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Abstract: Background and objectives: Nitidine chloride, a natural bioactive phytochemical alkaloid derived from 
Zanthoxylum nitidum (Roxb) DC, has been an ingredient included in toothpaste in China for years. However, the de-
tailed molecular targets and primary mechanisms of the anti-inflammatory capacity of nitidine chloride have not yet 
been well defined. Thus, the objective of the current study was to explore the molecules and novel potential mecha-
nisms that modulate inflammation using modeled by lipopolysaccharide (LPS)-induced mouse bone-marrow-derived 
dendritic cells (BMDCs). Methods: Differentially expressed genes (DEGs) were calculated from microarrays providing 
gene profiles of BMDCs pre- and post-nitidine chloride treatment. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway, gene ontology (GO) enrichment analyses and protein-protein interaction (PPI) analyses were car-
ried out using the DAVID and STRING online databases to display the annotations for the DEGs. A connectivity map 
was used to further investigate similar known compounds and the potential therapeutic effects of nitidine chloride 
on BMDCs. Results: A total of 607 DEGs were identified from the microarray GSE102135, wherein nitidine chloride 
was used to treat the primary mouse LPS-stimulated BMDC cells from female wild-type C57BL/6 mice for 12 h. 
Post-nitidine chloride treatment on the LPS-stimulated BMDCs, the DEGs were enriched in several well-known path-
ways as determined from KEGG analysis. For instance, DEGs were enriched in the protein digestion and absorption 
and cGMP-PKG signaling pathways, which have been established to play essential parts in the inflammatory pro-
cess. More importantly, phenoxybenzamine, thioguanosine, resveratrol, 8-azaguanine and irinotecan, etc., had high 
similarities with nitidine chloride, also exhibiting anti-inflammation properties as previously reported. Conclusions: 
Different key genes have been implicated in the nitidine chloride-mediated anti-inflammatory function via targeting 
of several key inflammatory pathways. The anti-inflammation properties of nitidine chloride were found to be mir-
rored by some known drugs, which helps to define the underlying mechanism of nitidine chloride treatment. 
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Introduction

Dendritic cells (DCs) are specialized and strong 
antigen-presenting cells (APCs) that play crucial 
roles as immune sentinels and initiators of T 
cell responses against infections and cancers, 
as well as in the occurrence of inflammation. 
DCs play an essential role as messengers con-
necting innate immunity with adaptive immuni-
ty. Consequently, DCs have been studied for 
application in the treatment of infections and 
cancers [1-4]. Moreover, DCs have been docu-

mented to function in immune regulation, such 
as in tolerance stimulation and autoimmunity 
prevention. There are two distinct functional 
stages for DCs: immature and mature. Immature 
DCs are differentiated from bone marrow pro-
genitor cells and are present in blood or tissues 
that contact the external environment. These 
immature DCs exhibit a strong endocytic ability 
and a weak potency for T cell stimulation. After 
antigen intake, DCs can enter the stage of 
mature DCs. The mature DCs will then move to 
the secondary lymph organs to facilitate the 
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activation of T cells [5-9]. One pathogen-related 
molecule generated from DCs, lipopolysaccha-
ride (LPS), is derived from the outer membrane 
of gram-negative bacteria. LPS has been re- 
ported to be a main cause of septic shock [10-
15]. LPS can combine with LPS-binding protein 
and CD14 and subsequently bind to the Toll-like 
receptor 4 (TLR4) of DCs. After TLR4 is activat-
ed, DCs start the procedure of maturation [16, 
17]. As DCs are vital immunomodulatory execu-
tors, the regulation of DCs activity could be- 
come a worthy method for the treatment of 
inflammation and autoimmune diseases. There- 
fore, DCs have the potential to act as pharma-
cological targets and novel biological modifiers 
of immune responses in various disorders. 
Bone marrow-derived mouse dendritic cells 
(BMDCs) are well-established cell models, as 
BMDCs post-activation play a pivotal role in the 
process of immune and inflammatory reactions 
[18-20]. 

Nitidine chloride (NC) is a natural bioactive phy-
tochemical alkaloid which is derived from 
Zanthoxylum nitidum (Roxb) DC. Nitidine chlo-
ride, as an herbal ingredient, has been utilized 
in toothpaste in China for a long time. Recently, 
NC has been reported to also have favorable 
antioxidant, antifungal, anti-inflammatory, and 
analgesic bio-functions [21, 22]. Nevertheless, 
the accurate molecular targets and basic 
molecular mechanisms of its anti-inflammatory 
ability have not been well-defined so far.

The connectivity map (CMap) provides a web-
based instrument to screen compounds for re- 
lation to a particular disease or a certain gene 
profile [23-27]. The use of a CMap can help 
identify novel, formerly unanticipated usages of 
known drugs. For example, nitidine chloride, 
whose mechanisms of action are not well 
understood, could be mapped with relation to 
the mechanisms of existing drugs. This makes 
the CMap a valuable instrument for augment-
ing the biological knowledge of a new drug.

Thus, our aim in the current study was to deter-
mine whether we can use the Cmap to detect 
additional molecules that modulate inflamma-
tion as modeled by LPS-induced mouse BMDCs 
after treatment with nitidine chloride. By doing 
so, we may identify a novel potential mecha-
nism for the treatment of inflammatory dise- 
ases.

