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Abstract: Objective: The objective of present study was to investigate the initial biomechanical properties of a rein-
forced bone-anterior cruciate ligament-bone (RB-ACL-B) allograft in the reconstruction of the ACL. Method: Seventy-
five mature New Zealand rabbits were used in this study. Thirty rabbits were used to prepare the B-ACL-B allograft, 
while the remaining rabbits were randomly divided into three groups (n = 15): the first group underwent ACL recon-
struction with the B-ACL-B allograft (B-ACL-B group); the second group, with a 4-stranded semitendinosus tendon 
(ST) autograft (ST group); and the final group with a 2-stranded ST-reinforced B-ACL-B allograft (RB-ACL-B group). 
The non-operated contralateral leg served as the normal control (NC group). The biomechanical properties of the 
repair were tested in five rabbits from each group on 16, 32 and 48 weeks, postoperatively, to assess the efficacy 
of the RB-ACL-B allograft in ACL reconstruction. Result: The mean maximum force for the RB-ACL-B allograft was 
41%, 58%, and 68% of NC group (P < 0.05) at 16, 32, and 48 weeks, respectively. Compared with mean maximum 
forces of 31%, 45%, and 55% for the ST group (P < 0.05) and 23%, 34%, and 38% for the B-ACL-B group (P < 0.05). 
Although the biomechanical properties of the experimental groups failed to reach the level of the NC group, the bio-
mechanical properties of the RB-ACL-B group were better than those of the ST and B-ACL-B groups. Conclusion: The 
RB-ACL-B allograft has good biomechanical properties and offers superior outcomes over the ST and B-ACL-B grafts 
in ACL repair. The RB-ACL-B allograft may offer an effective solution for ACL reconstruction.

Keywords: Reinforced bone-anterior cruciate ligament-bone, allograft, anterior cruciate ligament reconstruction, 
biomechanics

Introduction

The incidence of knee ligament injuries, espe-
cially those of the anterior cruciate ligament 
(ACL), continue to increase with the advance-
ments in sports [1]. In high school athletes, 
knee joint injuries account for 60% of sporting-
related surgeries [2, 3] and ACL injuries ac- 
count for around half of all knee injuries [4]. 
Over 120,000 ACL injuries occur every year in 
the United States, mostly in athletes in high 
school and college, presumably because of 
their increasing participation in sports-related 
events [5]. Therefore, ACL reconstruction be- 
comes a more frequently performed operation 
in the young active patient [6]. However, it is 
well known that ACL surgery is high-risk proce-
dure with complications [7-9]: there was a 13% 

overall incidence of graft failure, which was 
higher in chronic (15%) than in acute injuries 
(9%); there was a 17% incidence of flexion loss 
greater than 10° and a 6% incidence of exten-
sion loss greater than 5°; quadriceps weak-
ness, assessed with the one-leg hop test, was 
present in 27%. Now there is an increasing 
desire on the part of surgeons and patients 
alike for not only to activities of daily living but 
also a more rapid return to sporting activities. 
Hence, improvements in ACL reconstructive 
surgery and better recovery of knee joint func-
tion have remained important research topics 
in contemporary science.

The autogenous bone-patellar tendon-bone 
(BPTB) graft is used as a gold standard graft  
for ACL reconstruction [10]. The result of ACL 
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reconstruction with a BPTB autograft is excel-
lent in midterm and long-term studies but an 
important concern is the fact that the preva-
lence of donor-site morbidity especially the 
anterior knee pain (AKP) [6, 8, 9]. Artit et al. 
[10], Arendt et al. [11] and O’Brien et al. [12] 
reviewing BPTB reconstructions, reported a 
86%, 55% and 37% incidence of AKP, respec-
tively. And in the long-term study of BPTB recon-
structions by Johnson et al. [13] 13% of the 
knees failed because of patellofemoral prob-
lems. In addition, the ultimate strength of BPTB 
graft is weaker, and this will significantly 
increase the risk of failure in ACL reconstruc-
tion. A typical 10-mm BPTB graft for ACL recon-
struction is 2,977 N [14] and an intact ACL is 
2,160 N [15]. However, it is known that the 
BPTB graft have to go through the postopera-
tive “ligamentization” process, during which ini-
tial graft strength is significantly lost and the 
ultimate strength becomes inferior to the native 
ACL [16]. And related researches report that it 
causes graft rupture in about 7% to 13% of ACL 
reconstructions [17], and laxity failure in 6% to 
9% [18].

