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Abstract: Dyshomeostasis of iron is involved in β-amyloid (Aβ) deposition in Alzheimer’s disease (AD). Divalent metal 
transport 1 (DMT1) is the transporter of iron participating in iron homeostasis. In a previous study, ebselen was con-
firmed as an effective inhibitor of DMT1 that can reduce cellular iron influx and affect tau hyperphosphorylation. To 
further demonstrate the effects of ebselen on APP processing, this present study hypothesized that ebselen could 
modulate amyloid precursor protein (APP) processing and inhibit iron-induced increase of amyloidogenic metabo-
lism. Thus, human neuroblastoma SH-SY5Y cells, stably transfected with human APPsw, were treated with ferrous 
sulfate after ebselen pretreatment. The results demonstrated that ebselen, an inhibitor of DMT1, decreased iron 
influx and levels of reactive oxygen species (ROS), consequently repressing β-amyloid (Aβ) generation by inhibition 
of β-site APP cleavage enzyme (BACE1) and presenilin 1 (PS1) in iron-induced APPsw cells. Collectively, the present 
data suggests that ebselen treatment may be useful in AD and inhibiting DMT1 is a potential target for prevention 
and treatment of this disease.

Keywords: Ebselen, divalent metal transporter 1 (DMT1), amyloid precursor protein (APP), β-amyloid peptide (Aβ), 
Alzheimer’s disease (AD)

Introduction

Accumulation of extracellular plaque and in- 
tracellular neurofibrillary tangles are predomi-
nant neuropathological hallmarks of Alzheimer’s 
disease (AD). After amyloid precursor protein 
(APP) is hydrolyzed by α-, β-, and γ-secretase 
and produces β-amyloid (Aβ) peptide, the 
aggregation of Aβ forms extracellular plaque 
[1]. Accumulating evidence has demonstrated 
that iron homeostasis is associated with both 
Aβ and its precursor APP in brains with AD [2, 
3]. Iron can accumulate in plaque and neurofi-
brillary tangles in AD brains and bind to Aβ, APP, 
and secretases [2-7]. Thus, iron accumulation 
not only contributes to metal-catalyzed protein 
oxidation but also to deposition of Aβ pepti- 
des and activation of the amyloid cascade, pro-
moting hyperphosphorylated tau aggregation 
[8-12].

Iron in the brain is regulated by several factors. 
Divalent metal transporter 1 (DMT1) is the best 
characterized Fe2+ transporter and is involved 
in cellular iron uptake in mammals [13, 14]. A 
mutation in DMT1 could impair iron transport 
and protect mice against 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced do- 
paminergic neuronal death [15-17]. Previous 
studies have shown that high expression of 
DMT1 occurs in senile plaque in AD transgenic 
mice brains and postmortem brains with AD 
[18, 19]. Moreover, upon silencing the DMT1 
gene, iron ion influx is reduced and amyloido-
genic process and Aβ secretion is inhibited, in 
vitro, suggesting that DMT1 is a potential target 
for AD treatment [19].

Ebselen, 2-phenyl-1,2-benzisoselenazol-3[2H]-
one, is a lipid-soluble low molecular weight sele-
no-organic compound. Some pieces of evi-
dence have proven that ebselen can exhibit 
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antioxidant and neuroprotective effects [20-
24]. Interestingly, ebselen has been demon-
strated to be an inhibitor of DMT1 transport 
[25-27]. A previous study confirmed that ebsel-
en, an inhibitor of DMT1, can inhibit ferrous 
iron-induced tau hyperphosphorylation in hu- 
man neuroblastoma SH-SY5Y cells [28].

This present study investigated a cell model of 
AD wherein cells were transfected with APP har-
boring the Swedish mutation (APPsw cells). 
APPsw cells were pretreated with ferrous sul-
fate (FeSO4) and/or ebselen. The effects of 
ebselen on Aβ peptide and proteolytic path-
ways of APP were evaluated. It was found that 
FeSO4 could accelerate the influx of iron ions, 
increase production of reactive oxygen species 
(ROS) and secretion of Aβ, and elevate expres-
sion of APP protein and APP cleavage enzymes. 
Intriguingly, ebselen is able to inhibit these 
changes. Thus, this study’s results indicate that 
ebselen, an inhibitor of DMT1, inhibits iron-
induced amyloidogenic APP processing in 
APPsw cells.

