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Abstract: Objective: The aim of this study was to investigate and discuss the functions and mechanisms of basic 
fibroblast growth factor (bFGF) in native arteriovenous fistula stenosis (AVFS) of hemodialysis patients. Methods: A 
total of 24 patients with stage 5 chronic kidney disease, needing vascular access reconstruction due to AVFS, were 
enrolled as AVFS group. Vessel segments with AVFS were collected during the reconstruction. Another eight patients 
receiving vascular resection because of peripheral vascular diseases were selected as the control group. General 
information of the patients, such as minimum inner diameter of blood vessel, age, gender, albumin (ALB), hemo-
globin (Hb), and cholesterol (CHO) were collected. Fluorescent quantitative polymerase chain reaction was applied 
to detect messenger ribonucleic acid (mRNA) expression of α-smooth muscle actin (α-SMA) and bFGF in the blood 
vessels of the two groups of patients. Protein expression of transforming growth factor-β1 (TGF-β1) and Smad3 in 
the blood vessels of both groups of patients were measured via Western blotting. Results: The minimum inner diam-
eter of blood vessel of patients in the AVFS group was remarkably smaller than that in the control group (t=46.260, 
P<0.001), but differences in other general information (age (t=1.093, P=0.283), male (χ2=0.169, P=0.681), ALB 
(t=0.578, P=0.568), Hb (t=1.678, P=0.104) and CHO (t=0.509, P=0.615)) were not statistically significant. In the 
AVFS group, mRNA expression of α-SMA (t=7.943, P<0.001) and bFGF (t=8.384, P<0.001) in patient blood vessels 
were elevated markedly compared with those in the control group. The same was true for protein expression of 
TGF-β1 (t=3.249, P=0.003) and Smad3 (t=3.855, P=0.001). Conclusion: Massive proliferation of smooth muscle 
cells exists in vessel segments of AVFS hemodialysis patients. This may be associated with an increase in bFGF 
expression and activation of TGF-β1/Smad3 signaling pathways.
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Introduction

Native arteriovenous fistulas and other vascu-
lar accesses are the “lifelines” of hemodialysis. 
However, as the time after establishment of 
native arteriovenous fistulas is extended, inti-
mal hyperplasia may occur in the anastomotic 
vessels, triggering vascular stenosis and ulti-
mately leading to failure of hemodialysis [1-4]. 
Large quantities of vascular smooth muscle 
cells with positive alpha-smooth muscle actin 
(α-SMA) are distributed in the portion of vascu-
lar intimal hyperplasia. This is the major patho-
logical manifestation of vascular intimal hyper-
plasia and stenosis [5, 6]. One study revealed 
that basic fibroblast growth factor (bFGF) could 
promote the proliferation and migration of vas-
cular smooth muscle cells, thereby participat-

ing in the occurrence and development of vas-
cular remodeling and other diseases [7]. For 
instance, Li et al. discovered that injured vascu-
lar endothelial cells were capable of secreting  
a large amount of bFGF which bound to recep-
tors on the vascular smooth muscle cells, caus-
ing cell proliferation [8]. However, whether bFGF 
exerts biological effects on arteriovenous fistu-
la stenosis (AVFS) of hemodialysis patients still 
remains unknown. In addition, bFGF usually ex- 
erts its biological effects via the transforming 
growth factor-beta 1 (TGF-β1)/Smad3 signaling 
pathway. For example, Chen et al. manifested 
that bFGF activated TGF-β1/Smad3 signaling 
pathways, thereby accelerating proliferation 
and differentiation of fibroblast cells and secre-
tion of collagens [9].

http://www.ijcem.com
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As a result, the α-SMA expressions in the blood 
vessels with AVFS were detected in this paper, 
and then the changes in bFGF and TGF-β1/
Smad3 signaling pathway in the AVFS of hemo-
dialysis patients were investigated.