Recently, many randomized clinical trials dem-
onstrated that ACL reconstruction with 4-strand 
hamstring tendons (4-SHT) provides patients 
with an excellent midterm and long-term clini-
cal outcome after surgery compared to BPTB 
graft [19-21]. This is mainly because that an 
evenly tensioned 4-SHT graft has been report-

allograft. Although the B-ACL-B allograft has 
the advantages of anatomical morphology and 
bone-to-bone healing, the graft cannot with-
stand the forces of normal function of the knee 
joint after “ligamentization” process [16, 
25-28]. It is for this reason that simple B-ACL-B 
allografts are not used in the clinic. Indeed, in 
their animal experiments, Jackson et al. [28] 
found that the B-ACL-B allograft had greater 
laxity and resulted in 70% lower tensile strength 
in the reconstructed knees as compared with 
the controls at 1 year after implantation. 
Therefore, to improve the utility of the B-ACL-B 
allograft for ACL reconstruction, we presented 
a new technique that reinforces the B-ACL-B 
allograft with a 2-stranded semitendinosus ten-
don (ST) autograft (RB-ACL-B), combining the 
theoretical anatomical advantage of the 
B-ACL-B allograft with the strength of the 
2-stranded ST autograft. The aim of the pres-
ent study was to compare the biomechanical 
properties of the RB-ACL-B allograft with that of 
the 4-stranded ST and B-ACL-B grafts to ascer-
tain its potential clinical utility in ACL recon-
struction. The native ACL of the contralateral 
limb was used as the normal control.

Materials and method

Animals

Seventy-five skeletally mature, male and 
female, New Zealand white rabbits were 
obtained from a licensed laboratory animal 

Figure 1. A: The B-ACL-B allograft, B: The 2-stranded ST autograft, C: The 
4-stranded ST autograft.

ed to be about 4,090 N [22], 
far more stronger than an 
intact ACL [15]. However, this 
technique has its limitations: 
from a biologic standpoint, it is 
well accepted that healing of 
the tendon to bone is more dif-
ficult to achieve and requires 
more time (usually eight to 
twelve weeks) than does heal-
ing of bone to bone (usually 
four to six weeks), which is 
more likely to cause the graft 
rupture and laxity in short-term 
clinical outcome [23, 24].

And most importantly, neither 
the 4-SHT graft nor the BPTB 
graft can replicate the compl- 
ex anatomical morphology of 
the native ACL or the B-ACL-B 
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dealer. Our study was approved by the institu- 
tional review board. The body weight varied 
from 2.70 to 3.50 kg (mean ± standard devia-
tion, 3.14 ± 0.37 kg). Thirty rabbits were used 
for B-ACL-B allograft preparation, and the 
remaining 45 rabbits were divided into three 
groups for reconstructive surgery (B-ACL-B, 
RB-ACL-B and ST; n = 15 rabbits). At 16, 32, and 
48 weeks after surgery, five rabbits from each 
group were sacrificed for biomechanical test- 
ing.

Graft preparation

Allograft preparation: The body weights of the 
donor rabbits were recorded before allograft 
preparation. Under anesthesia, we stripped the 
hind limbs of all musculature, joint capsule, col-
lateral ligaments, menisci, and posterior cruci-
ate ligament to retain the ACL. We then used an 
osteotome to cut bone blocks that retained the 
tibial and femoral insertions of the ACL as well 
as the anterior-medial and posterior-lateral 
bundles. The bone blocks were then trimmed 
into rectangular blocks, measuring approxi-
mately 5 mm (distal to proximal) × 4 mm (medi-
al to lateral) × 2 mm (anterior to posterior) 
(Figure 1A). Both ends of the bone blocks were 
marked to ensure correctly orientation of the 
B-ACL-B allograft in the bone tunnels during 
replacement.