Materials and methods

Human neuroblastoma SH-SY5Y cells, stably 
transfected with human APPsw (APPsw cells), 
were kindly provided by Professor Baolu Zhao 
at the Institute of Biophysics, Chinese Academy 
of Sciences in Beijing. Cells were cultured in 
Dulbecco’s Modified Eagle’s Medium and 
Ham’s F-12 nutrient mixture (DMEM/F12; 
Gibco) supplemented with 10% heat-deactivat-
ed fetal calf serum (FBS; Gibco), 100 IU/mL 
penicillin (Gibco), 100 μg/mL streptomycin 
(Gibco), and 200 μg/mL G418 (Sigma, USA) at 
37°C in the presence of 5% CO2 [5, 19, 28].

To detect cell viability after treatment with 
FeSO4 or ebselen and to select appropriate 
concentrations of FeSO4 or ebselen, methyl-
thiazolyl-tetrazolium (MTT) analyses were per-
formed on APPsw cells, with 50 μM FeSO4 and 
5 μM ebselen selected. Before treatment, 
serum-free medium was added for 2 hours. 
Upon reaching 70-80% confluency, cells were 
treated with 5 μM ebselen (ebselen dissolved 
in DMSO) (Sigma) for 12 hours, followed by 50 
μM FeSO4 (FeSO4 dissolved in ascorbic acid 
solution, 1:44 molar ratio, pH 6.0) for 24 hours. 
Consecutively, the cells were harvested for 
analysis.

Ferrous iron transport assay by quenching the 
calcein fluorescence

Calcein is an iron chelator. It binds imported 
iron and becomes quenched. The quenching of 
calcein fluorescence can determine the influx 
of ferrous ions into APPsw cells. 

Cells were treated with 5 μM ebselen for 12 
hours, followed by incubation with 0.5 μM cal-
cein-AM (Dojindo Laboratories, Japan) for 30 
minutes at 37°C. After removing excess calce-
in-AM, cells were washed three times with 
phosphate-buffered saline (PBS, pH 7.4), mixed 
with 500 μL calcein, and evaluated. 

First, the initial baseline of fluorescence inten-
sity was recorded. Cell fluorescence intensity 
was then measured every 100 seconds. At 500 
seconds, 50 μM FeSO4 was added to the cells. 
To investigate the transport of ferrous ions, 50 
μM BIP (2,2’-bipyridyl) (Sigma), a high-affinity 
cell-permeable ferrous chelator, was added to 
cells at 900 seconds. An F-4500 fluorescence 
spectrophotometer, equipped with a stirring 
cuvette holder (Hitachi, Japan) [excitation wave-

Figure 1. Cell viability of APPsw cells after treatment 
with ferrous sulfate or ebselen. (A and B) To select 
appropriate concentrations of FeSO4 and ebselen for 
follow up experiments, methyl-thiazolyl-tetrazolium 
(MTT) analyses were performed on SH-SY5Y cells, 
stably transfected with human APPsw, and 50 μM 
FeSO4 (A) and 5 μM ebselen (B) were chosen. Mean 
± SEM. *p<0.05, **p<0.01, vs. the control. 
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length (λex) 490 nm, emission wavelength 
(λem) 515 nm, 37°C], was utilized. Data were 
normalized to steady-state (baseline) values of 
fluorescence.

Flow cytometry-based estimation of ROS

APPsw cells were treated by control, FeSO4, 
ebselen + FeSO4, and ebselen. Production of 
intracellular ROS was assessed using dihydro-
ethidium (DHE, Vigorous, China) by flow cytom-

etry analysis, according to methods described 
previously. After the above treatments, 10 μM 
DHE was incubated with the cells for 30 min-
utes at 37°C in DMEM/F12. Cells were then 
washed with PBS and harvested. Fluorescence 
was estimated at λex of 488 nm and λem of 
585 nm; further evaluation was conducted 
based on the mean fluorescence intensity of 
20,000 cells.

Enzyme-linked immunosorbent assay (ELISA)

Supernatant from the APPsw cells was collect-
ed. Using a human Aβ1-42 Colorimetric Im- 
munoassay ELISA Kit (Biosource International, 
USA), Aβ1-42 contents were assessed, accord-
ing to manufacturer instructions.

