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Abstract: Gliomas account for a quarter of all primary brain and central nervous system tumors, and are always fol-
lowed by a high mortality rate and very low life expectancy. However, genetic alterations nor molecular pathogenesis 
have not been clearly defined in gliomas. Herein, we applied a bioinformatics analysis to identify diagnostic biomark-
ers and reveal potential therapeutic targets for gliomas. In the present study, the microarray data set GSE31095 
database was downloaded from the Gene Expression Omnibus (GEO), and a total of 244 DEGs were screened out 
from blood samples of human glioma patients, including 183 upregulated DEGs and 61 downregulated DEGs. Of 
which, CX3CR1, GZMB, and GZMA were the top three most up-regulated DEGs; WFDC1, FKBP5, and IL1R2 were 
the top three most down-regulated DEGs. Additionally, GO and KEGG analysis revealed that 244 DEGs were mainly 
enriched in 11 terms and 10 pathways. GZMB, CD48, and GZMA were screened as the top 3 hub genes in protein-
protein interaction networks. Survival analysis by UALCAN showed high expression of CD48, GZMA, GZMH, IL2RB, 
KLRB1, LCK, LCP1, LEF1, NKG7, RPL18, TRAF3IP3 and ZAP70 that presented a better overall survival. Through 
identifying these candidate genes and pathways by bioinformatics analysis, this study sheds light on the pathogenic 
and prognostic molecular mechanisms of gliomas and may help us understand the underlying mechanism of glio-
mas, furthermore, providing clear candidates for clinical application.
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Introduction

Gliomas are the most common primary central 
nervous system (CNS) tumors and account for 
approximately 26.5% of all CNS tumors and 
80.7% of malignant tumors [1]. It is estimated 
that the annual incidence rate of gliomas is 6.6 
per 100,000 individuals in the United States 
[1]. According to morphology and malignant 
behavior, the World Health Organization (WHO) 
2007 classification recognizes subtypes and 
four grades (I to IV) of gliomas [2]. The most 
common type of glioma in adults include glio-
blastoma (grade IV), astrocytic tumors (grade I 
to III), oligodendroglial tumors (grade II to III), 
and ependymomas (grade I to III) [3]. Among 
which, the aggressive forms of grade III and all 
grade IV gliomas are classified as high-grade 
gliomas. Grade IV gliomas are referred to as 

glioblastoma (GBM) that are highly invasive and 
have the poorest overall survival (OS), with less 
than 5 percent of patients surviving 5 years 
after diagnosis [4]. 

The current standard therapy of newly diag-
nosed gliomas is surgical resection. Con- 
comitant adjuvant radiation therapy and spe-
cific chemotherapy protocols are always follow 
by operation, however, this protocol is far from 
optimal in combating disease progression [5]. 
With the updated classification of WHO 2016 
CNS tumors, molecular parameters and histol-
ogy are first to define the main tumor categories 
[6]. Biomarkers like isocitrate dehydrogenase 
1/2 (IDH1/2) mutations, 1p/19q codeletion, 
H3F3A mutations and C11orf95-RELA fusions 
were integrant elements for diagnosis for glio-
mas [6, 7]. Other diagnostically relevant bio-
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Figure 1. Normalization of GSE31095. A: Before standardization; B: After standardization.

Figure 2. Differentially expressed genes 
(DEGs) in 8 samples of gliomas and 12 cas-
es of normal controls. A: Heatmap of DEGs; 
B: Information of 20 samples.
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markers are; loss of nuclear ATRX expression, 
TERT-promoter mutations, BRAF-V600E muta-
tion, and more that were also recommended  
as the rare ones [6]. This revolutionary change 
in glioma diagnostics indicated that genetic 
approaches play a complementary role to tradi-
tional histomorphology, thus, improving the 
diagnosis of gliomas and guided pathogenesis-
based treatment.

Gene microarray and high-throughput gene 
databases have been widely applied in the 
diagnosis and treatment of human diseases. Of 
note, some specific genes were screened out 
as predictive biomarker for malignant tumors. 
With the rapid spread of microarray techniques, 
pathogenesis of several diseases has been 
identified. Based on these databases, this sup-
plied an efficacious approach for researchers, 
which can help to elucidate the occurrence and 
development of carcinoma.

In the present study, we successfully identified 
several differentially expressed genes (DEGs) 
by comparing the gene expression profiles 
between gliomas and healthy controls. With a 
series of bioinformatics analysis, including 

identification of DEGs, functional and pathway 
enrichment analysis, protein-protein interac-
tion (PPI) network integration; hub-genes were 
screened, which may be outstanding predictors 
for diagnosis, targets for treatment, and prog-
nosticators for prognosis of gliomas in the 
future.