Material and methods

Publicly available data collection from GEO 
and ArrayExpress 

To collect relative data on the differentially 
expressed genes influenced by nitidine chloride 
in BMDCs, original mRNA high-throughput RNA-
sequencing or microarray profiles were gath-
ered from the Gene Expression Omnibus (GEO) 
and ArrayExpress databases up to January 
16th, 2018. The following literature databases 
were also searched: PubMed, Wiley Online Lib- 
rary, Web of Science, Science Direct, Cochrane 
Central Register of Controlled Trials, Google 
Scholar, EMBASE, Ovid, LILACS, Chinese CNKI, 
Chong Qing VIP, Wan Fang and China Biology 
Medicine Disc. The searching strategy con-
tained the following keywords: “nitidine chlo-
ride” OR NC and BMDCs OR “bone marrow-
derived mouse dendritic cells”. Studies delving 
into the gene profiles of BMDCs post-nitidine 
chloride treatment were included, and if neces-
sary, mock controls were concurrently provid- 
ed. 

Data mining from RNA-sequencing or microar-
ray profiles

The mRNA expression data were normalized 
and transformed by a log2 algorithm. Differ- 
ential expression of mRNAs was estimated by a 
fold change (FC) from the comparison between 
experimental and control groups. Whenever  
the FC was greater than 2 or smaller than 0.5 
as a pre-defined threshold, the corresponding 
mRNAs were regarded as differentially expre- 
ssed genes (DEGs). Since the data processing 
replied on the platform of the included study, 
the details of the included data would be pre-
sented in the result part.

Potential mechanism of the influence of niti-
dine chloride on BMDCs

The potential mechanism of the influence of 
nitidine chloride on BMDCs was further dissect-
ed using several bioinformatics tools. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway and gene ontology (GO) enrichment 
analyses were carried out using the DAVID 
online database to display the annotations for 
the identified DEGs [28-32]. The online soft-
ware Panther [33-35] was also used to explore 
the potential interaction pathways for the influ-
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ence of nitidine chloride on BMDCs. Finally, the 
STRING online database was used to evaluate 
the protein-protein interaction (PPI) network 
[28, 32, 36-40]. The GOplot and ggplot2 pack-
ages of R software were used to display the 
results of KEGG and GO analyses, respectively. 
The Cytoscape and ggplot2 packages of R were 
used to visualize the results of PPI. 

Connectivity map query for DEGs post-nitidine 
chloride treatment

To better examine the principal prospective 
mechanisms of the therapeutic influences of 
nitidine chloride on BMDCs, the gene expres-
sion profiles of nitidine chloride treatment  
were applied as queries for mapping with the 
Connectivity Map (CMap, http://www.broadin-
stitute.org/cMAP/) reference database (Build 
02), containing over 7,000 profiles generated 
from MCF7, HL60 and PC3 cells which were 
treated with 1,309 compounds [41-43]. A mean 
connectivity score and a permutation P value 
were provided for the compounds and cell lines. 
This score specifies the likelihood of enrich-
ment of a set of instances within a list of all 
instances by chance.

Results

Eligible study with gene profiling post-nitidine 
chloride treatment of BMDCs

According to the searching strategy, no eligible 
study could be found from ArrayExpress data or 
literature. Nevertheless, a microarray with GEO 
accession (GSE102135) was included in this 
study. In this study, BMDCs were achieved from 
female wild-type C57BL/6 mice. All animal pro-
cedures were approved by the guidelines of the 
Institutional Animal Care and Use Committee of 
The Second Military Medical University, P. R. 
China. In brief, bone marrow was washed down 
from the tibiae and femurs of the mice. The red 
blood cells were diminished by using hypotonic 
lysis of 0.83% w/v ammonium chloride. On the 
first day of culturing, cells (106 cells/mL; 2 mL/
well) were cultured in six-well-plate with the 
medium of RPMI-1640 which was supplement-
ed with 10% v/v heat-inactivated FCS, 10 ng/
mL GM-CSF and 1 ng/mL IL-4 at 37°C and 5% 
CO2. On the second day, those floating cells 
were discarded and the remaining cells were 
cultured with fresh medium till the fifth day. 

Then, those BMDCs which were loosely adher-
ent or not adherent at were collected for the 
subsequent tests. The study of GSE102135 
contained four samples (GSM2728727, GSM- 
27282728, GSM2728729 and GSM2728730), 
among which GSM2728729 and GSM2728730 
were pre-treated with LPS to activate BMDCs. 
The platform of this microarray was the Nimble- 
Gen Mouse Gene Expression Array [100718_
MM9_EXP] (gene-level version). The total RNA 
extraction was performed with TRIZOL Reagent 
(Cat#15596-018, Life technologies, Carlsbad, 
CA, US). RNA integrity was monitored by an 
Agilent Bioanalyzer 2100 (Agilent technologies, 
Santa Clara, CA, US). RNeasy micro kit and 
RNase-Free DNase Set (Cat#74004 and Cat# 
79254, QIAGEN, GmBH, Germany) were used 
for the purification of RNA. NimbleGen One-
Color DNA Labeling Kit was used for sample 
labeling with Cy3. To study the anti-inflammato-
ry activity of nitidine chloride, primary mouse 
BMDC cells were treated with the vehicle only 
or nitidine chloride for 12 h and then stimulat-
ed with the vehicle or LPS 1 μg/ml for another 
12 h. NimbleScan v2.5 Software was used for 
the data extraction and normalization. The fold 
change analysis between GSM2728729 (con-
trol with LPS) and GSM2728730 (nitidine chlo-
ride treatment with LPS) resulted in a total of 
607 DEGs, including 350 up-regulated and 257 
down-regulated genes (Figure 1).

