radioac-
tive adjuvant to enhance effectiveness of local 
radiotherapy, (b) radiation protectants, (c) radi-
ation-induced use of radiation-induced tumor 
progression, independent prevention [23]. As 
one of the important ions associated with bone 
fusion, magnesium is a titanium surface ion 
implantation method using magnesium plas- 
ma immersion into micro/nanostructures [24]. 
Studies have shown that magnesium ions play 
an active role in osteogenic differentiation of 
rat bone marrow mesenchymal stem cells 
(rBMMSCs) [25]. Studies have indicated that 
aerobactin contributes to spread of bacteria 
from the intestine to organs and body fluids 
[26]. In E. coli, aerobactin has been shown to 
be the most effective carrier for iron. Incidence 
of aerobactin is very high in E. coli strains that 
cause parenteral infection in humans and ani-
mals. The highest proportion of bio-E. coli 
strains is always present in blood and urine 
[27].

In summary, our analysis used a multi-omics 
compound network approach to identify dis-
ease metabolites in AS. A total of 579 DEGs 
and 50 preferred metabolites were identifi- 
ed from 32 samples. In our study, we found 
metabolites and key genes associated with AS, 
providing a new basis for treatment of AS in  
the future. Further research may reveal new 
insights into the role of metabolites in AS.
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