Materials and methods

Microarray data

We searched the National Center for Biotech- 
nology Information Gene Expression Omnibus 
(GEO) database (available online: http://www.
ncbi.nlm. nih.gov/geo). The raw microarray data 
set GSE31095 database was downloaded  
and selected for further study. This data set 
was based on GPL4133 platform and includ- 
ed 8 blood samples from glioma patients and 
12 blood samples from normal controls, re- 
spectively. 

Screening for differential expressed genes 
(DEGs) 

The downloaded gene package and series of 
matrix file(s) were converted for analysis by the 

Table 1. Top ten up-regulated and down-regulated differentially expressed genes between gliomas 
and normal controls

Gene Log2FC Average 
expression t P value Adj. P value B Regulated

CX3CR1 2.739132 9.151235 5.242678 3.50E-05 0.00734 2.412201 Up-Regulated
GZMB 2.736313 9.915847 5.911169 7.55E-06 0.003754 3.835439 Up-Regulated
GZMA 2.427199 8.95931 4.772093 0.000106 0.011385 1.383474 Up-Regulated
CDKN1C 2.221356 8.422803 7.80578 1.31E-07 0.000636 7.526122 Up-Regulated
FAM102A 2.158081 8.481098 3.970834 0.000709 0.026238 -0.39081 Up-Regulated
GZMH 2.151371 9.218487 3.730074 0.001255 0.032638 -0.92165 Up-Regulated
IFI30 2.126464 10.14779 5.511052 2.24E-05 0.006189 2.838447 Up-Regulated
KLRB1 2.075754 8.922116 6.793166 1.08E-06 0.001571 5.622102 Up-Regulated
GIMAP7 1.982532 8.761144 4.588515 0.000163 0.013749 0.97816 Up-Regulated
RASAL3 1.978633 9.454504 3.990905 0.000676 0.025634 -0.3464 Up-Regulated
WFDC1 -3.36578 7.340504 -7.86847 1.16E-07 0.000636 7.638628 Down-Regulated
FKBP5 -2.60349 7.317815 -7.1631 4.92E-07 0.001112 6.336517 Down-Regulated
IL1R2 -2.37176 6.803303 -3.59007 0.001747 0.039199 -1.22817 Down-Regulated
ACRC -2.25525 7.72429 -4.93305 7.23E-05 0.010228 1.737259 Down-Regulated
FDXR -2.10694 8.155901 -6.45534 2.25E-06 0.002075 4.951231 Down-Regulated
C1QTNF5 -1.97927 6.979173 -7.5887 2.04E-07 0.000658 7.131683 Down-Regulated
DEFA4 -1.88618 6.368344 -3.89246 0.000854 0.028042 -0.564 Down-Regulated
S100P -1.8096 9.215449 -3.86421 0.000913 0.028956 -0.62636 Down-Regulated
NXF3 -1.76503 10.0047 -5.07796 5.94E-05 0.00948 1.936104 Down-Regulated
MPZL3 -1.75695 9.504724 -3.91132 0.000816 0.027621 -0.52236 Down-Regulated
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Figure 3. Volcano plot of all the DEGs. (Black points mean genes no 
significant difference. Red points mean upregulated genes screened 
on the basis of |fold change|>1.0 and a corrected P-value of <0.05. 
Green points mean downregulated genes screened on the basis of 
|fold change|>1.0 and a corrected P<0.05). 

R language software and annotation package. 
Then, data were normalized by the normalize 
between array function from R package “LIM- 
MA” (available online: http://www.bioconduc-
tor.org/). After normalization of data, the stu-
dent’s t-test was introduced to compare the dif-
ference between glioma group and control 
group. P-value <0.05 and |fold change (FC)|>1 
were chosen as the thresholds for screening 
differential expressed genes (DEGs). Further 
validated procedures for the DEGs were per-
formed using the online GEO2R analysis tool 
from the GEO database.