Relative signaling pathways and function of 
nitidine chloride treatment on BMDCs

KEGG pathway and panther pathway annota-
tion: In total, 21 KEGG pathways were identified 
as significant pathways (P < 0.05), wherein the 
terms of the top five pathways were mmu04974: 
protein digestion and absorption, mmu04022: 
cGMP-PKG signaling pathway, mmu04510: 
focal adhesion, mmu04010: MAPK signaling 
pathway and mmu04925: aldosterone synthe-
sis and secretion (Table 1; Figure 2). Moreover, 
panther pathway analysis identified that mem-
brane trafficking regulatory protein (PC00151), 
metalloprotease (PC00153) and ribosomal pro-
tein (PC00202) might be involved in the poten-
tial functional pathways of nitidine chloride 
treatment of BMDCs. 

GO biological functional analysis: A total of 142 
GO categories, including 72 biological process-
es (BP), 41 cellular components (CC) and 29 



Nitidine chloride and LPS-induced primary mouse BMDCs

3532	 Int J Clin Exp Med 2019;12(4):3529-3545

molecular functions (MF), were significantly 
identified using DAVID (P < 0.05). Within the BP 
category, the term regulation of Rho protein  
signal transduction was most significant (P = 
0.001). In the CC category, DEGs related to the 
terms of cytoplasm, synapse, perinuclear 
region of cytoplasm, membrane and cytoskele-
ton were highly enriched (P < 0.001). In addi-
tion, in the MF category, the DEGs were mainly 
concentrated in the terms protein binding and 
GTPase activator activity (P < 0.001, Table 2; 
Figure 3).

times, and resveratrol was tested nine times 
(Tables 4 and 5). When we ranked the compo- 
unds according to only the single test, phenoxy-
benzamine still remained in the first and sec-
ond place of the ranking list, followed by 8-aza-
guanine and irinotecan (Table 6; Figure 5), with 
different DEGs being involved (Table 7). Those 
positive enrichment scores represent similar 
expression patterns of genes induced by chem-
ical drugs from CMap compared with those 
DEGs in the treatment of LPS-induced BMDCs 
with nitidine chloride in the current study. 

Figure 1. Differentially expressed genes (DEGs) post-nitidine chloride treat-
ment of bone marrow-derived dendritic cells (BMDCs). DEGs were assessed 
using the NimbleGen Mouse Gene Expression Array (GSE102135) after niti-
dine chloride treatment of lipopolysaccharide-induced primary mouse BMDCs. 

PPI construction: The 607 
DEGs were imported into the 
STRING database, in which 
461 proteins were identified. 
The most significant nodes 
and edges were included in 
the PPI network (Figure 4). 
The top 10 protein pairs with 
high combined scores are 
shown in Table 3.

Identification of correlated 
CMap compounds

The unknown mechanism  
of nitidine chloride on LPS-
induced BMDCs prompted 
us to attempt a more sys-
tematic approach using the 
CMap. The aforementioned 
DEGs were input for CMap 
analysis, in which 136 chem-
ical drugs were displayed  
to have the patterns of  
DEGs expression (permuted 
P-value < 0.05, data not 
shown) that correlated with 
those observed after nitidine 
chloride treatment of LPS-
induced BMDCs. The names 
of the top 20 drugs and their 
statistics are listed in Table 
4, where all of the data from 
single experiments provided 
by the CMap were combined. 
Phenoxybenzamine, thiogu- 
anosine and resveratrol were 
the top three drugs (Table 4), 
and the detailed information 
of these three compounds 
from different rounds are 
shown in Table 5. Both ph- 
enoxybenzamine and thio-
guanosine were tested four 
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Table 1. The top ten KEGG pathways of the genes influenced by nitidine chloride in bone marrow-derived dendritic cells (BMDCs) 
Term Count P Value Genes FDR
mmu04974: Protein digestion and absorption 8 0.002086 SLC8A3, COL9A2, ATP1B2, ATP1A3, CPA3, COL2A1, COL11A2, COL11A1 2.579696

mmu04022: CGMP-PKG signaling pathway 11 0.0026 MEF2C, SLC8A3, EDNRB, ATP1B2, ATP2A3, ATP1A3, PRKCE, IRS1, ITPR1, MYL9, ITPR2 3.205546

mmu04510: Focal adhesion 12 0.003393 DOCK1, VAV3, ITGA6, PGF, ITGAV, COL2A1, ITGA3, COL11A2, COL11A1, MYL9, PRKCB, PARVA 4.163891

mmu04010: MAPK signaling pathway 13 0.00561 MEF2C, IL1R2, DUSP2, NF1, GADD45G, CACNB2, NR4A1, FGF23, MAPK8IP1, FGF1, STK3, PRKCB, 
MAP2K5