During harvesting of the bone blocks, however, 
we frequently noted damage to the lateral part 
of posterior-lateral bunch of the ACL that incor-
porated the femoral insertion. For this reason, 

Autograft preparation: Autologous tissues were 
collected at the time of implantation to prepare 
the 2-stranded and 4-stranded ST autografts. 
The thickness and width of the rabbit ACL is 
about 2 mm and 4 mm, respectively. Therefore, 
we prepared the autographs to a similar thick-
ness, width, and length as the original ACL and 
the prepared the B-ACL-B allograft. Two bun-
dles of autografts were removed from the ST of 
each rabbit, and revised to samples of 1 mm 
thickness and 4 mm width with surgical scis-
sors and a knife blade, respectively. The length 
was matched to the length of the B-ACL-B 
allograft being used in that rabbit. The two 
autographs were then stitched together with 
non-absorbable sutures (Ethicon; Figure 1B).

Preparations for the 2-stranded and 4-strand-
ed ST autografts were almost identical, except 
that the length of the 4-stranded ST was initial-
ly twice as long as the 2-stranded ST, before it 
was superimposed, folded, and stitched togeth-
er with non-absorbable sutures to create a 
4-stranded ST of the same length as the 
2-stranded ST (Figure 1C).

Surgical technique

RB-ACL-B group: The rabbit’s ACL is too small to 
be measured accurately with calipers, so we 
matched the weights of donors and recipients 
for allograft selection. The body weights of the 
recipients were recorded before ACL recon-
struction. The rabbits were anesthetized and 
maintained with pentobarbital sodium and pre-
medicated with an intramuscular dose of xylo-
caine. Using aseptic technique, an incision was 

Figure 2. A: The operation schematic diagram of RB-ACL-B group, B: The 
operation schematic diagram of ST group, C: The operation schematic dia-
gram of B-ACL-B group.

we positioned the 2-stranded 
ST autograft at this posterior-
lateral defect of the ACL 
allograft to replace this miss-
ing portion of the tissue. We 
hypothesized that this could 
reduce the risk of rupture to 
the B-ACL-B allograft and 
improve the overall strength of 
the RB-ACL-B allograft. The 
allograft was washed with pul-
sating 0.9% sterile NaCl. 
Allografts were blotted dry and 
placed in screw-capped plastic 
tubes and labeled as left or 
right. Allografts were stored at 
-70°C for at least 2 weeks 
before implantation.
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made in the center of the knee joint, the patella 
was luxated to the medial side, and the infrapa-
tellar fat pad was retracted to expose the ACL. 
The femoral and tibial insertions of the ACL 
were carefully transected, removing all possible 
ligamentous tissue. Using a 2 mm drill bit, the 
femoral and tibial tunnels were drilled to exit at 
the center of the anatomic insertion points of 
the ACL. A 5 mm drill bit was then used (from 
the inside to the outside of the joint) to expand 
the tunnels to a sufficient diameter and depth 
of 5 mm to accommodate the RB-ACL-B 
allograft. The joint was then lavaged with sterile 
0.9% NaCl for 30 sec.

The B-ACL-B allograft was prepared for inser-
tion by placing two high-strength, non-absorb-
able sutures of Ethicon through each of the 
bone plugs of the allograft. The sutures were 
then passed into the femoral and tibial tunnels, 
respectively, and the B-ACL-B allograft was 
pulled into place. Care was taken to replicate 
the normal spatial orientation of the ACL by 
visualizing the fiber orientation. The autograft 
was similarly prepared and inserted into place. 
The 2-stranded ST autografts were positioned 
at the posterior-lateral portion of the B-ACL-B 
allograft, as described above. Sutures of the 
allograft and autograft were tensioned usually 
with the knee in about 60° flexion and tied over 
buttons at the extraarticular exits of the tun-
nels (Figure 2A). The RB-ACL-B allograft filled 
the bone tunnels and produced the appropriate 
amount of extrusion. Sufficient tension was 
applied to the RB-ACL-B allograft to eliminate 
any anterior displacement of the tibia. The 
synovium, joint capsule, and skin were reap-
proximated with surgical sutures.

ST group: All steps for the ST group were the 
same as that described for the RB-ACL-B group, 
except that a 4-stranded ST autograft was used 
in place of the RB-ACL-B graft (Figure 2B).

B-ACL-B group: All steps for the B-ACL-B group 
were the same as that described for the 
RB-ACL-B group, except that a 2 mm drill bit 
rather than a 5 mm drill bit was used to expand 
the tunnels to a depth of 5 mm to accommo-
date the B-ACL-B allograft (Figure 2C).

