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Abstract: Purpose: The current study aims to identify potent molecular target genes and key pathways involving the 
occurrence, development, and prognosis of nasopharyngeal carcinoma (NPC), and highlight their critical roles in 
management of NPC. Materials and methods: Expression profiling data for patients with NPC and non-cancer were 
searched and downloaded from the database of Gene Expression Omnibus. The data sets were applied to identify 
differentially expressed genes (DEGs) between the NPC group and the non-neoplastic group using the linear mod-
els for microarray analysis (limma) package in R language. Function enrichment analyses of DEGs wasperformed. 
The protein-protein interaction network was constructed and analyzed using String and Cytoscape, allowing the 
identification of hub genes for further analysis. Results: We identified 190 DEGs, of which 69 were upregulated and 
121 genes were downregulated in NPC tissues compared to non-tumor tissues. Gene ontology enrichment analysis 
revealed that DEGs were mainly enriched in leukocyte migration, T cell activation, and cell adhesion. Kyoto Ency-
clopedia of Genes and Genomes pathway analysis indicated that the DEGs were mainly involved in nuclear factor-
kappa B signalling pathway. Twenty hub genes were identified in the PPI network, including 5 up-regulated genes 
(FN1, PTGS2, CCND1, ITGAV, and STAT1), and 15 down-regulated genes (LCK, CD19, CCR7, ZAP70, RAC2, CD22, 
SELL, CD48, PTPN6, TNFRSF13C, BTK, CCL21, PLCG2, TNFSF11, and GNG7). Conclusion: Potential target genes 
and pathways were screenedvia integrated bioinformatic analysis. Future work is essential to verify the function of 
them across molecular biological experiments.
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Introduction

Nasopharyngeal carcinoma (NPC) is prevalent 
in South-Eastern China, Malaysia, Indonesia, 
Singapore, Eastern Asia, and Northern Africa, 
with high incidences of 15-50/100,000 per 
year [1, 2]. According to a survey from the 
International Agency for Research on Cancer, 
there was an estimated 86,700 new cases and 
50,800 related deaths in 2012 [2]. Patients 
with NPC are relatively asymptomatic at early 
stage as they originate in nasopharyngeal cavi-
ty, and therefore patients are often diagnosed 
with advanced disease when nodal metastasis 

occurs, or the tumor involves the adjacent criti-
cal normal structures like medial/lateral ptery-
goid, skull base, and the optic nerve. Though 
multidisciplinary approaches including radio-
therapy, chemotherapy, and target therapy 
have been utilized, outcomes of these patients 
remain unsatisfactory, with relatively high rates 
of 5-year distant metastasis (15-21%) [3-5]. 
Therefore, it is worthwhile to identify other 
potential approaches to optimize survival for 
NPC.

Recently, microarray technology has become a 
high-throughput platform and an indispensable 
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tool to detect genome wide expression levels of 
genes in a given organism. Gene Expression 
Omnibus (GEO) is a public functional genomics 
data repository consisting of data from multiple 
microarray platforms [6]. Bioinformatics analy-
sis has allowed for comprehensive identifica-
tion of hundreds of differentially expressed 
genes (DEGs), molecular pathways, and com-
plex interaction network involved in the tumori-
genesis, development, and progression of can-
cers. In the present study, potent molecular 
target genes and key pathways are demonstrat-
ed involving the occurrence, development, and 
prognosis of NPC, and their critical roles in 
management of NPC are highlighted.

Materials and methods

Microarray data and Identification of DEGs

Two gene expression profiles (GSE40290, and 
GSE53819) were downloaded from the data-
base of GEO (https://www.ncbi.nlm.nih.gov/
geo/). The array data of GSE40290 included 25 
primary non-keratinizing NPCs and 8 nasophar-
yngitis tissues, based on the GPL8380 
Capitalbio 22K Human oligo array version 1.0 
platform (Capitalbio. Crop, Beijing, China). 
GSE53819 consisted of 18 NPC tissue sam-
ples and 18 non-cancerous nasopharyngeal 
tissues, based on the GPL6480 Agilent-014850 

Bidirectional hierarchical clustering was applied 
to DEGs based on Euclidean distance and dis-
played the results as a heat map.

