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Effects of 1,25(OH)2D3 on cell proliferation, apoptosis, 
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and MMP13 in rat articular chondrocytes  
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Abstract: The aim of the current study was to observe the effects of TNF-α on proliferation and apoptosis of rat 
articular chondrocytes, as well as the protective effects of 1,25(OH)2D3 on chondrocytes induced by TNF-α. TNF-α 
levels in patients with osteoarthritis (OA) were measured by ELISA. Articular chondrocytes, isolated from rat knees, 
were treated with TNF-α without or with treatment of 1,25(OH)2D3 or β-catenin signaling inhibitor IWR-1-endo, at 
indicated times. Cell proliferation, apoptosis, and expression of SOST, β-catenin, Collagen II, and MMP13 was mea-
sured by CCK-8, flow cytometry, real-time PCR, and Western blotting, respectively. It was found that TNF-α levels 
were higher in synovial fluid in OA patients, compared with that in healthy controls. TNF-α treatment (5, 10, 25, 50, 
75, and 100 ng/mL) markedly suppressed cell proliferation of articular chondrocytes in time- and dose-dependent 
manners. β-catenin signaling inhibitor IWR-endo (5 mM), as well as 1,25(OH)2D3 (10 and 100 nM), significantly 
inhibited TNF-α-mediated cell proliferation, apoptosis, and expression of SOST, β-catenin, Collagen II, and MMP13 
in articular chondrocytes. Present data suggests that 1,25(OH)2D3 suppresses TNF-α-mediated cell proliferation, 
apoptosis, and expression of SOST, β-catenin, Collagen II, and MMP13 in rat articular chondrocytes and may be ef-
fective for prevention and treatment of OA.
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Introduction

Osteoarthritis (OA), also known as osteoarthro-
sis, degenerative arthritis, and proliferative ar- 
thritis, is a chronic progressive bone and joint 
syndrome characterized by articular cartilage 
degradation. It seriously endangers the health 
of people [1]. Abnormal metabolism of articular 
chondrocytes leads to denaturation, degenera-
tion, apoptosis, and subsequent cartilage des- 
truction [2, 3], which are of great importance in 
OA development. Cytokines that regulate the 
balance of the catabolism and anabolism of 
cartilage matrix cause the destruction and deg-
radation of cartilage matrix in OA. Interleukin-1 
(IL-1) is the most important cytokine inducing 
articular cartilage destruction through mediat-

ing the imbalance between tissue inhibitors of 
metalloproteinase-1 (TIMP-1) and metallopro-
teinase [4]. The biological effects of TNF-α are 
similar to IL-1 in OA, promoting the synthesis  
of prostaglandin E2 (PGE2) and collagenase in 
fibroblasts and chondrocytes, with strong deg-
radation effects on cartilage matrix [5, 6]. Th- 
erefore, taking effective measures to inhibit 
these cytokines may be a new approach for 
early treatment of OA.

Moreover, 1,25(OH)2D3 (1, 25-dihydroxyvitamin 
D3) is the bioactive form of vitamin D in vivo 
involved in the metabolic regulation of bone  
formation and bone resorption through its  
roles in osteoblasts and osteoclasts [7, 8]. 
Bone tissue is the main target of vitamin D  
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and 1,25(OH)2D3 plays an important role in the 
proliferation and differentiation of chondro-
cytes [9]. Furthermore, 1,25(OH)2D3 can pre-
vent undesirable hypertrophic growth plate 
chondrocyte differentiation during cartilage re- 
pair or regeneration [10] and inhibit Collagen  
II, Aggrecan, MMP9, and MMP13 expression in 
ATDC5 chondrocytes and articular cartilage 
[11, 12]. Additionally, 24R, 25(OH)2D3, another 
vitamin D metabolite, but not 1,25(OH)2D3, 
blocked the functions of IL-1β on rat articular 
chondrocytes. Protective effects against OA 
were, at least in part, mediated by TGF-β1 sig-
naling pathways [13]. However, the exact roles 
of 1,25(OH)2D3 in apoptosis and proliferation of 
chondrocytes require further investigation. 