6.797269

mmu04925: Aldosterone synthesis and secretion 7 0.008174 CYP11A1, NR4A1, PRKCE, ITPR1, CAMK1D, PRKCB, ITPR2 9.760639

mmu04020: Calcium signaling pathway 10 0.011431 SLC8A3, EDNRB, ATP2A3, PHKB, SPHK1, ITPKC, ITPR1, PRKCB, ITPR2, HTR2A 13.39984

mmu05412: Arrhythmogenic right ventricular cardiomyopathy (ARVC) 6 0.014839 ITGA6, ITGAV, CACNB2, GJA1, ITGA3, CDH2 17.06174

mmu04972: Pancreatic secretion 7 0.016432 ATP1B2, ATP2A3, ATP1A3, CPA3, ITPR1, PRKCB, ITPR2 18.72507

mmu04514: Cell adhesion molecules (CAMs) 9 0.017898 CLDN7, MPZ, CADM1, ITGA6, CD8A, ITGAV, CDH2, CLDN11, PDCD1 20.22779

mmu04961: Endocrine and other factor-regulated calcium reabsorption 5 0.021366 ATP1B2, ESR1, ATP1A3, DNM1, PRKCB 23.68217



Nitidine chloride and LPS-induced primary mouse BMDCs

3534	 Int J Clin Exp Med 2019;12(4):3529-3545

Figure 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the genes influenced by nitidine chloride in bone marrow-derived dendritic cells 
(BMDCs). KEGG pathway analysis was carried out using the DAVID online database to identify the differentially expressed genes after nitidine chloride treatment in 
lipopolysaccharide-induced primary mouse BMDCs. The GOplot package of R software was used to display the figures. 
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Table 2. The top eight GO terms of the genes influenced by nitidine chloride in bone marrow-derived dendritic cells (BMDCs) 
Category Term Count P Value Genes FDR
GOTERM_BP_DIRECT GO: 0035023~regulation of 

Rho protein signal transduction
8 0.001096 DLC1, PLEKHG4, PLEKHG1, VAV3, ARHGEF6, CDH2, ECT2, FGD4 1.869363

GOTERM_CC_DIRECT GO: 0005737~cytoplasm 177 8.6E-06 MEF2C, DLC1, SLC8A3, ATP1B2, S100A9, CASK, ITPKC, AURKB, MCM10, CALB2, ANK2, APOD, PPP1R1B, CDCA2, 
BPNT1, MTUS1, MAP2K5, CDCA3, BCL2L14, C2CD3, GRHL1, IRS1, STK3, FRY, PTHLH, MAPK6, PTRF, CC2D2A, 
CDCA7L, DST, UNC13B, NRBP2, IL1R2, NEK2, CCDC92, GIPC2, AKAP11, DENND2A, RRAGD, MYT1, KRT24, FUZ, 
DOCK2, PEG10, CDC42EP1, DOCK1, NDRG4, TCTN2, TRAF4, FGD4, PLAT, VAV3, TRIP4, OSBPL3, WDR7, LPP, FBXO2, 
SPHK1, NPL, SMYD3, ABHD14A, NR4A1, WRN, TINAGL1, CAMK2N2, 2810417H13RIK, DOCK4, NR1I3, SYNE1, 
SYNE2, PRICKLE1, NPY, JAZF1, RGS9, AREG, CRYM, EIF4E2, KLF4, TMOD1, CLSPN, KCNAB1, NUAK1, FIGNL1, GJA1, 
TTLL6, ARHGAP15, SDCBP2, AFMID, MBP, MTHFD1, KIF2C, MSRA, PLEKHB1, SNPH, MGLL, NEURL1A, PRSS36, 
FGF1, AGAP1, JAKMIP1, CLN3, KIF15, ESR1, ARHGAP24, PRKCE, PIH1D2, ECT2, GAK, PRKCB, ELMO1, ALOX15, 
EYA2, PTGDS, TNFSF13B, GADD45G, DIS3L2, BUB1B, CAND1, FCRLB, NRGN, RASD1, CTSG, PARVA, CAMK1D, 
ALOX12, ABLIM2, CPLX1, SLC39A11, FOXM1, CD247, NANOS1, COL2A1, CEP55, CDH2, TRIM10, TPM2, GATSL3, 
DCT, GPHN, MARVELD2, ALDH1A3, EXOC4, PTN, GPSM2, SH2B2, BCAS3, NEFL, H1FOO, SNAP25, TERF1, EXO1, 
WDFY3, WDFY2, CEP192, NF1, ATP1A3, AFF3, KIF18B, BIRC5, RCAN2, ITPR1, GJB2, ITPR2, CCNB1, SCFD1, KCNN1, 
IRF6, RSRC1, RAB34, DYM, CHN2, MAPK8IP1, CIT, PES1, DNM1, KIF20A, HTR2A

0.011968

GOTERM_CC_DIRECT GO: 0045202~synapse 27 1.51E-05 CLCN3, CPLX1, CADM1, CASK, CDH2, CALB2, SLC1A2, GPHN, SH2D5, ANK2, SNPH, EXOC4, MGLL, LGI3, NEURL1A, 
SNAP25, PLAT, DLGAP1, ATP1A3, DENND1A, ITGA3, SEMA4F, CHN2, MAPK8IP1, NRGN, UNC13B, DNM1