Gene ontology and pathway enrichment

With the implementation of the R package of 
“clusterProfiler” methods [9], the functional 
profiles of gene and gene clusters were per-
formed, including gene ontology (GO) [10] and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment [11]. GO analyses 
included cell component (CC), biological pro-
cess (BP) and molecular function (MF). A false 
discovery rate (FDR) <0.05 were considered 
significant.

Protein-protein interaction (PPI) network analy-
sis 

PPI network can help us obtain insights into 
interactions among DEGs, which correlate with 
oncogenesis, development and prognosis of 
NPC. The related information was gained by 
Search Tool for the Retrieval of Interacting 
Genes (STRING; http://string-db.org). An inter-
action with a combined score ≥0.4 was consid-
ered statistically significant. Then, a PPI net-
work was constructed by Cytoscape software 
[12]. Moreover, cytoHubba, as a plugin of Cyto- 
scape software [13], was employed to calculate 

Figure 1. Identification of 190 commonly changed DEGs from the two cohort 
profile data sets (GSE40290, and GSE53819). Different color areas repre-
sent different datasets. The cross areas indicate the commonly changed 
DEGs. DEGs: differentially expressed genes.

Whole Human Genome Micr- 
oarray 4x44K G4112F plat-
form (Agilent Technologies, 
Palo Alto, CA, USA). Given the 
genes corresponded to sever-
al probes, the average expres-
sion values of these probes 
were calculated to determine 
the expression value of the 
gene. Subsequently, the ske- 
wed distribution of data was 
converted into a normal distri-
bution using a log 2 transfor-
mation, followed by normaliza-
tion using the Median method 
[7]. The Linear Models for 
Microarray Analysis (limma) 
package [8] in R language was 
used to screen for the DEG- 
sbetween the NPC and non-
NPC tissue samples. |log2 
Fold Change|>1 and P value 
<0.01 were set as the strict 
cut-offs for DEG identification. 
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the node degree, and the number of inter-con-
nections to screen the hub genes of PPI. The 
top twenty genes selected by degree algorithm 
[14] were defined as hub genes. Finally, the PPI 
network of hub genes was constructed by 
Cytoscape software [12]. 

Results

Identification of DEGs

In total, 803 and 1725 DEGs were respectively 
identified from GSE40290, and GSE53819 

Table 1. Common differentially expressed genes identified in nasopharyngeal carcinoma
Regulation Differentially expressed genes (gene symbol)
Up-regulated POSTN, HOXA9, AQP9, TNFAIP6, PTGS2, KREMEN2, FN1, COL17A1, COL4A5, MMP3, ARNT2, 

ZNF488, PTK7, PLAU, CXADR, PCSK6, RCN1, HOXA10, DIAPH3, COL5A1, LRP4, NRXN1, GPC1, 
ASB9, NFE2L3, PTPRF, RBBP8, ESM1, WBP5, TUFT1, GPR143, SNAI2, ITGAV, EPHB4, KCTD3, 
GRB10, SOX4, VRK2, PLXNA1, FOXM1, PFKFB4, C5 or f13, MPP3, CENPF, IGSF3, ADAM9, 
RGS20, SPR, LAMB1, CCND1, CLDN12, GALNT11, HOMER1, ABTB2, PLAUR, ZIC2, STAT1, 
MYO10, DSCAM, RAI14, DSG2, PRC1, TK1, IDH1, COL7A1, ITPKA, TFAP2C, CIT, ANXA4