Materials and methods

Specimen acquisition

A total of 24 patients with stage 5 chronic  
kidney disease (CKD), needing vascular access 
reconstruction due to AVFS, were enrolled as 
the AVFS group. Vessel segments with AVFS 
were collected during the reconstruction. Ano- 
ther eight patients receiving vascular resection 
because of peripheral vascular diseases were 
selected as the control group.

Inclusion criteria: Patients with stage 5 CKD 
(glomerular filtration rate <15 mL/min), patients 
undergoing arteriovenous fistula operations 
(cephalic vein-radial artery end-to-side anasto-
mosis), and patients with AVFS (decreased vas-
cular murmur detected through auscultation, 
flow rate of hemodialysis <150 mL/min, and 
minimum inner diameter around the fistula 
≤1.80 mm measured via digital subtraction 
angiography).

Exclusion criteria: Patients with peripheral vas-
cular thrombus or stenosis induced by such 
reasons as arteriovenous malformation and 
atrial fibrillation and patients complicated with 
tumors, systemic lupus erythematosus, infec-
tions, or other serious systemic diseases.

General information of the patients, including 
minimum inner diameter of blood vessel, age, 
gender, albumin (ALB), hemoglobin (Hb), and 
cholesterol (CHO) were collected. Signed in- 
formed consent was obtained from all enrolled 
patients. This research was approved by the 
Ethics Committee of Ji’nan Central Hospital 
Affiliated to Shandong University.

the blood in obtained vascular tissues was 
washed away using ice-cold phosphate-buff-
ered saline, the vascular tissues were added 
into a tissue grinder placed on the ice. They 
were then ground after addition of phosphate-
buffered saline containing 1% protease inhibi-
tor (Sigma, USA). Next, the protein in the slurry 
was quantified by bicinchoninic acid (Beyotime, 
China). The samples with equivalent content of 
total proteins were fetched for polyacrylamide 
gel electrophoresis. When the bromophenol 
blue almost reached the bottom of the gel, 
electrophoresis was stopped. Polyacrylamide 
gel was transferred to a membrane at a con-
stant voltage of 100 V for 2 hours and the pro-
teins were transferred to a polyvinylidene fluo-
ride membrane. After sealing with 3% bovine 
serum albumin (Solarbio, China) at room tem-
perature for 2 hours, the proteins were incu-
bated with primary antibodies (anti-TGF-β1 anti-
body (1:1,000, Abcam, USA), anti-Smad3 an- 
tibody (1:500, Abcam, USA), and anti-GAPDH 
antibody (1:1,000, Abcam, USA)) at 4°C over-
night. Afterward, the membrane washed 3 ti- 
mes. Horseradish peroxidase-labeled goat-anti- 
rabbit secondary antibody (1:2,500, Boster, 
USA) was added and incubated at room tem-
perature for 1 hours. The membrane was then 
washed 3 more times. This was followed by 
color development with an enhanced chemilu-
minescence developer (Beyotime, China) and 
exposure and photographing under a gel 
imager.

Detection of messenger ribonucleic acid 
(mRNA) expression of α-SMA and bFGF in 
the blood vessels via fluorescent quantitative 
polymerase chain reaction (PCR)

The same method was applied to examine vas-
cular tissues of the two groups of patients. 
Detailed procedures are set forth below. The 
mRNAs in vascular tissues were extracted by 
TRIzol Reagent (Invitrogen). Next, mRNAs were 
reverse-transcribed into complementary deo- 
xyribonucleic acids using reverse transcription 

Table 1. Specific sequences of primers
Gene Forward primer Reverse primer
α-SMA 5’TGGCTACTCCTTCGTGACCA3’ 5’GCCGACTCCATACCGATGAA3’
bFGF 5’AGCGGCTGTACTGCAAAAAC3’ 5’AGCCAGGTAACGGTTAGCAC3’
GAPDH 5’CCTCTGACTTCAACAGCGACA3’ 5’TGGTCCAGGGGTCTTACTCC3’
Note: α-SMA, α-smooth muscle actin; bFGF, basic fibroblast growth factor.