Gene ontology (GO) annotation and Kyoto 
encyclopedia of genes and genomes (KEGG) 
pathway enrichment analysis of DEGs

The FunRich version 3.1.3 (available online: 
http://funrich.org/) is a foundational tool for 
function analysis of high-throughput gene anal-
ysis [8]. It is widely used for analysis, annota-
tion, and displays the biological functional and 
pathway of genes. Gene ontology (GO) annota-

Kaplan-Meier survival analysis associated with 
target genes for patients with glioma

UALCAN is an interactive web resource for ana-
lyzing cancer transcriptome data. The top 25 
hub genes were uploaded to UALCAN (available 
online: http://ualcan.path.uab.edu/). Effects of 
hub genes expression level on glioma patient 
survival were achieved, and visualized by 
Kaplan-Meier. The statistical test was two sided 
and P<0.01 was considered as statistically 
significant.

Results

Microarray data and Identification of DEGs

The downloaded microarray dataset GSE31095 
from the Gene Expression Omnibus (GEO) 
online database included 8 cases of glioma (GS- 
M769932-GSM769939) and 12 cases of nor-
mal controls (GSM769920-GSM769931). The 
data before and after normalization were pre-
sented in Figure 1. Then, the data were further 
processed by unpaired t-test (P<0.05, |log2 

tions were performed using Fun- 
Rich on the screened DEGs. Kyoto 
Encyclopedia of Genes and Ge- 
nomes (KEGG) pathway analysis  
of DEGs was also performed by 
using the FunRich. In the present 
study, we analyzed the DEGs that 
were significantly upregulated and 
downregulated in the GSE31095 
gliomas data, and used P<0.05  
as the threshold for statistical 
significance.

Protein-protein interaction (PPI) 
network integration

To analyze the connection among 
proteins, predicted target genes  
of the top 25 most upregulat- 
ed and downregulated DEGs were 
uploaded to STRING database 
(available online: http://string-db.
org/), and the results were vi- 
sualized in Cytoscape 3.7.1 [9]. 
Furthermore, we identified and 
screened out the top 25 hub genes 
according to degree, after that 
DEGs networks were established 
by Cytoscape 3.7.1.
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Figure 4. GO annotation and KEGG pathway enrichment analysis of top 10 most upregulated DEGs. 
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Figure 5. GO annotation and KEGG pathway enrichment analysis of top 10 most downregulated DEGs. 
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Figure 6. Protein-protein interaction (PPI) network of DEGs.

Table 2. Details of KEGG pathway information

KEGG pathway No. of genes in the 
background dataset Fold enrichment P-value Genes 

mapped
IL-12 mediated signaling events 111 28.401476 0.0018094 GZMB; GZMA

Activation, myristolyation of BID and translocation to mitochondria 5 316.22093 0.0031766 GZMB

Intrinsic pathway for apoptosis 31 51.088902 0.0195732 GZMB

Chemokine receptors bind chemokines 42 37.711661 0.026449 CX3CR1

Interferon gamma signaling 47 33.700635 0.0295623 IFI30

Caspase cascade in apoptosis 52 30.460812 0.0326682 GZMB

Downstream signaling in naive CD8+ T cells 65 24.369587 0.0407087 GZMB

Interleukin-1 signaling 39 40.611814 0.0245774 IL1R2

Validated transcriptional targets of TAp63 isoforms 54 29.332843 0.0339085 FDXR

Glucocorticoid receptor regulatory network 80 19.800861 0.0499237 FKBP5
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FC|>1). In all, 244 DEGs were successfully 
screened out (see Figure 2). Among the 244 
DEGs, 183 DEGs were significantly upregulated 
and 61 DEGs were downregulated. The top ten 
DEGs of most upregulated and downregulated 
were listed in Table 1 for better visualization. 
According to fold change (FC), CX3CR1, GZMB, 
and GZMA were the top three most upregulated 
DEGs; WFDC1, FKBP5, and IL1R2 were the top 
three most downregulated DEGs. Figure 3 
shows the volcano plot and the scatter plot of 
all the DEGs.

Enrichment analysis of gene ontology and 
KEGG pathway 

For further analysis of the functions of these 
selected genes, we subsequently conducted 
GO functional annotation and KEGG pathway 
enrichment analysis. Three GO categories, 
including cellular component (CC), biological 
process (BP), and molecular function (MF) were 

selected in the functional annotation. The GO 
terms of the top 10 most upregulated DEGs 
were shown in Figure 4A-C, including im- 
munological synapse, intracellular membrane-
bounded organelle, endosome et al. in the CC 
category; serine-type peptidase activity, kinase 
regulator activity, GTPase activity et al. in the 
MF category; protein metabolism, cell commu-
nication, signal transduction, et al. in the BP 
category, and KEGG pathway analysis including 
IL12-mediated signaling events, activation, 
myristolyation of BID and translocation to mito-
chondria, et al. (Figure 4D). Subsequently, the 
top 10 most downregulated DEGs were ana-
lyzed the same way, the results are shown in 
Figure 5A-D. KEGG pathway information of both 
up regulated and downregulated DEGs were 
listed in Table 2.