Down-regulated LTF, BLK, RBP5, PTGDS, CCL21, CD19, VPREB3, SCGB1A1, DHRS9, PTPN6, CD72, SELL, 
MS4A1, ADRA2A, CD37, FOXJ1, TIMD4, PTPRCAP, KRT4, SLC27A6, KLF2, CCR7, DPT, RAS-
GRP2, ADCY4, MSMB, UPK1B, CR2, WFDC2, RAB37, MSLN, CNR2, TEKT1, CAPS, CD48, 
CPNE5, PARVG, CD1C, IL16, CD22, PIGR, SLAMF6, PPP1R16B, RAMP3, ATP2A3, FXYD5, 
MAP4K1, SELP, HTR3A, TFEB, ATP12A, FAM3D, P2RX5, LY86, CD53, SIDT1, PLCG2, PLA2G10, 
SERPINB7, BTK, CYP4B1, PSD4, CARD11, NFATC1, TNFRSF13C, TCF7, ARHGAP9, RARRES2, 
RRAD, OSBPL10, TNFRSF13B, P2RY14, MFAP4, STAG3, POU2AF1, GNG7, LRMP, CYP2F1, 
DPEP2, KLRB1, CHI3L2, SP140, FOLR2, FCER2, EFHC2, SIPA1, FGD3, KIF9, MEF2C, CDH26, 
SPATS1, FRZB, EVI2B, MFNG, LCK, HOXA2, RAC2, TREML2, ARHGEF1, FIGF, KCNK12, 
TNFSF11, PLEKHB1, CORO1A, C7 or f23, DGKA, SLC9A2, CD1D, WFDC6, ZAP70, APBB1IP, 
NEIL1, UCP2, GRAP, FILIP1, ARHGAP4, ANGPTL6, LYL1, TRAF5, C22 or f23, HRASLS2

Figure 2. Heat map of the DEGs with fold change >2 from the GSE40290 data sets.  Red: up-regulated DEGs; Green: 
down-regulated DEGs.
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datasets, with 190 genes screened out in both 
two datasets (Figure 1). Among the 190 genes, 
69 were upregulated and 121 genes were 
downregulated in NPC tissues compared to 
non-tumor tissues (Table 1). In addition, the 
results of the expression analysis are present-
ed as a heat map (Figures 2 and 3), and the 
results of hierarchical clustering showed these 
190 DEGs expression patterns could basically 
distinguish NPC tissues and non-neoplastic 
tissues.

GO and KEGG pathway enrichment analysis

The annotation of the 190 DEGs was mainly 
classified into three functional groups: cellular 
component, biological process and molecular 
function groups (Figure 4A-C). Cellular compo-
nent analysis revealed that the DEGs were sig-
nificantly enriched in side of membrane, recep-
tor complex, external side of plasma membrane, 
plasma membrane receptor complex, and cyto-
plasmic side of plasma membrane. In terms of 
biological process, the common DEGs are sig-
nificantly enriched in leukocyte migration, T cell 

activation, leukocyte differentiation, leukocyte 
proliferation, and lymphocyte differentiation. 
Regarding molecular function, enriched GO 
terms were mainly cell adhesion molecule bind-
ing, sulphur compound binding, glycosamino-
glycan binding, and heparin binding. In addi-
tion, by KEGG pathway analysis, six significantly 
enriched pathways were found, including nucle-
ar factor (NF)-kappa B signalling pathway, B cell 
receptor signalling pathway, proteoglycans in 
cancer, hematopoietic cell lineage, small cell 
lung cancer, and primary immunodeficiency 
(Figure 4D).

Module selection from the PPI network

Based on the analysis in the STRING database, 
the PPI network of DEGs was constructed by 
Cytoscape software. As shown in Figure 5, the 
network consisted of 126 nodes and 277 
edges. The pink nodes stand for up-regulated 
genes, and the green nodes represent down-
regulated genes. In addition, twenty hub genes 
were filtered according to the degree algorithm. 
Five were up-regulated genes, including FN1, 

Figure 3. Heat map of the DEGs with fold change >2 from the GSE53819 data sets. Red: up-regulated DEGs; Green: 
down-regulated DEGs.
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Figure 4. Significantly enriched GO annotation and KEGG pathways of differentially expressed genes between na-
sopharyngeal carcinoma and non-cancer groups. (A) Cellular component, (B) Biological process, (C) Molecular func-
tion. (D) KEGG pathway analysis.
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PTGS2, CCND1, ITGAV, and STAT1. Fifteen were 
down-regulated genes, comprising of LCK, 
CD19, CCR7, ZAP70, RAC2, CD22, SELL, CD48, 

leukocyte migration, T cell activation, and cell 
adhesion, which were very associated with 
tumor growth, invasion, and metastasis [15, 

Figure 5. PPI Network of DEGs constructed by Cytoscape. The pink nodes stand for up-regulated genes, and the 
green nodes represent down-regulated genes.