Western blot analysis 

Cells were lysed, directly, using chilled lysis  
buffer [150 mM NaCl, 0.1% Nonidet P-40, 
0.25% sodium deoxycholate, 0.1% SDS, 1 mM 
phenylmethylsulfonyl fluoride (PMSF), 10 mg/
mL leupeptin, 1 mM Na3VO4, and 1 mM NaF]. 
Homogenates were centrifuged at 12,000 rpm 
for 30 minutes at 4°C and supernatants were 
collected. Total protein content was measured 
on a UV 1700 PharmaSpec ultraviolet spectro-
photometer (Shimadzu, Japan).

The equivalent of 80 μg protein, from each 
sample, was resolved on 8-12% SDS-PAGE and 
transferred to polyvinylidene difluoride (PVDF) 
membranes (Millipore, USA) by electroblotting 
(50 V, 2.5 h). Membranes were blocked with  
5% BSA for 1 hour. Blots were then probed with 
the following primary antibodies: rabbit anti-
APP695 (1:1000; Millipore), rabbit-anti-DMT1-
IRE (1:1000; Alpha Diagnosis), rabbit-anti-
DMT1+IRE (1:1000; Alpha Diagnosis), rabbit 
anti-ADAM10 (1:1000; Abcam, UK), rabbit an- 
ti-BACE1 (1:1000; Abcam), rabbit anti-PS1 
(1:800; Abcam), mouse anti-sAPPα (1:500; IBL, 
Gunma, Japan), mouse anti-sAPPβ (1:500; IBL), 
rabbit anti-APP C-terminal fragments (1:1000; 
Sigma), and GAPDH (1:3000; Abcam, UK), at 
4°C overnight. After washing, membranes were 
incubated with horseradish peroxidase (HRP)-
conjugated secondary antibody (1:5000; Santa 
Cruz Biotechnology, USA) for 2 hours at room 
temperature. Using an enhanced chemilumi-
nescence (ECL) Kit (Pierce, USA), immunoreac-
tive bands were visualized by ChemiDocTM XRS 
using Quantity One software (Bio-Rad, USA).

Figure 2. Expression levels of amyloid precursor pro-
tein (APP) and Aβ in APPsw cells. A and B. Western 
blot analysis showed levels of APP695 protein. C. 
Levels of secreted Aβ1-42 from APPsw cells were 
analyzed using an ELISA Kit. *p<0.05, **p<0.01; 
#p<0.05, ##p<0.01. 
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Statistical analysis

All results are expressed as mean ± SD with 
SPSS16.0 software. Differences among groups 
were analyzed by two-way analysis of variance 
(ANOVA). p<0.05 was considered statistically 
significant.

Results 

Ebselen inhibits protein levels of APP and se-
cretion of Aβ1-42 in iron-treated APPsw cells

Based on cell viability MTT assay, optimal con-
centrations of FeSO4 and ebselen were select-

ed to avoid the effect of cell death in follow up 
experiments (Figure 1A, 1B). 

To assess the effects of ebselen on levels of 
APP protein, protein levels of APP695 were 
measured after ebselen pretreatment. Western 
blot analysis showed that iron treatment alone 
significantly increased APP695 protein levels 
by 164.5 ± 23.3% (p<0.01, Figure 2) compared 
to controls. Ebselen pretreatment significantly 
decreased APP695 levels by 110.7 ± 25.0%, 
compared to FeSO4 treatment alone (p<0.01, 
Figure 2A and 2B). Simultaneously, ELISA eval-
uated secretion of Aβ1-42. In control cells, Aβ1-
42 was 83.0 ± 10.6 pg/mL/protein, whereas in 

