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Abstract: Glioblastoma multiforme (GBM) is one of the most common malignant primary brain tumors in adults. Its 
prognosis is influenced by progression covering a complex network of gene interactions. In this study, microarray 
expression data of GBM (n = 114) and normal brains (n = 17) were analyzed to identify 3,523 differently expressed 
genes (DEGs), in which protein-protein interaction (PPI) and weighted gene co-expression networks were construct-
ed to identify key genes and pathways associated with occurrence and progression of GBM. The top 6 hub genes 
(CACNA1C, TOP2A, CDK1, DLG4, EGFR, and CDC42) with the highest connectivity degree in the PPI network were 
identified and then validated. In the weighted gene co-expression network, 9 GBM-related modules were identified. 
Of which, 7 were found to be stable after performing module preservation analysis. Genes in the 7 modules were as-
sociated with cell division and differentiation, cell proliferation, cell adhesion, immune response, metabolic process, 
cell cycle regulation, neuron development, and transmembrane transport. This study illustrates that hub genes and 
pathways are involved in the progression of GBM. Further molecular biological experiments are necessary to confirm 
the function of candidate biomarkers in human GBM.
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Introduction

Glioblastoma multiforme (GBM) is one of the 
most common malignant primary brain tumors 
in adults [1]. Current treatment for GBM is, 
mainly, surgical resection combined with radio-
therapy and chemotherapy [2]. The median sur-
vival time of high grade GBM is only 12-15 
months [3]. At present, histological analysis of 
GBM tissue obtained by surgery is a necessary 
process for definitive diagnosis [4]. Therefore, 
screening GBM molecular markers will provide 
important clinical value for diagnosis, especial-
ly in cases of uncertain histological results or 
surgical contraindications.

Currently, gene expression profiles are used to 
identify genes associated with progression of 
GBM [5]. Additionally, some researchers have 
also used an integrated approach to screen 
changes in brain carcinogenesis [6]. However, 
most studies have focused on screening of dif-
ferentially expressed genes and ignored the 
high degree of interconnection between genes, 

although genes with similar expression pat-
terns may be functionally related. Weighted 
gene co-expression network analysis (WGCNA) 
has been used to construct a co-expression 
network based on relationship between genes 
and identifying significant gene modules and 
hub genes associated with tumor progression 
by constructing scale free gene co-expression 
networks [7]. At present, many studies perform 
WGCNA to screen key genes, modules, and 
pathways related with clinical characteristics 
such as tumor stage, grade, and metastasis 
among different tumor types, including papil-
lary renal cell carcinoma [8] and hepatocellular 
carcinoma [9]. Thus, this study attempted to 
screen differentially expressed genes, then 
construct protein-protein interaction networks 
and a co-expression network of relationships 
between genes through a systematic biology 
method based on a weighted genome expres-
sion network (WGCNA), identifying key genes 
and pathways participating in progression of 
GBM.

http://www.ijcem.com
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Materials and methods

Data collection

Gene expression profile was downloaded from 
Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/). Dataset 
GSE7696 [10] and GSE50161 [11], both per-
formed on Affymetrix Human Genome U133 
Plus 2.0 Array (Affymetrix, Santa Clara, CA, 
USA), were combined and analyzed to screen 
differentially expressed genes and construct 
protein-protein interaction networks. Dataset 
GSE7696, including 80 GBM tissues and 4  
normal brain tissues, was used to construct 
weighted gene co-expression networks and 
identify hub genes and pathways for this study. 
Another independent dataset GSE53733 [12], 
consisting 70 GBM tissues, was used for mod-
ule preservation analysis. 

Data preprocessing and differentially ex-
pressed genes (DEGs) screening

Raw expression data were calculated accord-
ing to the pre-processing procedures: RMA 

significant. In the PPI network, genes with con-
nectivity degree of ≥ 60 were also defined as 
hub genes. Cytoscape software [17] was used 
for network visualization. Plug-in Molecular 
Complex Detection (MCODE) [18] in Cytoscape 
was used to identify hub cluster from PPI net-
work. Cut-off criteria were degree = 2, node 
score = 0.2, k-core = 2, and max. depth = 100. 
Genes in hub clusters were uploaded to DAVID 
database [19] to conduct GO functional enrich-
ment analysis.