Table 2. Twenty hub genes in network string_interactions.tsv ranked by Degree method
Rank Gene symbol Gene description Score Regulation
1 LCK LCK proto-oncogene 23 Down
1 CD19 CD19 molecule 23 Down
3 FN1 Fibronectin 1 18 Up
4 CCR7 C-C motif chemokine receptor 7 17 Down
4 ZAP70 Zeta chain of T cell receptor associated protein kinase 70 17 Down
6 PTGS2 Prostaglandin-endoperoxide synthase 2 16 Up
7 RAC2 Rac family small GTPase 2 15 Down
8 CD22 CD22 molecule 12 Down
8 SELL Selectin L 12 Down
8 CD48 CD48 molecule 12 Down
11 PTPN6 Protein tyrosine phosphatase, non-receptor type 6 11 Down
11 CCND1 Cyclin D1 11 Up
13 ITGAV Integrin subunit alpha V 10 Up
13 TNFRSF13C TNF receptor superfamily member 13C 10 Down
15 BTK Bruton tyrosine kinase 9 Down
15 STAT1 Signal transducer and activator of transcription 1 9 Up
17 CCL21 C-C motif chemokine ligand 21 8 Down
17 PLCG2 Phospholipase C gamma 2 8 Down
17 TNFSF11 TNF superfamily member 11 8 Down
17 GNG7 G protein subunit gamma 7 8 Down

Figure 6. PPI Network of twenty hub genes constructed by Cytoscape. 

PTPN6, TNFRSF13C, BTK, CC- 
L21, PLCG2, TNFSF11, and 
GNG7. Table 2 shows the top 
20 genes in network string_
interactions.tsv ranked by de- 
gree method. The PPI Net- 
work of the top 20 genes was 
constructed and visualized by 
Cytoscape software (Figure 
6).

Discussion

In the current cohort, 190 
DEGs were identified, includ-
ing 69 upregulated and 121 
downregulated genes betwe- 
en NPC and non-tumor tissues 
through significant analyses 
on microarray data. GO enrich-
ment analysis revealed that 
DEGs were mainly enriched in 
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16]. Wang and colleagues observed that that 
overexpression of epithelial cell adhesion mol-
ecule could result in epithelial-mesenchymal 
transition, stemness, and metastasis of NPC 
cells [17].  Additionally, targeting of focal adhe-
sion proteins may potently sensitize cancer 
cells to radiotherapy, and chemotherapy [18].

Pathway enrichment indicated that the DEGs 
were mainly involved in NF-kappa B signalling 
pathway. Several studies have reported that 
this pathway played an important role in the 
occurrence, progression, and prognosis of sev-
eral cancers, including prostate cancer [19], 
colon cancer [20], and head neck cancer [21]. 
It also correlates with EBV pathogenesis in NPC 
by regulating BamHI-A rightward transcripts 
[22]. When the pathway was activated, the 
radioresistance and chemoresistance could 
occur in NPC [23, 24]. Correspondingly, inhibi-
tion of the pathway might bring good anticancer 
results via inducing G2/M phase arrest and 
apoptosis [25]. Therefore, it may be a potential 
target pathway for improving therapeutic 
effects. More evidence is needed in this regard 
to confirm the efficacy of targeting this pathway 
in vivo and vitro.

By establishing a PPI, twenty hub genes were 
screened, which would provide new insights for 
NPC intervention strategy. FN1 is a member of 
the glycoprotein family, which involves in cell 
adhesion and migration processes [26, 27] 
that could promote cell proliferation and metas-
tases by facilitating epithelial-mesenchymal 
transition (EMT) process of NPC cells [28]. 
Another mechanism has been reported that 
FN1 could inhibit apoptosis by upregulating 
BCL2, and promote migration and invasion 
[29]. In addition, expression of FN1 is negative-
ly related to the prognosis of NPC including dis-
tant metastasis-free survival, and local recur-
rence-free survival [30]. Therefore, FN1 may be 
a potent therapeutic target for the treatment of 
NPC.