Mapping of PPI network and DEGs-target 
network

Physiologically, proteins rarely function alone 
but function in networks. In this study, PPI net-
works were identified for potential target genes 
to identify the top ten most down-regulated and 
upregulated DEGs using the STRING database 
of known and predicted PPIs (Figure 6). After 
processing the data from STRING using 
Cystoscope software, we screened out the top 
25 hub nodes according to degree (Table 3). 
The 10 nodes with highest degree were gran-
zyme B (GZMB), cluster of differentiation 48 
(CD48), granzyme A (GZMA), zeta-chain-associ-
ated protein kinase 70 (ZAP70), interleukin-2 
receptor subunit beta (IL2RB), c-c motif chemo-
kine 4 (CCL4), killer cell lectin-like receptor sub-
family B member 1 (KLRB1), natural killer cell 
granule protein 7 (NKG7), granzyme H (GZMH), 
tyrosine-protein kinase Lck; among which 
GZMB exerted the highest node degree (degree 
=11). For better visualization of interaction of 
these DEGs, we additionally constructed net-
works based on the top 25 DEGs in PPI net-
work, as presented in Figure 7.

Survival analysis

Survival analysis of potential target genes 
showed that among 511 glioma patients, whom 
had high expression of CD48, GZMA, GZMH, 
IL2RB, KLRB1, LCK, LCP1, LEF1, NKG7, RPL18, 
TRAF3IP3, and ZAP70, had a better overall sur-
vival (P<0.01) (Figure 8). 

Table 3. Top 25 hub genes with higher degree 
of connectivity
Node name Degree Regulate
GZMB 11 Up
CD48 9 Up
GZMA 9 Up
ZAP70 9 Up
IL2RB 8 Up
CCL4 7 Up
KLRB1 6 Up
NKG7 6 Up
GZMH 5 Up
LCK 5 Up
RASAL3 4 Up
TRAF3IP3 3 Up
GIMAP7 3 Up
ARG1 3 Down
HSPA8 3 Up
CX3CR1 3 Up
DEFA4 3 Down
RPL5 3 Up
ADA 2 Up
LEF1 2 Up
LCP1 2 Up
FDXR 2 Down
KLF2 2 Up
CAMP 2 Down
RPL18 2 Up
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Figure 7. The top 25 hub genes with significant connectivity. 

Discussion

Gliomas are highly malignant primary brain 
cancers with a dreadful overall survival and for 
which treatment options are limited. Therefore, 
prediagnosis is quite essential for the progno-
sis of patients. Recently, with the emergence  
of high-throughput sequencing technologies 
based on microarray analysis, several potential 
biomarkers of human carcinomas were scree- 
ned out. This will help to determine clinical 
strategy in diagnosis, therapeutic options, and 
progression of diseases.

In this study, we screened out 266 DEGs in gli-
oma samples compared to normal controls by 
performing a differential expression analysis 
on a gene array downloaded from GEO data-
base. Among these DEGs, CX3CR1 and WFDC1 
were shown to be the most upregulated and 
downregulated in gliomas. There have been 
some studies concerning the characteristics  
of CX3CR1 in human carcinoma. In gastric can-
cer, CX3CR1 appeared to be significant higher  
compared with control subjects, and it was 
linked to lymph node metastasis, higher clinical 
TNM stage and larger tumor size [10]. 
Meanwhile, overexpressed CX3CR1 could pro-
mote gastric cancer cell migration, invasion, 
proliferation and survival in vitro [10]. Shen et 
al. reported that CX3CR1 was overexpressed in 

human breast tumors and bone metastases, 
and when administering CX3CR1 antagonists 
to breast cancer mice, dramatic reduction of 
tumors were found in both skeleton and viscer-
al organs [11]. The presence of the CX3CL1/
CX3CR1 is a central underlying mechanism in 
the tumourigenesis process. It had been prov-
en that human glioblastoma tumors and neural 
cancer stem cells express the chemokine 
CX3CL1 and its receptor CX3CR1 [12]. WFDC1 
(whey acidic protein four disulfide core 1) acts 
as a metastasis suppressor, belongs to a family 
of whey acidic protein (WAP) which often modu-
lates cancer genes that encodes ps20 (20 kDa 
prostate stromal protein) [13]. Previous studies 
have shown that WFDC1 expression was 
remarkably downregulated in highly prolific 
mesenchymal cells and in various cancers 
including fibrosarcomas and in tumors of the 
brain, bladder, prostate, ovary and lung [14, 
15]. Expression of WFDC1 in the prostate could 
induce apoptosis by regulation of PTGS2/COX-
2, thus, restricting development and progres-
sion of neoplasms [16]. 