Biomechanical testing: For a confidence level 
of 95% (α = 0.05) and to achieve a power (1-β) 
of 80%, we required a sample size of 15 rabbits 
per group. At weeks 16, 32, and 48 post-opera- 
tively, 5 rabbits from each group were eutha-
nized, and the knee joint, including the distal 
femoral and proximal tibial regions, was extract-
ed using a wire saw. The surrounding soft tis-
sue was removed and the graft retained. The 
ACL from the contralateral limb (NC group) was 
harvested at the same time. Specimens were 
double-bagged and stored at -70°C for at least 
2 weeks.

For biomechanical testing, we evaluated differ-
ences in maximum force (N), maximum energy 
(N.M), stiffness (N/mm) and maximum elonga-
tion (mm). The tibia and femur of each speci-
men were mounted in grips, and the graft fiber 
orientation visually aligned vertically under the 
loading axis. Tensile failure tests were conduct-
ed in a materials-testing machine at room tem-
perature by elongating the specimen at a strain 
rate of 1000 mm per min until failure. A linear 
variable displacement transducer on the actua-
tor monitored the actuator travel, and a strain 
gauge metal clip attached directly to the tibia 
and femur provided the relative displacement 
of the bone ends. A laboratory mini-computer 
was used to initiate the test and store the force, 
actuator motion, and clip gauge data. Structural 
parameters (ligament stiffness in the linear 
loading region, maximum load prior to failure, 
and energy and elongation to maximum load) 
were calculated from load-displacement cur- 
ves.

Table 1. Biomechanical comparison of the four groups at the 16th week after postoperation
Group Maximum Force (N) Maximum Energy (N.M) Stiffness (N/mm) Maximum Elongation (mm)
RB-ACL-B 120.82 ± 18.61* 150.15 ± 19.61* 44.89 ± 5.34* 3.08 ± 0.12
ST 94.31 ± 12.51* 119.90 ± 18.48* 34.80 ± 3.69* 3.03 ± 0.17
B-ACL-B 66.05 ± 15.04* 89.74 ± 15.52* 24.75 ± 5.17* 2.66 ± 0.06*
NC 292.93 ± 12.58 321.41 ± 20.32 100.68 ± 1.57 3.13 ± 0.12
*Significant difference compared with the control group (NC group) (P < 0.05).
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Figure 3. Biomechanical comparison of the four groups at the 16th week after postoperation.
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Statistical analysis

Statistical analyses were performed using 
SPSS version 21.0 software (SPSS Inc., 
Chicago, IL, USA). A Kolmogorov-Smirnov good-
ness-of-fit test was used to test the normality of 
the data. Levene’s test was used to assess for 
homogeneity of variance. Evaluations of the 
maximum force, maximum energy, stiffness 
and maximum elongation were made with two-
way analysis of variance (ANOVA), with surgical 
treatment and time as factors. Dunnett t-test 
was used to compare values between three dif-
ferent surgical groups and the control group. 
Data are shown as the mean ± standard devia-
tion (SD). Statistical significance was set at P < 
0.05.

Results

We tested the biomechanical properties of the 
grafts at three time points after surgery (week 
16, 32 and 48) and compared these values 
with the native ACL of the contralateral limb as 
a control. The data are presented as a percent-
age of that of the native control (NC, 100%).

Sixteen weeks after surgery

The biomechanical properties of the four 
groups at week 16 after surgery are shown in 
Table 1 and Figure 3. We found the maximum 
force withstood by the grafts was 41%, 31%, 
and 23% of the NC group for the RB-ACL-B, ST, 
and B-ACL-B groups, respectively. The maxi- 
mum energy was 47%, 36%, and 28%, and the 
stiffness was 45%, 33%, and 25%, respective-
ly, of the NC group. Overall, we found significant 
differences between the experimental groups 
and the NC group (P < 0.05) and also significant 
differences between the RB-ACL-B group and 
the two other experimental groups (P < 0.05). 
Maximum elongation was 98%, 97%, and 85% 
of the NC group, respectively, with a significant 
difference detected only between the NC group 
and B-ACL-B group (P < 0.05).