Detection of TGF-β1 and 
Smad3 protein expression in 
the blood vessels via Western 
blotting

Vascular tissue testing meth-
ods for the two groups of pa- 
tients were the same. The spe-
cific steps were as follows: After 
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kit (PrimeScript™ RT reagent Kit, TaKaRa). 
Finally, SYBR Mixture (With ROX, Biomiga, USA) 
was applied for PCR. Reaction conditions: pre-
denaturation at 95°C for 10 minutes, denatur-

ation at 95°C for 15 seconds, annealing and 
extension at 60°C for 1 minute, for a total of  
40 cycles. Primers were synthesized by San- 
gon Biotech (Shanghai) Co., Ltd. Specific se- 
quences are shown in Table 1.

Statistical analysis

SPSS 13.0 software was utilized for statistical 
analysis. Measurement data are expressed as 
mean ± standard deviation (

_
x  ± sd) and t-tests 

were performed for comparisons of data be- 
tween the two groups. Image-Pro Plus 6.0 soft-
ware was applied to determine the gray scale 
value on the Western blot picture. The gray 
scale value in the control group was set as 1 for 
comparisons. P<0.05 suggests that differenc-
es are statistically significant.

Results

Comparison of general information between 
the two groups of patients

Minimum inner diameter of blood vessels of 
patients in the AVFS group was remarkably 
smaller than the control group (t=46.260, 
P<0.001). However, differences in age (t= 
1.093, P=0.283), male (χ2=0.169, P=0.681), 
ALB (t=0.578, P=0.568), Hb (t=1.678, P= 
0.104), and CHO (t=0.509, P=0.615) were not 
statistically significant. All data were compara-
ble as shown in Table 2.

Comparison of proliferation of vascular smooth 
muscle cells between the two groups of pa-
tients

In the AVFS group, α-SMA mRNA expression 
was elevated markedly compared to the control 
group (t=7.943, P<0.001), indicating that mas-
sive proliferation of smooth muscle cells exist-
ed in the vessel segments with AVFS as shown 
in Figure 1.

Table 2. Comparison of general information between the two groups of patients
General information Age (year) Male (case) MIDBV ALB (mmol/L) Hb (g/L) CHO (mmol/L)
Control group (n=8) 51.98±2.43 5 3.38±0.16 37.53±4.40 119.06±8.75 4.51±2.33
AVFS group (n=24) 53.21±2.85 13 1.41±0.08 36.41±4.85 113.49±7.93 5.07±2.80
t/χ2 1.093 0.169 46.260 0.578 1.678 0.509
P 0.283 0.681 <0.001 0.568 0.104 0.615
Note: MIDBV, the minimum inner diameter of blood vessel; ALB, albumin; Hb, hemoglobin; CHO, cholesterol; AVFS, arteriove-
nous fistula stenosis.

Figure 1. Comparison of α-SMA mRNA expression in 
blood vessels between the two groups of patients. 
AVFS group vs. control group, **P<0.01. α-SMA, 
α-smooth muscle actin; AVFS, arteriovenous fistula 
stenosis.

Figure 2. Comparison of bFGF mRNA expression in 
blood vessels between the two groups of patients. 
AVFS group vs. control group, **P<0.01. bFGF, basic 
fibroblast growth factor; AVFS, arteriovenous fistula 
stenosis.
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Comparison of bFGF expression in blood ves-
sels between the two groups of patients

bFGF mRNA expression in the blood vessels of 
patients in the AVFS group was notably higher 
than the control group (t=8.384, P<0.001), 
suggesting that bFGF may exert important pro-
moting effects on proliferation of smooth mus-
cle cells in vessel segments with AVFS as 
shown in Figure 2.

Comparison of TGF-β1 and Smad3 expression 
in blood vessels between the two groups of 
patients

Compared to the control group, patients in the 
AVFS group had significantly increased expres-
sion of TGF-β1 protein (t=3.249, P=0.003) and 
Smad3 protein (t=3.855, P=0.001) in the blood 
vessels (Figure 3), manifesting that activation 
of TGF-β1-Smad3 signaling pathways may be 
involved in the mechanism of bFGF promoting 
the proliferation of smooth muscle cells.