Figure 3. Ebselen pre-treatment reduced ROS production and cellular iron influx in ferrous iron-treated APPsw cells. 
A and B. Production of ROS in ferrous sulfate group was increased compared with control. However, cells pre-treated 
with ebselen showed deceased levels of ROS compared with ferrous iron-treated cells. The fluorescence of the con-
trol was set 100%. C and D. Intracellular calcein-fluorescence-quenching that occurs in APPsw cells in response to 
50 μM ferrous sulfate (added at 500 s) with or without ebselen pre-treatment. Calcein-fluorescence, depressed by 
ferrous-binding, was finally dequenched by the addition of BIP (a strong ferrous chelator), at a final concentration 
of 50 μM (added at 900 s). The fluorescence intensity of calcein (λex of 490 nm; λem of 515 nm) was stronger in 
ebselen-treated cells than that in control cells. *p<0.05, **p<0.01; #p<0.05, ##p<0.01.
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the iron treatment alone groups, it was 125.6 ± 
16.3 pg/mL/protein, indicating a significant 
increase (p<0.05) compared to controls. In 
ebselen pretreatment groups, Aβ1-42 was 85.6 
± 11.0 pg/mL/protein and decreased signifi-
cantly (p<0.05) compared to the iron-treated 
groups. Ebselen-treated groups were 80.8 ± 
12.7 pg/mL/protein (Figure 2C).

Ebselen reduces production of ROS and de-
creases cellular iron influx

To validate the activity of ebselen against oxi-
dation and its influence on ferrous iron trans-
port in cells, intracellular ROS content and iron 
ion transport in iron-induced APPsw cells were 
tested after ebselen pretreatment. 

Results of ROS measurements by flow cytome-
try showed a significant increase in level of ROS 
(179.6 ± 43.1%) in ferrous iron-treatment 
(p<0.01, Figure 3A and 3B). However, APPsw 
cells with ebselen pretreatment exhibited a 
decrease (130.3 ± 26.9%) in ROS production 
compared to ferrous iron treatment (p<0.05, 
Figure 3A and 3B). No remarkable variations 
were found in cells treated with ebselen alone, 
compared to controls (Figure 3A and 3B).

In addition, ferrous iron influx was measured 
after ebselen pretreatment to verify whether 
reduction in ROS was associated with the effect 
of ebselen inhibiting DMT1, using fluorescent 
dye calcein-AM method [19, 28]. The conse-
quence in APPsw cells showed that calcein fluo-
rescence was quenched by FeSO4 in a time-
dependent manner (Figure 3C and 3D). Addition 
of 50 μM BIP (the membrane-permeable fer-
rous-specific chelator) could reverse the intra-
cellular quenching of calcein-fluorescence (Fig- 
ure 3C, 3D).

Importantly, in the ebselen-pretreatment group, 
fluorescence intensity was stronger than con-
trols, suggesting that ebselen could reduce fer-
rous iron uptake in APPsw cells.

Ebselen inhibits expression of DMT1 in iron-
induced APPsw cells

To assess ebselen’s influence on DMT1, 
Western blot was utilized to detect protein  
levels of DMT1 (Figure 4). Results showed that 
levels of DMT1+IRE and DMT1-IRE were 
increased to 198.4 ± 22.4% and 156.3 ± 
18.3%, respectively, in the ferrous sulfate 
groups compared to controls (p<0.01) (Figure 
4A-C). However, ebselen pretreatment could 
markedly decrease levels of DMT1+IRE (88.2 ± 
25.4%; p<0.01) and DMT1-IRE (102.4 ± 12.4%; 
p<0.01), compared to the iron groups (Figure 
4A-C). Thus, it was speculated that ebselen 
pretreatment could significantly inhibit expres-
sion of DMT1.

Figure 4. Expression levels of DMT1 isoforms in AP-
Psw cells. A. Western blot was performed to detect 
levels of DMT1-IRE and DMT1+IRE proteins. B and 
C. In ferrous sulfate group, levels of DMT1+IRE and 
DMT1-IRE were increased, compared with control 
(p<0.01). In the ebselen pre-treated and ebselen 
alone treated groups, levels of DMT1+IRE and DMT1-
IRE were decreased, compared with ferrous sulfate 
group. **p<0.01; ##p<0.01.
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Ebselen regulates APP processing and expres-
sion levels of APP cleavage enzymes in iron-
induced APPsw-transfected cells

To further study the effects of ebselen on APP 
hydrolysis, key enzymes of APP processing and 
expression levels of cleavage fragments of APP 
(including sAPPα, sAPPβ, C83, and C99 (the 
cleavage products of APP)) were tested (Figure 
5).