We further identified that biological pathways 
for DEGs were involved in the regulation of glio-
mas by bioinformatics analysis. Of note, gran-
zyme B (GZMB), an apoptosis-inducing prote-
ase, participated the most in biological pathway 
regulation and presented the highest degree in 
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Figure 8. The survival prognostic value of top 25 hub genes in gliomas. Effort of A. CD48 (P<0.0001), B. GZMA (P=0.00031), C. GZMH (P<0.0001), D. IL2RB 
(P=0.00047), E. KLRB1 (P<0.0001), F. LCK (P<0.0001), G. LCP1 (P=0.00021), H. LEF1 (P<0.0001), I. NKG7 (P=0.00027), J. RPL18 (P=0.00038), K. TRAF3IP3 
(P=0.00048), and L. ZAP70 (P<0.0001) expression on Brain lower grade glioma (LGG) patients survival based on UALCAN database showed a better overall survival.
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PPI networks. Mice deficient in GZMB were pro-
tected from the development of some types of 
tumors, and this was related to impaired regu-
latory function of T or NK cells [17]. In the litera-
ture, another study provided evidence that 
through blocking NK-mediated target cell apop-
tosis, GZMB was involved in natural killer (NK)-
mediated cell death in breast adenocarcinoma 
and melanoma tumor cells [18]. Lung cancer 
was associated with decreased expression  
of granzyme B, furthermore, genomic sequen- 
ce analyses showed GZMB was decreased in 
atypical adenomatous hyperplasia (AAH, a pre-
malignant lesion in the development of lung 
adenocarcinomas) relative to matched normal 
controls [19]. GZMB was released by CD8+ T 
cells and natural killer cells during the cellu- 
lar immune response, and mediated cancer  
cell death [20, 21]. By establishing a novel 
GZMB-targeted peptide and applying in non-
invasive PET imaging assessment, Larimer et 
al. found that high-uptake tumors subsequently 
regressed, and low-uptake tumors progressed 
with immunotherapy in colon carcinoma mice 
models. Also, this result was demonstrated in 
melanoma patients by GZMB imaging probes 
[20]. A COX regression study examined 468 
colorectal cancer patients indicating that GZMB 
was inversely correlated with stage of colorec-
tal cancer patients at diagnosis, but associated 
with improved all-cause and cancer-specific 
survival [22]. As well, a small sample study on 
non-Hodgkin lymphoma also showed that less 
expression of GZMB transcripts meant a lower 
survival rate [23]. GZMA acted as a pro-inflam-
matory cytokine and participated in the apopto-
sis of abnormal cells that might contribute  
to cancer development. Like GZMB, it was  
high expressed in several human carcinomas. 
Survival analysis base on UALCAN showed that 
high expression of the GZM family, including 
GZMA and GZMH meant a better overall sur- 
vival.

In KEGG pathway enrichment analysis, interleu-
kin-12 (IL-12) mediated signaling events were 
most related among DEGs. IL-12 has been 
extensivly investigated in previous studies and 
was proved to be a potent inducer of antitumor 
immunity [24]. In vitro, IL-12-conditioned cellu-
lar media could improve the anti-tumor efficacy 
of CD8+ T cells for about 10 to 100-fold in 
melanoma mouse models [25]. Furthermore, 
clinical trials of adoptive cell therapy in human 

melanoma cases found that after being modi-
fied with a tyrosinase-specific T-cell receptor, 
functional activity of CD8+ T cells were en- 
hanced when conditioned with IL-12, and this 
was indicated by heightened GZMB expression 
[25]. Other pathways in this study may indicate 
the way of future research of gliomas.

Conclusion

In summary, the present bioinformatics analy-
sis identified 2 key DEGs (CX3CR1 and WFDC1) 
from the GSE31095 database in glioma 
patients with respect to normal controls. 
Furthermore, GZMB was presented as the high-
est connective degree among hub genes of  
gliomas, which also participated in several 
tumor biological pathways. These preliminary 
findings may highlight promising strategies for 
studying the underlying mechanism of gliomas 
and provide a clear candidate for clinical appli-
cation. However, it still needs further molecular 
and clinical experiments to validate these 
assumptions. 
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