Thirty-two weeks after surgery

At week 32 (Table 2; Figure 4), the maximum 
force for the RB-ACL-B, ST, and B-ACL-B groups 
increased from that at week 16 to 58%, 45%, 
and 34% of the NC group, respectively. Similarly, 
we measured increases in the maximum ener-
gy (62%, 49% and 38% of the NC group, respec-
tively) and stiffness (59%, 46%, and 35% of the 
NC group, respectively), with significant differ-
ences measured between the NC and the 
experimental groups, as well as between the 
RB-ACL-B and the other two experimental 
groups. The maximum elongation was 97%, 
98%, and 90% of the NC group, with a signifi-
cant difference again measured only between 
the NC group and B-ACL-B group (P < 0.05).

Forty-eight weeks after surgery

By the 48th week after surgery, the maximum 
force was 68%, 55%, and 38%; the maximum 
energy was 70%, 59%, and 42%; and the stiff-
ness was 68%, 55% and 42% of the NC group 
for RB-ACL-B, ST, and B-ACL-B groups, respec-
tively (Table 3; Figure 5; P < 0.05). Significant 
differences were noted for the NC group as 
compared with the experimental groups and for 
the RB-ACL-B group over the ST and B-ACL-B 
groups (P < 0.05). Maximum elongation was 
101%, 96%, and 86% of the NC group, with a 
significant difference detected between the NC 
group and B-ACL-B group (P < 0.05).

Discussion

The structure of the ACL is complicated, divisi-
ble by its fiber lines into anterior-medial and 
posterior-lateral groups [29, 30]. Morey [31] 
and Kondo [32] in their respective works have 
both shown that a double-bundle anatomic ACL 
reconstruction better resembles the fiber direc-
tion and complex structure of a normal ACL as 
compared with a single-bundle graft, and cite 
significant improvements in the postoperative 
functional outcomes, kinematic restoration, 

Table 2. Biomechanical comparison of the four groups at the 32nd week after postoperation
Group Maximum Force (N) Maximum Energy (N.M) Stiffness (N/mm) Maximum Elongation (mm)
RB-ACL-B 180.88 ± 18.44* 204.89 ± 20.00* 62.31 ± 3.98* 2.97 ± 0.16
ST 141.08 ± 15.29* 163.17 ± 16.55* 48.55 ± 3.59* 3.01 ± 0.13
B-ACL-B 104.39 ± 19.68* 124.62 ± 20.03* 36.84 ± 5.24* 2.77 ± 0.15*
NC 310.84 ± 20.06 331.16 ± 22.49 105.01 ± 4.01 3.07 ± 0.16
*Significant difference compared with the control group (NC group) (P < 0.05).
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Figure 4. Biomechanical comparison of the four groups at the 32nd week after postoperation.

Figure 5. Biomechanical comparison of the four groups at the 48th week after postoperation.
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and clinical stability of the graft. In our study, 
the 4-stranded ST autograft woven together 
would be unable to imitate the normal anatomi-
cal morphology of the ACL, and this would lead 
to an overall reduction in the efficacy of the ACL 
reconstruction. However, the RB-ACL-B allograft 
not only maintains the normal anatomical mor-
phology of the ACL, but also provides a physio-
logical scaffold for collagen regeneration, more 
closely restoring the histological and mechani-
cal properties of the joint [25, 26, 33].

The RB-ACL-B allograft incorporates both bone-
to-bone and tendon-to-bone healing, but the 
priority is given to the bone-to-bone healing, as 
it is sturdier postoperatively and heals quicker 
than a tendon-to-bone repair [23, 24]. This 
enhances the overall stiffness of the implant 
and enables earlier rehabilitation to restore 
knee joint function without postoperative com-
plications [34, 35]. Furthermore, histological 
assessment of the B-ACL-B allografts shows 
the presence of a regularly oriented, dense con-
nective tissue and complete revascularization 
of the ligament and bone plugs, resembling a 
normal ligament [25, 28].

The RB-ACL-B allograft and the 4-stranded ST 
autograft would theoretically have a similar 
strength intensities; however, our experimental 
results showed that the biomechanical proper-
ties of the RB-ACL-B allograft were better than 
those of the ST graft. We show that at weeks 
16, 32, and 48, the maximum force for the ST 
group was 74%, 78%, and 81% of that of the 
RB-ACL-B group (P < 0.05). Similarly, the energy 
to maximum force and the stiffness values for 
the ST group ranged from around 70% to 80% 
of those values for the RB-ACL-B group values 
over the three time points (energy to maximum 
force 77%, 80%, and 84%; stiffness 73%, 78%, 
and 82%; P < 0.05). We attribute these advan-
tages of the RB-ACL-B allograft to its complete 
anatomical morphology of a normal ACL and 
the main healing way of bone-to-bone.