Discussion

Vascular intimal hyperplasia-induced stenosis 
is the most common reason for failure of vascu-
lar access, mainly pathologically manifested as 
distribution of massive vascular smooth mus-
cle cells with positive α-SMA and scattered 
inflammatory cells at the portion of vascular 
intimal hyperplasia [5, 6]. For this study, fluo-
rescent quantitative PCR was conducted to 

ticipate in tissue hyperplasia and fibrosis by 
means of regulating proliferation and migration 
of vascular smooth muscle cells [9]. A study by 
Zhou et al. on cigarette smoke-induced pulmo-
nary vascular remodeling in rats indicated th- 
at mRNA and protein expression of bFGF in- 
creased markedly in pulmonary artery smooth 
muscle cells. Results of correlation analysis 
manifested that the thickness of pulmonary 
vessel wall had a close relation with bFGF high 
expression [10]. Wu et al. coupled bFGF of a 
series of concentrations on heparinized slides, 
inducing the migration of vascular smooth mus-
cle cells. They discovered that cell migration 
velocity increased along with elevated bFGF 
concentration, reaching the peak at a density 
of 83 ng/cm2. Such a bFGF-induced migration 
effect has been associated with fibroblast 
growth factor receptor expression on vascular 
smooth muscle cell surfaces and its down-
stream migrating protein expression [11]. 
Although it has been proven through large 
quantities of disease models that bFGF pro-
motes proliferation and migration of vascular 
smooth muscle cells, whether bFGF is implicat-
ed in the proliferation and migration of smooth 
muscle cells in vessels with AVFS has not been 
clarified yet. Therefore, bFGF expression was 
determined by fluorescent quantitative PCR for 
this present study. Results revealed that bFGF 
mRNA expression in the blood vessels of 
patients in the AVFS group was notably higher 
than the control group, indicating that bFGF 

Figure 3. Comparison of TGF-β1 and Smad3 protein expression in blood 
vessels between the two groups of patients. A: Detection of TGF-β1 protein 
expression in blood vessels via Western blot; B: Detection of Smad3 protein 
in blood vessels via Western blot; C: Statistical analysis of TGF-β1 protein ex-
pression in blood vessels; D: Statistical analysis of Smad3 protein in blood 
vessels. AVFS group vs. control group, **P<0.01. AVFS, arteriovenous fistula 
stenosis; TGF-β1, transforming growth factor-β1.

measure α-SMA mRNA expres-
sion in blood vessels. Results 
indicated that such expression 
in patients of the AVFS gr- 
oup was increased significant-
ly compared to the control 
group, suggesting that smooth 
muscle cells in vessel seg-
ments with AVFS proliferated 
greatly.

Since bFGF possesses such 
biological functions as promot-
ing angiogenesis, repressing 
cell apoptosis, and inducing 
cell migration, it is extensively 
involved in many physiological 
and pathological processes, 
including organ development, 
tissue regeneration, and injury 
repair. However, it has been 
discovered that bFGF can par-
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may provide crucial promoting effects on prolif-
eration of smooth muscle cells in vessel seg-
ments with AVFS.