0.021002

GOTERM_CC_DIRECT GO: 0048471~perinuclear 
region of cytoplasm

32 3.52E-05 SLC8A3, PAM, OLFM4, NANOS1, ANGEL1, LNPEP, APOD, ANK2, PTN, NEURL1A, SNAP25, TRAF4, MT3, ESR1, ITGA3, 
PRKCE, 2810417H13RIK, ITPR1, VTI1A, GAK, EPHA5, SYNE1, TNFSF13B, NPY, PTGDS, CX3CR1, RAB34, CCR2, 
BUB1B, MAPK8IP1, RASD1, DST

0.048999

GOTERM_CC_DIRECT GO: 0016020~membrane 181 4.75E-05 DLC1, SLC8A3, MPZL2, CADM1, PGF, ATP1B2, SLC22A15, S100A9, CASK, ILDR1, CSPG5, ANK2, SH2D5, ST3GAL6, 
PELI2, RAB26, GNG4, MTUS1, PHRF1, OSBP2, ATRNL1, NBAS, SLCO4A1, SCUBE1, VTI1A, CRHR1, PTRF, CD33, 
CCR3, CX3CR1, CCR2, PTGFRN, DST, CD300LB, UNC13B, IL1R2, PAM, CLCN3, IFITM1, CYP2B9, LY6G6C, TMEM82, 
CACNB2, FXYD6, DOCK2, CDC42EP1, DOCK1, ITGAV, ADAM33, HNRNPC, TCTN2, HIST1H4I, TRAF4, OSBPL3, FBXO2, 
SPHK1, NUF2, TNFRSF13C, DENND1A, ABHD14A, ITGA3, EN2, DOCK4, EPHA5, SYNE1, SYNE2, PRICKLE1, ITGA6, 
ATP2A3, FREM2, GOLGA7B, TM4SF20, RGS9, AREG, CEND1, KLRB1B, TMOD1, CLDN7, MCHR1, CD8A, KCNAB1, 
PHKB, SUSD2, PIP5K1B, GJA1, ARHGAP15, LSR, DDR2, LGR5, GPR89, PDCD1, MBP, TMEM177, MTHFD1, LNPEP, 
EDNRB, KIF2C, SLC1A2, MSRA, PLEKHB1, TMEM108, TMEM171, SLC24A3, SNPH, MGLL, RHOD, NEURL1A, LBP, 
AGAP1, IRGC1, SLC43A2, JAKMIP1, CLN3, CYP11A1, KIF15, ESR1, SLC24A5, PRKCE, NDUFA11, GAK, PRKCB, 
ELMO1, CLEC16A, ZDHHC14, ALOX15, PTGDS, TNFSF13B, TLCD1, SEMA4F, SBF2, PLXDC2, ADAM18, CAND1, 
RASD1, CTSG, DEGS2, PARVA, ALOX12, GPR183, SLC39A11, CD247, CEP55, CLDN11, CDH2, CDKAL1, GPRC5A, 
GPR4, TPCN1, DCT, ZDHHC23, GPHN, LECT1, MARVELD2, TBC1D5, EXOC4, PTN, SH2B2, POPDC3, 4932438A13RIK, 
RNF122, SNAP25, WDFY3, DLGAP1, MPZ, NF1, ATP1A3, ITPR1, GJB2, ITPR2, CCNB1, PROM1, SCFD1, KCNN1, 
CDON, RAB34, DYM, CHN2, MAPK8IP1, CIT, PES1, HTR2A

0.066121

GOTERM_CC_DIRECT GO: 0005856~cytoskeleton 41 0.000337 NEK2, CCDC92, S100A9, TTLL6, CEP55, AURKB, DENND2A, TPM2, FUZ, KIF2C, GPHN, DOCK2, CDC42EP1, ANK2, 
GPSM2, TCTN2, BCAS3, TRAF4, JAKMIP1, TERF1, FGD4, TRIP4, C2CD3, KIF15, KIF18B, BIRC5, ARHGAP24, PRKCE, 
ECT2, FRY, CCNB1, NR1I3, SYNE1, SYNE2, KRT16, CC2D2A, DST, DNM1, KIF20A, PARVA, TMOD1

0.467394

GOTERM_MF_DIRECT GO: 0005515~protein binding 117 0.000243 MEF2C, CADM1, THRB, CASK, RORB, AURKB, ANK2, SH2D5, KIFAP3, LGI3, PELI2, RAB26, MAP2K5, COCH, C2CD3, 
ATRNL1, FGF23, IRS1, MAPK6, KRT16, CCR3, CC2D2A, CCR2, DST, CD300LB, CHGB, OLFM4, NEK2, CACNB2, MYT1, 
DOCK1, CDC42EP1, SERPINA1B, NDRG4, RHOBTB1, TCTN2, VAV3, CPNE4, LPP, MAFB, FBXO2, SMYD3, DENND1A, 
NR4A1, DOCK7, ITGA3, WRN, EPHA5, SYNE1, NR1I3, PRICKLE1, ITGA6, ATP2A3, FREM2, EBF1, RGS9, KLRB1B, 
CEND1, KLF4, CLDN7, KCNAB1, UVRAG, PIP5K1B, GJA1, TTLL6, KRT33A, PDCD1, LNPEP, EDNRB, PLEKHB1, SAA1, 
NEURL1A, FGF1, CLN3, ESR1, PRKCE, ECT2, GAK, PRKCB, ELMO1, SEMA4F, GADD45G, BUB1B, CAND1, PARVA, 
FKBP7, FOXM1, CD247, CEP55, CLDN11, CDH2, TRIM10, TPM2, GPRC5A, GPHN, ACAN, EXOC4, GPSM2, SH2B2, 
SNAP25, NEFL, TERF1, WDFY2, NF1, BIRC5, ITPR1, GJB2, ITPR2, CCNB1, IQCF1, RSRC1, CDON, RAB34, MAPK8IP1, 
CIT, PES1, DNM1