Western blot results showed the effects of 
ebselen on α-secretase of APP a-disintegrin 
and metallopetidase 10 (ADAM10). Protein lev-
els of ADAM10 (137.4 ± 30.4%; p<0.05), sAPPα 
(136.5 ± 19.7%; p<0.05), and C83 (138.1 ± 
20.8%; p<0.05) in ebselen alone treated groups 
increased, compared to control and ferrous 
groups (Figure 5A, 5B, 5E, 5F). However, these 

protein levels did not significantly alter between 
ferrous groups and ebselen pretreated grou- 
ps (Figure 5E, 5I). Moreover, in the ferrous 
groups, levels of BACE1 and PS1 significantly 
increased to 156.3 ± 30.1% and 174.4 ± 26.8% 
(p<0.01), respectively, compared to controls. 
After ebselen pretreatment, levels of BACE1 
and PS1 remarkably decreased to 104.2 ± 
32.6% (p<0.01) and 126.7 ± 34.8% (p<0.05), 
compared to the ferrous groups (Figure 5A, 5C, 
5D). In ebselen alone treatment groups, levels 
of BACE1 and PS1 significantly decreased to 
89.4 ± 19.6% and 86.2 ± 20.3% (p<0.01), 
respectively, compared to controls (Figure 5A, 
5C, 5D). Additionally, levels of β-secretase-
generated fragments (sAPPβ) and C99 in fer-
rous groups significantly increased to 186.2 ± 
28.4% and 148.7 ± 26.2% (p<0.01), respec-
tively, compared to controls (Figure 5E, 5G, 

Figure 5. Expression levels of amyloid precursor protein (APP) cleavage enzymes and products in iron- and/or eb-
selen-treatment APPsw cells. A-D. Western blot analysis showed expression levels of metalloproteinase domain-
containing protein 10 (ADAM10), β-secretase 1 (BACE1), and presenilin 1 (PS1) in APPsw cells. In the ebselen-treat-
ment group, levels of ADAM10 were significantly increased, compared with control and Fe-treatment group. Levels 
of BACE1 and PS1 in the Fe-treatment group were markedly increased. However, in the ebselen pre-treatment, 
levels of BACE1 and PS1 were significantly reduced, compared with Fe-treatment group. E-I. Levels of sAPPα and 
C83 were significantly increased in the ebselen-treatment group, compared with control. Levels of sAPPβ and C99 
in the Fe-treatment group were markedly increased, compared with control. Moreover, levels of BACE1 and PS1 
in the ebselen pre-treatment group were significantly reduced, compared with the Fe-treatment group. *p<0.05, 
**p<0.01; #p<0.05, ##p<0.01.
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5H). After ebselen pretreatment, sAPPβ and 
C99 decreased to 117.7 ± 34.7% and 108.9 ± 
30.1% (p<0.01), respectively, compared with 
the ferrous groups.

Discussion

AD is a severe progressive brain disorder affect-
ing a significant subset of the elderly human 
population. Extracellular Aβ aggregates and 
intracellular neurofibrillary tangles comprise 
the neuropathological hallmarks of AD [31]. 
Production of Aβ is a key in the pathological 
processing of AD. Growing evidence has shown 
the deposit of metal ions in senile plaque and 
tangles of neurons in brains with AD [3, 13, 16, 
19]. Metal ions combined with Aβ peptide, APP, 
and secretases promotes APP hydrolysis and 
Aβ production [3, 19, 32]. Iron ions produced 
ROS by Fenton reaction, however, excess ROS 
can damage neurons and aggravate AD [3, 33, 
34]. 

Metal ions have been implicated in the patho-
genesis of AD [35-37]. Altered iron homeosta-
sis may be a major factor leading to the patho-
genesis of AD, as they have been demonstrated 
to affect APP expression, Aβ generation, and 
production of oxidative compounds [3, 38]. 
Therefore, it is reasonable to speculate that 
metal transporters may play vital roles in the 
pathogenesis of AD by altering metal homeo-
stasis [39, 40]. In the brain, metabolism of iron 
ions is regulated by a variety of proteins. DMT1 
is an across-the-membrane transporter that 
transports divalent metal ions, especially iron, 
to cells [13]. Previous studies have shown 
increased DMT1 expression levels in the AD 
brains of transgenic mice and in autopsies of 
brains with AD [16, 19]. Dysfunction of DMT1 in 
mk mice can protect the dopaminergic neurons 
[15]. Thus, it was speculated that raised DMT1 
may promote and participate in occurrence and 
development of AD. Herein, this study attempt-
ed to identify DMT1 inhibitors in order to inhibit 
DMT1 expression, thereby reducing the patho-
genesis of AD. 