PTGS-2, also known as Cyclooxygenase-2 (COX-
2), is the key enzyme in prostaglandin biosyn-
thesis, and acts both as a dioxygenase and as 
a peroxidase. Overexpression of COX-2 was sig-
nificantly found in patients with NPC. High level 
of its expression might contribute to a poor 
prognosis for NPC [31, 32]. First, high expres-
sion of COX-2 is related to high risk of lymph 
node metastasis [32], which has been proven 

to be an independent poor prognosis factor. 
Second, higher levels of COX-2 would result in 
increasing cell proliferation, and suppression of 
cellular senescence via the inactivation of p53, 
resulting in chemoresistance [31]. Moreover, it 
had been demonstrated that the expression of 
mitochondrial COX-2 would promote the stem-
ness of NPC [33].

The protein encoded by CCND1 belongs to the 
highly conserved cyclin family. Wong and col-
leagues demonstrated that CCND1 was overex-
pressed in over 90% of NPC, and its activation 
played a critical role in NPC pathogenesis [34]. 
In addition, it might be an important target in 
regulating NPC cell cycle. It was observed that 
ribociclib, a specific cyclin dependent kinase 
(Cdk) 4/6 inhibitor, could lead to G1 arrest by 
blocking the formation of cyclin D1-Cdk4/6 
complex [34]. It also appears that CCND1 isone 
of the crucial links in the process of regulating 
cell cycle for several micro-RNAs and long non-
coding RNAs (lncRNAs), including miR-374a, 
miR-150, and lncRNA AK294004 [35-37]. For 
example, miR-374a could directly target CCND1 
to inactivate pPI3K/pAKT/c-JUN forming a neg-
ative feedback loop, as well as suppressing 
downstream signals related to cell cycle pro-
gression and epithelial-mesenchymal transi-
tion (EMT), which would suppress NPC cell 
growth, metastasis and sensitizes NPC to cis-
platin [35]. Additionally, lncRNA AK294004 
could enhance radiation sensitivity via a nega-
tive effect on CCND1 [37]. Consequently, it 
seems promising to perform trials to investi-
gate whether the target for CCND1 can trans-
late to superior survival by improving radiosen-
sitivity, and reducing metastasis for NPC.

The protein encoded by STAT1 is a member of 
the STAT protein family. Several evidences have 
shown Inhibition of STAT1 might help relieve 
immune tolerance in NPC by suppressing the 
expression of indoleamine 2,3-dioxygenase, 
which is a molecule of immune tolerance via 
decreasing T-cell proliferation. Furthermore, 
STAT1 may be closely associated with radiation 
resistance for NPC. Compared to CNE-2, signifi-
cant higher expression of STAT1 was reported 
in CNE-2R, a radioresistant cell line [38]. 
Inhibition of STAT1 could enhance radiosensi-
tivity of CNE-2R by increasing the proportion of 
G2/M phase, suppressing growth, and promot-
ing apoptosis in vitro and in vivo [39]. Hence, it 
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may be an optimal therapeutic target for radio-
resistant NPC.

Various studies have shown that CD19 plays an 
important role in diagnosis and prognosis for 
NPC. First, the percentage of CD19+ circulating 
lymphocytes correlated negatively with TNM 
stage of NPC [40]. Secondly, after radiotherapy 
and chemotherapy, the percentage of CD19+ 
lymphocytes significantly decreased in NPC 
patients [40]. Moreover, patients with high cir-
culating CD19+ B cell possessed significant 
better 5-year progression-free survival (PFS) 
than those with low circulating CD19+ B cell 
(81.8% vs. 66.6%, P=0.036) [41]. However, the 
mechanism is unclear why the level of CD19+ 
lymphocytes influences the long term survival 
of NPC.

PTPN6, also known as Src homology region 2 
domain-containing phosphatase-1 (SHP-1). A 
dataset has shown that SHP-1 is negatively 
associated with radiation sensitivity for NPC.
The mechanism may be that SHP-1 overex- 
pression inhibits cellular senescence, enhance 
DNA DSB repair, increase S phase arrest and 
decrease cell apoptosis [42]. These were con-
sistent with clinical observations by Peng et al. 
who observed high expression of SHP-1 was 
significantly associated with poor local recur-
rence-free survival [43] (P=0.008).

In conclusion, key target genes and pathways 
were screened via integrated bioinformatic 
analysis, which involved in the initiation, devel-
opment, and progression of NPC. Given their 
potential roles in targeting NPC, future work is 
essential to verify the function of them across 
molecular biological experiments to enhance 
therapeutic outcomes.
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