0.358697

GOTERM_MF_DIRECT GO: 0005096~GTPase activa-
tor activity

15 0.000496 DLC1, NF1, ARHGAP19, ARHGAP24, ARHGAP15, ECT2, TBC1D22A, DOCK4, DOCK2, DOCK1, CDC42EP1, TBC1D5, 
CHN2, RGS9, AGAP1

0.731331
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Discussion

In the current study, we identified the DEGs 
observed post-nitidine chloride treatment on 

LPS-stimulated BMDCs and found that several 
pathways related to inflammation could play 
pivotal roles in the effect of nitidine chloride. 
Furthermore, by connective mapping with CM- 

Figure 3. Gene ontology (GO) enrichment analysis of the genes influenced by nitidine chloride in bone marrow-
derived dendritic cells (BMDCs). GO analysis was carried out using the DAVID online database to display the dif-
ferentially expressed genes after nitidine chloride treatment on lipopolysaccharide-induced primary mouse BMDCs. 
The ggplot2 package of R software was used to display the figures. 
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Figure 4. Protein-protein interaction (PPI) network of the genes influenced by nitidine chloride in bone marrow-derived dendritic cells (BMDCs). PPI analysis was 
carried out using the STRING online database to display the PPI network of the differentially expressed genes after nitidine chloride treatment in lipopolysaccha-
ride-induced primary mouse BMDCs. The Cytoscape and ggplot2 packages of R were used to visualize the results of PPI. 
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Table 3. The strongest 10 PPI nodes identified using STRING in the genes influenced by nitidine chlo-
ride treatment of bone marrow-derived dendritic cells (BMDCs) 

Node 1 Node 2 Coexpression Experimentally  
determined interaction

Database-
annotated

Automated 
text mining

Combined 
score

Birc5 Aurkb 0.847 0.421 0.95 0.901 0.999
Bub1b Aurkb 0.897 0.912 0.9 0.824 0.999
Cenpa Aurkb 0.657 0.401 0.95 0.873 0.998
Kif2c Aurkb 0.714 0.115 0.95 0.859 0.998
Dock1 Elmo1 0.05 0.795 0.941 0.901 0.998
Ccnb1 Aurkb 0.911 0.17 0.9 0.651 0.997
Spc24 Nuf2 0.554 0.554 0.9 0.897 0.997
Tnfrsf13c Tnfsf13b 0.134 0.776 0.9 0.889 0.997
Dock2 Elmo1 0.053 0.795 0.883 0.897 0.997
Ccnb1 Bub1b 0.856 0.1 0.95 0.5 0.996

ap analysis, several known compounds that 
had similar molecular mechanisms to that of 
nitidine chloride were found, including phenoxy-
benzamine, thioguanosine, resveratrol, 8-aza-
guanine and irinotecan. These findings could 
assist in the identification of a novel potential 
mechanism for the treatment of inflammatory 
diseases with nitidine chloride.

The anti-inflammatory effects of seven ben- 
zophenanthridine alkaloids from Zanthoxylum 

nitidum (Roxb.) DC have been confirmed previ-
ously as being similar to that of hydrocortisone, 
including the pentacyclic alkaloid nitidine chlo-
ride [21]. Nitidine chloride also achieves anti-
inflammatory activity by suppressing TNF-α, 
IL-1β, and IL-6 production related to down-regu-
lated NF-κB and MAPK signaling pathways in 
RAW 264.7 murine macrophages. Nitidine chlo-
ride has additionally been found to suppress 
LPS-induced TNF alpha, IL-1beta and IL-6 pro-
duction through inhibition of the phosphoryla-