Co-expression network construction and mod-
ule preservation analysis

Scale-free gene co-expression networks were 
constructed by “WGCNA” R package. Briefly, 
expression data profiles of DEGs were tested to 
check if they were good samples and good 
genes. Pearson’s correlation matrices were 
performed for all pair-wise genes. A weighted 
adjacency matrix was then constructed using a 
power function amn = |cmn|β (cmn = Pearson’s 
correlation between gene m and gene n; amn = 
adjacency between gene m and gene n). β was 

Figure 1. Heatmap of differentially expressed genes between 17 normal 
brain samples and 114 GBM samples. Red represents upregulated genes 
and green represents downregulated genes.

background correction, log2 
transformation, quantile nor-
malization, and median polish 
algorithm summarization us- 
ing the “affy” [13] R package. 
Besides, “va” [14] R package 
was used to remove batch 
effects between dataset GS- 
E7696 and GSE50161. Pro- 
bes were annotated by the 
Affymetrix annotation files. 
“limma” [15] R package was 
used to screen the DEGs 
between 114 GBM samples 
and 17 normal brain samples. 
Cut-off criteria for screening 
DEGs were FDR (false discov-
ery rate) < 0.01 and |log2fold 
change| ≥ 1.

PPI network construction and 
hub cluster detection

Search Tool for Retrieval of 
Interacting Genes (STRING) 
Database (http://www.string-
db.org/) [16] was used to con-
struct protein-protein interac-
tion (PPI) networks. Confiden- 
ce scores > 0.7 were set as 
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Figure 2. Hub cluster detection in PPI network. A. Cluster rank 1 in the whole PPI network. B. Cluster rank 1. C. 
Cluster 2 in the whole PPI network. D. Cluster rank 2. E. Cluster rank 3 in the whole PPI network. F. Cluster rank 3.
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a soft-thresholding parameter that could 
emphasize strong correlation between genes 
and penalize weak correlation. Next, adjacency 

Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) [19] (http://david.
abcc.ncifcrf.gov/) online tool was used for 

Table 1. GO enrichment analysis of the 3 clusters in PPI network
Cluster GO ID GO term P value Genes
Cluster 1 0007018 Microtubule-based movement 6.81E-07 KIF14, KIF2C, KIF4A, KIF11, KIF15, KIF20A

Cluster 1 0000910 Cytokinesis 0.0019 PRC1, BIRC5, KIF20A

Cluster 1 0090307 Mitotic spindle assembly 0.0021 KIF11, TPX2, BIRC5

Cluster 1 0000086 G2/M transition of mitotic cell cycle 0.0023 FOXM1, CHEK1, BIRC5

Cluster 1 0046602 Regulation of mitotic centrosome separation 0.0109 KIF11, CHEK1

Cluster 2 2000369 Regulation of clathrin-mediated endocytosis 0.0038 AAK1, DNAJC6

Cluster 2 0048268 Clathrin coat assembly 0.0102 SNAP91

Cluster 2 0097320 Membrane tubulation 0.0102 PACSIN1, SGIP1

Cluster 3 0007214 Gamma-aminobutyric acid signaling pathway 1.26E-18 GABRG1, GABRG2, GABRA2, GABRA1, GABRA4, GABRA5, 
GABBR1, GABBR2

Cluster 3 1902476 Chloride transmembrane transport 4.29E-12 FXYD1, GABRG2, GLRB, GABRA2, GABRA1, GABRA4, 
GABRB2, GABRB1, GABRA5

Cluster 3 0071420 Cellular response to histamine 1.04E-06 GABRG2, GABRB3, GABRB2, GABRB1

Cluster 3 0051966 Regulation of synaptic transmission, glutamatergic 1.64E-05 GRM5, GRM3, GRM1, KALRN

Cluster 3 0060119 Inner ear receptor cell development 1.47E-04 GABRB3, GABRB2, GABRA5

Figure 3. Determination of soft-thresholding power in weighted gene co-ex-
pression network analysis (WGCNA). A. Analysis of the scale-free fit index for 
various soft-thresholding powers (β). B. Analysis of the mean connectivity for 
various soft-thresholding powers. C. Histogram of connectivity distribution 
when β = 6. D. Checking the scale free topology when β = 6.

was transformed into topolo- 
gical overlap matrix (TOM), 
which could measure network 
connectivity of a gene defined 
as the sum of its adjacency 
with all other genes for net-
work generation. To classify 
genes with similar expression 
profiles into gene modules, 
average linkage hierarchical 
clustering was conducted 
according to TOM-based dis-
similarity measurement, with 
a minimum size (gene group) 
of 30 for the genes dendro-
gram. To further analyze the 
module, the dissimilarity of 
module eigengenes was cal-
culated. Researchers chose a 
cut line (0.25) for module den-
drogram and merged some 
modules. To access the sta- 
bility of each identified mod-
ule, module preservation and 
quality statistics were com-
puted with the modulePreser-
vation [20] function (nPermu-
tations = 100) implemented 
by the WGCNA package.

Functional and pathway en-
richment analysis of each 
module
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functional and pathway enrichment analysis. P 
< 0.05 was set as cut-off criterion.