TGF-β1 is widely involved in multiple biological 
functions, including cell growth, differentiation, 
migration, extracellular matrix secretion, and 
immunoregulation. With artery injuries, it is 
secreted in a large amount to inhibit expres-
sion of matrix metalloproteinases and enhance 
expression of protease inhibitors, promoting 
the secretion of collagens and ultimately result-
ing in vascular intimal hyperplasia [12-14]. TGF-
β1 genes or proteins intraperitoneally injected 
to blood vessels can stimulate the proliferation 
of smooth muscle cells and promote vascular 
intimal hyperplasia. However, application of 
TGF-β1 antibodies, soluble receptor molecules, 
and oligonucleotides to block TGF-β1 signaling 
pathways can reduce vascular intimal hyper-
plasia and postpone vascular remodeling [15]. 
Studies have shown that TGF-β1 is able to  
activate receptors on the surface of vascular 
smooth muscle cells, trigger phosphorylation 
of Smad3, and form complexes with Smad2 
and Smad4, which are transferred into the 
nucleus to regulate expression of relevant 
genes [16, 17]. Consequently, Smad3 exerts 
key functions in TGF-β1-mediated vascular inti-
mal hyperplasia. For example, Edlin et al. ana-
lyzed stenotic vessel segments and discover- 
ed that expression of Smad3 and positive 
α-SMA were increased notably in vascular 
smooth muscle cells. After transfection of 
Smad3 genes and adenoviruses that interfere, 
RNA was performed in human aortic smooth 
muscle cells, respectively. It was revealed that 
Smad3 overexpression could accelerate cell 
proliferation, while suppressed Smad3 expres-
sion could prevent cell proliferation [18]. In this 
study, Western blot was conducted to detect 
expression of TGF-β1 and Smad3 in the blood 
vessels. Results demonstrated that protein 
expression of TGF-β1 and Smad3 in patient 
blood vessels were elevated obviously in the 
AVFS group, illustrating that activation of TGF-
β1/Smad3 signaling pathways is possibly im- 
plicated in bFGF-promoted proliferation mech-
anisms of vascular smooth muscle cells.

It has been reported that bFGF generally plays 
biological roles via TGF-β1/Smad3 signaling 
pathways. Chen et al. elaborated that bFGF 
was capable of activating TGF-β1/Smad3 sig-
naling pathways, facilitating the fibroblast cells 
to secret type I collagen. Treatment with bFGF 

antisense oligodeoxynucleotides could lower 
proliferation, differentiation, and secretion fun- 
ctions of fibroblast cells. This was correlated 
with repression of TGF-β1/Smad3 signaling 
pathway activation [9]. Yum et al. illustrated 
that bFGF could stimulate autocrine and para-
crine of TGF-β1 from macrophages, thereby 
participating in airway remodeling [19]. In addi-
tion, bFGF has been found to be involved in  
proliferative effects of TGF-β1. Strutz et al.  
utilized TGF-β1 to stimulate fibroblast cells. 
Afterward, bFGF mRNA and protein expression 
were increased significantly. However, the anti-
bFGF antibody or bFGF receptor tyrosine kinase 
inhibitor could relieve proliferative effects of 
the fibroblast cells mediated by TGF-β1 [20]. 
This suggests that bFGF interacts with TGF-β1/
Smad3 signaling pathways, jointly participating 
in AVFS progression. Nevertheless, the mecha-
nisms of interaction between bFGF and TGF-
β1/Smad3 signaling pathways could not be 
elaborated by the results of this present study. 
Further studies with specific stimulation and 
blocking on in vitro cell models are necessary.

However, there are several limitations to this 
present study. Since researched vascular tis-
sues were only taken from AVFS patients, spe-
cific blocking of bFGF, TGF-β1, Smad3, and 
other molecules were not performed. Variations 
in corresponding biological effects were not 
observed. The relationship between bFGF and 
TGF-β1/Smad3 signaling pathways was not  
illuminated. bFGF’s involvement in the migra-
tion, differentiation, apoptosis, and other bio-
logical mechanisms of vascular smooth musc- 
le cells was not investigated. As a result, in the 
next step, smooth muscle cells will be isolated 
from the vessel wall with AVFS for culturing. 
This will be processed with bFGF to observe its 
impacts on biological phenomena like cell pro-
liferation, migration, differentiation, apoptosis, 
and TGF-β1/Smad3 signaling pathway. Next, 
bFGF, TGF-β1, and Smad3 will be specifically 
blocked to observe changes in corresponding 
biological phenomena and signaling pathways.

In conclusion, mass proliferation of smooth 
muscle cells in blood vessels with AVFS was 
preliminarily explored. This may be associated 
with an increase in bFGF expression and activa-
tion of TGF-β1/Smad3 signaling pathways.
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