Table 4. Top 20 CMap compounds matching the DEGs identified post-nitidine chloride treatment of 
BMDCs
Rank CMap name Mean N Enrichment P value Specificity Percent non-null
1 Phenoxybenzamine 0.956 4 0.998 0 0 100
2 Thioguanosine 0.747 4 0.946 0 0.0059 100
3 Resveratrol 0.675 9 0.81 0 0.0245 100
4 Trichostatin A 0.21 182 0.252 0 0.801 59
5 PHA-00745360 -0.363 8 -0.775 0.00002 0 100
6 Irinotecan 0.882 3 0.982 0.00004 0.0818 100
7 Prochlorperazine 0.443 16 0.557 0.00006 0.0728 81
8 Thioridazine 0.416 20 0.521 0.00006 0.2101 75
9 Thiostrepton 0.636 4 0.893 0.00012 0.0294 100
10 Ciclopirox 0.61 4 0.888 0.00016 0.029 100
11 Luteolin 0.701 4 0.886 0.00016 0.0146 100
12 Trifluoperazine 0.472 16 0.495 0.0003 0.2115 81
13 Prestwick-692 -0.54 4 -0.875 0.00054 0.0068 100
14 8-azaguanine 0.704 4 0.858 0.00054 0.0473 100
15 Sulconazole 0.647 4 0.854 0.00064 0.0063 100
16 Adiphenine -0.502 5 -0.798 0.0007 0.0887 100
17 Apigenin 0.639 4 0.852 0.00072 0.0391 100
18 Guanabenz -0.486 5 -0.791 0.00078 0.0154 100
19 Etoposide 0.697 4 0.846 0.0008 0.0615 100
20 Daunorubicin 0.598 4 0.834 0.00115 0.0657 100
Note: N, number of cell lines in the CMap database. The mean was calculated from all available CMap data for a single drug.
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tion of MAPK and the translocation of p65 [44]. 
Furthermore, in mouse-derived bone marrow 
monocytes (BMMs), nitidine chloride inhibited 

RANKL-prompted multinucleated tartrate-resis-
tant acid phosphatase (TRAP)-positive osteo-
clast construction and bone resorption depen-

Table 6. Top 20 CMap compounds matching the DEGs identified post-nitidine chloride treatment of 
BMDCs 
Rank Batch CMap name Dose Cell Score Up Down Instance ID
1 758 Phenoxybenzamine 12 µM MCF7 1 0.172 -0.277 5613
2 726 Phenoxybenzamine 12 µM MCF7 0.997 0.198 -0.25 5248
3 629 8-azaguanine 26 µM HL60 0.996 0.273 -0.174 1833
4 1082 Irinotecan 100 µM MCF7 0.967 0.207 -0.227 7498
5 664 Sanguinarine 12 µM HL60 0.964 0.261 -0.172 2927
6 755 Phenoxybenzamine 12 µM MCF7 0.955 0.148 -0.28 6451
7 1090 Irinotecan 100 µM MCF7 0.931 0.142 -0.276 7530
8 644 Picrotoxinin 14 µM HL60 0.912 0.262 -0.147 2161
9 664 Fursultiamine 9 µM HL60 0.91 0.241 -0.167 2929
10 665 Pivampicillin 9 µM HL60 0.9 0.257 -0.147 2945
11 649 Meclofenoxate 14 µM HL60 0.9 0.246 -0.158 2546
12 505 5109870 25 µM MCF7 0.879 0.208 -0.186 904
13 630 Thioguanosine 13 µM HL60 0.878 0.217 -0.177 1264
14 622 Labetalol 11 µM HL60 0.873 0.24 -0.152 1550
15 665 Pyrvinium 3 µM HL60 0.872 0.236 -0.155 2957
16 713 Phenoxybenzamine 12 µM PC3 0.871 0.164 -0.227 4652
17 665 Iopanoic acid 7 µM HL60 0.865 0.24 -0.148 2965
18 502 Resveratrol 10 µM MCF7 0.862 0.196 -0.19 958
19 660 Nitrendipine 11 µM HL60 0.858 0.243 -0.142 3087
20 660 (-)-atenolol 15 µM HL60 0.858 0.244 -0.141 3067
Note: N, number of cell lines in the CMap database. The score was calculated from an individual CMap test for a single drug.