Hub genes validation

Hub genes identified from PPI networks  
were validated by TCGA GBM RNA-seq data 
using Gene Expression Profiling Interactive 
Analysis (GEPIA, http://http://gepia.cancer-
pku.cn/) [21].

Statistical analyses

Two-tailed Student’s t-test was used for sig- 
nificance of differences between subgroups. 
Statistical analyses were performed with SPSS 
16.0. Statistical significance was set at proba-
bility values of P < 0.05.

Hub cluster selection and functional annota-
tion

With degree cut-off = 2, node score cut-off = 
0.2, k-core = 2, and max. depth = 100 as the 
criterion, the top 3 significant clusters were 
identified using plug-in MCODE. Gene ontology 
(GO) analysis of each cluster was then per-
formed in DAVID database (Figure 2 and Table 
1).

Weighted co-expression network construction 
and module preservation analysis

WGCNA was conducted on 3,523 DEGs of 80 
GBM samples (GSE7696). “WGCNA” package 
was used in R, after quality assessment for 

Figure 4. Clustering dendrograms of genes and module preservation analy-
sis. (A) Gene clustering dendrogram generated by hierarchical clustering of 
adjacency-based dissimilarity. The colored row below the dendrogram indi-
cates module membership identified by the dynamic tree cut method, to-
gether with assigned merged module colors and the original module colors. 
(B, C) MedianRank (B) and Zsummary (C) statistics of the module preserva-
tion of the 9 modules. In the left graph, medianRank of the modules close 
to zero indicates a high degree of module preservation. In the right graph, 
the dashed blue and green lines indicate the thresholds Z = 2 and Z = 10, 
respectively. These horizontal lines indicate Z summary thresholds for strong 
evidence of conservation (above 10) and for low to moderate evidence of 
conservation (above 2).

Results

Identification of DEGs in GBM 
tissues

GSE7696 and GSE50161, in- 
cluding 114 GBM samples 
and 17 normal brain samples, 
were analyzed. In total, 3,523 
DEGs were identified using 
“limma” package of R soft-
ware under the cut-off criteria 
of FDR < 0.01 and |log2fold 
change (FC)| ≥ 1, of which 
1,192 were upregulated and 
2,331 were downregulated. 
Heatmap of the DEGs is shown 
in Figure 1. 

PPI network construction

A total of 3,523 DEGs were 
uploaded to STRING data-
base. The PPI networks were 
constructed and visualized 
using Cytoscape software. 
Genes with higher connectivi-
ty degrees within a network 
play more important roles in 
biological processes [9]. Using 
the cut-off criteria of connec-
tivity degree ≥ 60, the top 6 
nodes with highest connectiv-
ity degrees were considered 
as hub nodes. These includ- 
ed CACNA1C, TOP2A, CDK1, 
DLG4, EGFR, and CDC42.
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Figure 5. Functional enrichment analysis of the 7 stable 
modules. A. Blue module; B. Yellow module; C. Turquoise 
module; D. Green module; E. Red module; F. Pink module; 
G. Brown module.
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expression data matrix of GSE53000, power of 
β = 6 (scale free R2 = 0.94) was selected to 
ensure a scale-free network (Figure 3A-D). A 
total of 9 modules were identified after using 
average linkage clustering (Figure 4A). The 
“grey” module was reserved for genes identi-
fied as not co-expressed. 

To determine whether identified networks could 
also be found in another independent network, 
summary preservation analysis was performed 
by comparing the GSE7696 data set with test 

data set GSE53733. Two modules, including 
“black” and “magenta”, were found to be not 
stable and were excluded for subsequent  
analysis. The 7 remaining modules were stable 
enough, with Z summary statistics above 10 
(Figure 4B, 4C), to be selected for subsequent 
analysis.

Functional annotation and KEGG pathway en-
richment of stable modules

Gene Ontology analysis was performed for the 
above 7 modules to explore underlying biologi-

Figure 6. KEGG pathway enrichment analy-
sis of the 7 stable modules. A. Blue mod-
ule; B. Yellow module; C. Turquoise module; 
D. Green module; E. Red module; F. Pink 
module; G. Brown module.
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cal processes correlated with GBM. As shown 
in Figures 5 and 6, genes in blue and yellow 
modules were significantly enriched in nervous 
system development and synaptic transmis-
sion. Genes in the turquoise module were  
mainly associated with cell division, cell prolif-
eration, and cell cycle. Genes in green and  
pink modules were correlated with immune 
response and inflammatory response. Genes in 
the red module were mainly associated with 

extracellular matrix organization and cell  
division, which includes several significantly 
enriched pathways including EMC-receptor 
interaction, focal adhesion, and PI3K-Akt path-
ways. In the brown module, genes were 
enriched in ion transmembrane transport and 
exocytosis. Taken together, genes in the red 
modules were found to be most significantly 
correlated with GBM occurrence and pro- 
gression. 