Ebselen, a compound containing selenium, has 
an antioxidant effect. Some studies have 
shown that ebselen can protect neurons [41]. 
Interestingly, other studies have found that 
ebselen can inhibit the activity of DMT1 and, 
thus, it is an inhibitor of DMT1 [25-27]. 
Importantly, this present study adopted iron-

induced SH-SY5Y cells and found that ebselen 
pretreatment effectively reduced excessive 
phosphorylation of tau protein by modulating 
CDK5 and GSK3β pathways [28].

In this study, APPsw cells served as an in vitro 
model to detect production of Aβ amyloid and 
APP protein expression levels, after ebselen 
pretreatment and FeSO4 treatments. Data 
showed that secretion levels of Aβ1-42 amyloid 
protein and expression levels of APP protein 
increased significantly in the FeSO4-treated 
group. Bivalent iron ions can increase produc-
tion of Aβ through various metal ion binding 
sites [2]. Simultaneously, APP also has metal 
ionic binding sites that could combine with iron 
ions and increase expression levels. After 
ebselen pretreatment, expression of both was 
significantly reduced, suggesting that ebselen 
could suppress secretion of Aβ in iron-induced 
APPsw cells. To further verify if ebselen affects 
the intracellular transport of iron ions as a 
DMT1 inhibitor, cellular iron influx was tested  
by flow cytometry using calcein-fluorescence-
quenching method and ROS generation in cells. 
The results showed that ebselen reduced intra-
cellular iron ion flux and ROS production in 
cells. Importantly, in the present study, ferrous 
ion treatment increased DMT1 levels and 
ebselen pretreatment decreased DMT1 levels, 
suggesting that ebselen pretreatment could 
reverse levels of iron-induced DMT1.

Ferrous ion promotes the Fenton reaction and 
generates ROS [16]. Ebselen serves as a DMT1 
inhibitor, thereby reducing the cellular influx of 
ferrous ion. Thus, the rate of iron ion coupled 
with Aβ and APP was decreased. Finally, secre-
tion of Aβ and expression levels of APP protein 
decreased. These phenomena illustrate that 
ebselen might inhibit expression of DMT1, 
reduce intracellular iron ion flow, and decrease 
ROS generation.  

Two APP degradation pathways are: (1) Wherein 
α hydrolyzes APP, secretes the enzyme, and 
forms soluble short chains of Aβ, sAPPα, and 
C83 under normal conditions; (2) APP is hydro-
lyzed by β-secretase enzymes to produce insol-
uble long chain Aβ (mainly Aβ1-42) forming 
extracellular fibrous polymers, sAPPβ, and C99, 
during AD. The insoluble long chain Aβ is the 
core of senile plaque and its neurotoxicity can 
cause neuronal degeneration and death. For 
further investigation of ebselen as a DMT1 
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inhibitor affecting the APP hydrolysis process, 
this study examined APP cleavage enzymes. 
Results showed that ebselen pretreatment did 
not significantly alter ADAM10 (as α-secretase 
enzyme) and its products (sAPPα and C83). 
However, after pretreatment, ebselen substan-
tially reduced levels of BACE1 and PS1 and 
secretion of sAPPβ and C99 in iron-induced 
APPsw cells. This decrease suggests that, by 
inhibiting DMT1, ebselen reduces intracellular 
iron ions and interaction with BACE1 and PS1 
and further decreases levels of BACE1 and 
PS1. Thus, levels of Aβ1-42, sAPPβ, and C99 
declined. 

In summary, this current study demonstrated 
that ebselen, an effective inhibitor of DMT1, 
suppresses the APP hydrolysis process in iron-
induced APPsw cells, thereby reducing APP and 
generation of insoluble Aβ. Therefore, ebselen 
may be an effective drug-based treatment for 
AD and administration of a DMT1 inhibitor 
might be an effective therapeutic strategy for 
AD.
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