Noyes and others used the medial one-third 
and middle one-third of the BPTB for ACL recon-
structive surgery, and found that the maximal 
tensile load of the middle one-third was higher 
than that of the medial one-third [36]. Others 
have shown that the larger cross-sectional area 
of transplanted ligament will provide the great-
er tension of the reconstructed ligament and 
the better stability of the knee joint postopera-
tively [37-39]. The overall cross-sectional area 
of RB-ACL-B allograft was increased with the 
2-stranded ST and it resulted in a greater ten-
sion and maximum tensile load: maximum 
force of the B-ACL-B group was 55%, 58%, and 
55% of that of the RB-ACL-B group, and the 
stiffness was 55%, 59% and 62% at 16, 32 and 
48 weeks (both, P < 0.05). Therefore, we sur-
mise that the RB-ACL-B allograft offers impor-
tant anatomical morphology of a native ACL, 
bone-to-bone healing and satisfactory initial 
strength of graft to improve its biomechanics 
properties for ACL reconstruction over the use 
of the other graft types.

The knee joint in the rabbit is small; therefore, 
we stabilized the graft using high-strength  
non-absorbable sutures (Ethicon) tied over but-
tons rather than with an interference screw. 
However, others have shown that the gold  
standard for fixation is via extrusion screw  
theory, which offers strong hole extrusion [40-
42]. Stable fixation of a graft will significantly 
improve its biomechanical properties and 
reduce the risk of ACL reconstruction failure 
[43, 44]. And compared with unprotected 
grafts, the grafts protected with a ligament-
augmentation device will show significant 
improvements in strength [27, 45]. Therefore, 
we could reasonably speculate that, if the knee 
joint of the rabbit was large enough to use 
extrusion screws for fixation, the biomechani-
cal properties would be better than those fixed 
with non-absorbable sutures. This likely 
explains why the biomechanical properties of 

Table 3. Biomechanical comparison of the four groups at the 48th week after postoperation
Group Maximum Force (N) Maximum Energy (N.M) Stiffness (N/mm) Maximum Elongation (mm)
RB-ACL-B 217.93 ± 15.81* 236.34 ± 16.63* 71.23 ± 4.64* 3.20 ± 0.24
ST 177.35 ± 14.23* 198.19 ± 14.88* 58.12 ± 1.62* 3.04 ± 0.27
B-ACL-B 120.76 ± 21.84* 141.44 ± 21.87* 44.05 ± 6.81* 2.73 ± 0.13*
NC 320.16 ± 17.56 335.99 ± 24.43 105.14 ± 2.24 3.17 ± 0.16
*Significant difference compared with the control group (NC group) (P < 0.05).
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the RB-ACL-B allograft were significantly lower 
than those of the NC group in our study.

Another limitation is that the rabbit ACL is too 
small to be measured accurately with calipers. 
For this reason, we sought to match donor and 
recipient rabbits based on similar weights. 
However, in some cases, this led to length mis-
match between the donor and recipient. A graft 
that is longer than the recipient’s ACL length 
can cause instability and accentuate stretching 
of the ligament, whereas a shorter allograft 
would be placed under considerable stress and 
would either stretch to accommodate the 
length requirement or rupture [25]. In animal 
studies, we can prepare a large selection of 
donor grafts to ensure a proper fit; however, 
this is not a solution for clinical cases. In the 
clinic, because the recipient’s ACL cannot be 
measured directly, it is important to use ana-
tomical landmarks or the measure of the length 
of the contralateral ligament using magnetic 
resonance imaging to ensure proper size 
matching.

In conclusion, good biomechanical properties 
are achievable using RB-ACL-B allografts pre-
pared using B-ACL-B allografts and ST auto-
grafts in rabbit ACL reconstruction. These com-
bined grafts offer superior strength over 
B-ACL-B or ST grafts alone. In the clinic, a rein-
forced B-ACL-B allograft may be an ideal substi-
tute for ACL reconstruction.
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