Figure 7. Validation of hub gene using TCGA GBM RNA-seq data.
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Hub genes validation

Six hub genes were validated using TCGA GBM 
data. CACNA1C and DLG4 were significantly 
downregulated, in both microarray and TCGA 
GBM data, while the remaining 4 hub genes, 
including TOP2A, CDK1, EGFR, and CDC42, 
were significantly upregulated. This was consis-
tent with the microarray data (Figure 7).

Discussion

Glioblastoma multiforme (GBM) is one of the 
most common malignant primary brain tumors 
in adults [1]. Currently, there are no specific 
molecular biomarkers for diagnosis and treat-
ment of GBM. Therefore, it is essential to dis-
cover the molecular mechanisms of GBM [22]. 
In this study, gene expression profiles were 
examined, including 114 GBM samples and 17 
normal brain samples, using integrated analy-
sis to explore key genes and key pathway sig-
naling playing key roles in GBM progression, 
possibly providing insight into diagnostic and 
therapeutic targets for GBM.

A total of 3,523 DEGs, including 1,192 upregu-
lated and 2,331 downregulated, were screened 
from 114 GBM samples and 17 normal brain 
samples. PPI network analysis and WGCNA 
analysis were constructed to identify protein-
protein interactions and gene co-expression 
modules. The 3 most significant gene clusters 
were identified from the PPI network, perhaps 
playing the most important role in the whole PPI 
network. Functional enrichment analysis was 
then performed, respectively, using genes in 
the 3 clusters. This analysis revealed that cell 
cycle regulation, mitotic regulation, and immune 
response might be significantly associated with 
progression of GBM. In addition, genes with 
higher connectivity degrees in a network play 
more important roles in biological processes 
[23]. Using cut-off criteria of ≥ 60, the top hub 6 
nodes with highest connectivity degrees were 
identified. These included CACNA1C, TOP2A, 
CDK1, DLG4, EGFR, and CDC42. The 6 hub 
genes were validated by TCGA RNA-seq data of 
GBM. TOP2A, CDC42, and CDK1 play important 
roles in regulation of cell cycle. They might exert 
key roles in GBM progression through regulat-
ing tumor cell cycle [24-26]. TOP2A has been 
reported to be a sensitive and specific biomark-
er indicating active cell proliferation [27]. In the 
current study, TOP2A was found to be a hub 

protein/gene in the PPI network, indicating a 
crucial role in regulating GBM progression, con-
sistent with previous studies [27]. It has been 
observed that nearly 40% of GBM tumors dem-
onstrate EGFR amplification, mostly associated 
with GBM recurrence and progression [28]. In 
this present study, EGFR was found to be a hub 
node in the PPI network, with subsequent vali-
dation demonstrating that it was significantly 
upregulated in GBM samples, also consistent 
with previous reports [29, 30]. CDK1 encodes 
CDKs, which function as a serine/threonine 
kinase and play an important role in cell cycle 
regulation [31]. Previous studies have reported 
that CDK1 promotes oncogenesis and progres-
sion of human gliomas, whereas downregulat-
ed CDK1 inhibits proliferation activities of 
human malignant gliomas [32]. Moreover, using 
plug-in MCODE in Cytoscape software, the 3 
top clusters were identified. As shown in Figure 
2 and Table 1, genes in the 3 clusters were 
mainly associated with cell cycle regulation, cell 
division, and immune response, highlighting 
their key roles in regulating GBM progression.

Subsequently, WGCNA analysis identified 9 
modules with a highly relevant expression pat-
tern. Module preservation analysis demon-
strated that 7 modules were stable in the test 
data set. Gene Ontology enrichment analysis 
was then performed to explore biological pro-
cesses of the 7 modules. Genes within the 
same module exhibited a similar biological 
function. Genes in blue and yellow modules 
were significantly enriched in nervous system 
development and synaptic transmission. Genes 
in the turquoise module were mainly associat-
ed with cell division, cell proliferation, and cell 
cycle. Genes in green and pink modules were 
correlated with immune response and inflam-
matory response. Genes in the red module 
were mainly associated with extracellular 
matrix organization and cell division, with sev-
eral significantly enriched pathways including 
EMC-receptor interaction, focal adhesion, and 
PI3K-Akt pathways. In the brown module, genes 
were enriched in ion transmembrane transport 
and exocytosis. Taken together, genes in the 
red modules were found to be most significant-
ly correlated with GBM occurrence and 
progression. 

In summary, using a series of bioinformatics 
analyses, this study illustrated hub genes and 
pathways that may be involved in progression 
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of GBM, based on DEGs screened from large 
GBM samples. Nevertheless, further molecular 
biological experiments are necessary to con-
firm the function of candidate biomarkers in 
GBM.
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