Table 5. Detailed information on the top 3 CMap compounds matching the DEGs identified post-niti-
dine chloride treatment of BMDCs 
Rank Batch CMap name Dose Cell Score Up Down Instance ID
1 758 Phenoxybenzamine 12 µM MCF7 1 0.172 -0.277 5613
2 726 Phenoxybenzamine 12 µM MCF7 0.997 0.198 -0.25 5248
6 755 Phenoxybenzamine 12 µM MCF7 0.955 0.148 -0.28 6451
16 713 Phenoxybenzamine 12 µM PC3 0.871 0.164 -0.227 4652
13 630 Thioguanosine 13 µM HL60 0.878 0.217 -0.177 1264
57 653 Thioguanosine 13 µM MCF7 0.791 0.159 -0.196 2619
234 707 Thioguanosine 13 µM MCF7 0.675 0.152 -0.15 4989
333 710 Thioguanosine 13 µM PC3 0.643 0.149 -0.14 6643
18 502 Resveratrol 10 µM MCF7 0.862 0.196 -0.19 958
22 657 Resveratrol 18 µM MCF7 0.848 0.192 -0.189 2865
58 640 Resveratrol 18 µM HL60 0.79 0.157 -0.197 1715
86 107 Resveratrol 50 µM MCF7 0.769 0.194 -0.151 622
186 504 Resveratrol 10 µM MCF7 0.699 0.12 -0.194 841
479 738 Resveratrol 18 µM MCF7 0.601 0.143 -0.127 5509
964 95 Resveratrol 50 µM MCF7 0.517 0.105 -0.127 595
1106 719 Resveratrol 18 µM PC3 0.498 0.079 -0.144 5084
1167 90 Resveratrol 50 µM PC3 0.489 0.077 -0.143 662
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Figure 5. The 3D conformers of the five compounds similar to nitidine chloride in bone marrow-derived dendritic 
cells (BMDCs). The 3D structures of the five compounds were provided by PubChem (https://pubchem.ncbi.nlm.
nih.gov/compound). A: PHENOXYBENZAMINE; B: THIOGUANOSINE; C: RESVERATROL; D: 8-AZAGUANINE; E: IRINO-
TECAN.
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dent on the dosage of nitidine chloride. Nitidine 
chloride decreased the level of osteoclast 
marker genes, such as cathepsin K, D2, calcito-
nin receptor, NFATc1, and TRAP. Additionally, 
NC suppressed RANKL-activated NF-κB and 
NFATc1 signaling pathways, which could also  
be involv-ed in the progress of inflammation 
[45]. Nitidine chloride repressed VEGF-induced 
endothelial cell proliferation, migration, and 
tubular structure formation in vitro in a dose-
dependent manner and intensely decreased 
VEGF triggered neovascularization in mouse 
cornea and Matrigel plugs in vivo. This angio-
genesis suppression mediated by nitidine chlo-
ride was well understood by the inhibition of 
Janus kinase 2/STAT3 signaling and the STAT3 
DNA-binding capacity in endothelial cells. Addi- 
tionally, nitidine chloride inhibited the constitu-
ently activated STAT3 protein, its DNA-binding 
activity, and the expression of STAT3-depen- 
dent target genes-for instance, cyclin D1, Bcl-
xL, and VEGF in malignancies [46]-which could 
also be mirrored in the mediation procedure of 
some types of inflammation. Nevertheless, the 
anti-inflammatory mechanism of nitidine chlo-
ride has still not been completely interpreted. 
In the current study, we found that the DEGs 
identified post-nitidine chloride treatment of 
LPS-stimulated BMDCs were enriched in sev-
eral well-known pathways determined by KEGG 
analysis-for instance, protein digestion and ab- 
sorption, the cGMP-PKG signaling pathway, 
focal adhesion, the MAPK signaling pathway 
and aldosterone synthesis and secretion, which 
have been established to play essential parts 
in the inflammatory process [47-52]. The anti-
inflammatory function of nitidine chloride could 

for each experiment that measured “close-
ness” between the signature and the experi-
ment was provided. Thus, by comparing the 
microarray data from over 1,309 small mole-
cules provided by CMap to our selected 607 
DEGs, a list of compounds ranked from highly 
positively correlated (similar gene expression 
pattern to that of the phenotype of interest) to 
strongly negatively correlated was obtained. 
Positively correlated genes had similar gene 
patterns to those of modulation by nitidine 
chloride in BMDCs. In the current study, it is 
interesting to note that five novel compounds 
(phenoxybenzamine, thioguanosine, resvera-
trol, 8-azaguanine and irinotecan) were deter-
mined as holding the biggest potential to be 
involved in the complex biological process of 
nitidine chloride treatment. Among these five 
compounds, four were previously well-known to 
have anti-inflammation properties, including 
phenoxybenzamine [53-55], thioguanosine 
[56, 57], resveratrol [58-62] and irinotecan 
[63, 64]. However, the ability of 8-azaguanine 
to treat inflammation has rarely been reported. 
Some types of mycobacterium tuberculosis 
were known to be potentially inhibited by 8-aza-
guanine [65]. Therefore, nitidine chloride could 
play a similar anti-inflammatory role compared 
to those of the aforementioned compounds, 
but it may also vary in its mechanism.

In summary, different genes have been impli-
cated in the nitidine chloride-mediated immu-
nomodulatory function in the anti-inflammation 
procedure targeting several key pathways relat-
ed to inflammation. The anti-inflammation pro- 
perties of nitidine chloride could be mirrored by 

Table 7. Genes related to the Top 3 CMap compounds 
from Table 6 
Phenoxybenzamine 8-azaguanine Irinotecan
Up Down Up Down Up Down
GEM ATAD5 INHBA NCAPH LIF NRP1
POPDC3 CTNND2 CREM TTF2 DDIT4 ATAD2
DDIT4 MXD3 IL1B OIP5 GP6 NDC80
HBEGF MBD5 GEM GPSM2 HOXA5 DTL
CREM NCAPH DUSP4 CCNB1 IRF7 NCAPH
EN2 WDR7 CXCL2 DLGAP5 IP6K2 CENPI
IP6K2 FBXO5 TIMP1 KIF15 EN2 BRIP1
TRIB3 GPHN TRIB3 MNS1 TEX14 BUB1B
DLC1 EGR3 HBEGF GFI1 DUSP14 LARGE
STK3 CENPI NR4A1 CDC7 VASH1 NCAPG

be determined via targeting these path-
ways; however, more in-depth valida-
tions are still required. 

In addition to the potential signaling 
pathways of nitidine chloride, we also 
examined whether NC performs its func-
tion consistent with the characteristics 
of any other well-known compound us- 
ing the Connectivity Map tool. The gene 
signature identified post-nitidine chlo-
ride treatment served as an unordered 
query which was input into a customized 
database including differential gene-
expression experiments with responses 
to a wide range of over 1,300 small mol-
ecules across of spectrum of concentra-
tions, durations, and cell lines. A score 



Nitidine chloride and LPS-induced primary mouse BMDCs

3542	 Int J Clin Exp Med 2019;12(4):3529-3545

some known drugs, which could help to identify 
the underlying mechanism of nitidine chloride 
treatment. 
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