Wnt/β-catenin signaling pathways play an 
important role in maintaining the stability of 
bone and cartilage. β-catenin is elevated in OA 
patients and causes the increase of metal 
matrix proteases (MMPs) and aggrecanases, 
resulting in the destruction of cartilage [14]. 
Loss of sclerostin (SOST), a soluble antagonist 
of Wnt/β-catenin signaling, can promote OA in 
mice via β-catenin signaling [15]. However, the 
effects of β-catenin signaling on apoptosis and 
proliferation of chondrocytes are not fully un- 
derstood. In the present study, articular chon-
drocytes collected from rat knees were cultured 
with TNF-α to establish the OA model, in vitro. 
Effects of TNF-α on cell proliferation and apop-
tosis of chondrocytes, as well as the underly- 
ing mechanisms of 1,25(OH)2D3 inhibition of 
TNF-α-induced cartilage degeneration, were 
examined.

Materials and methods

Patient samples

Synovial fluid collected from OA patients (n=20) 
and healthy controls (n=20) were centrifuged at 
400 × g for 20 minutes. TNF-α levels in the cell 
supernatant were measured by TNF-α Human 
ELISA Kit (KHC3011; Thermo Fisher Scientific), 
following manufacturer protocol. 

Primary isolation and culture of articular chon-
drocytes from rat knee

Sprague-Dawley rats (4-week old) were sacri-
ficed by cervical vertebra dislocation and so- 
aked for 10 minutes in 75% alcohol. Cartilage 
was then obtained from the knee joint and 
immediately soaked in phosphate buffered 

solution (PBS). After cutting in a 5 mL centri-
fuge tube, the cartilage was digested by type II 
collagenase for 5 hours at 37°C and centri-
fuged at 400 × g for 5 minutes. After adding 
Dulbecco’s Modified Eagle Medium (DMEM) for 
termination of digestion, the deposition was 
centrifuged at 400 × g for 5 minutes, resus-
pended by DMEM containing 15% fetal bovine 
serum (FBS), and inoculated in culture dish at 
37°C in a humidified chamber with 5% CO2. 
Chondrocytes at 50-60% confluence were us- 
ed for immunohistochemistry assay. Afterward, 
they were DMEM/high glucose supplemented 
with 10% FBS and 1% penicillin/streptomycin 
and incubated with 5% CO2 at 37°C.

Identification of chondrocytes 

After being fixed by 4% formaldehyde for 30 
minutes and washing with PBS for 3 minutes, a 
total of three times, cell slides were blocked by 
3% H2O2 for 10 minutes and 1% bovine serum 
albumin (BSA) for 1 hour. They were incubated 
with anti-Collagen II or anti-SOX9 antibody 
(Abcam) at 4°C overnight. Slides were then 
stained with horseradish peroxidase (HRP)-la- 
beled IgG for 25 minutes at 25°C. Subsequ- 
ently, sections were stained with diaminobenzi-
dine (DAB), counterstained with hematoxylin, 
and soaked in dimethylbenzene. Immunoreac- 
tive cells were counted under a microscope (× 
200 magnification).

Treatment

Chondrocytes were treated with different con-
centrations of TNF-α (5, 10, 25, 50, 75, and 
100 ng/mL) for 24, 48, and 72 hours to ob- 
tain the optimum concentration. Chondrocytes 
were treated with optimum concentrations of 
TNF-α with or without treatment of 1,25(OH)2D3 
(10 and 100 nM) or IWR-1-endo (5 mM) for 24 
hours, observing the effects of 1,25(OH)2D3 on 
cell proliferation, apoptosis, and protein expres-
sions induced by TNF-α.

Cell proliferation assay

CCK-8 assay was performed using a cell prolif-
eration and cytotoxicity assay kit (SAB, CP002). 
Briefly, 100 μl of cell suspension containing 3 × 
103 chondrocytes was added to each well of 
the 96-well plates and incubated at 37°C over-
night. After treatment of chondrocytes with TNF- 
α, 1,25(OH)2D3, or IWR-1-endo, as described 
above, for 24, 48, and 72 hours, CCK-8 (10 μl 
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per well) reagent was added and reaction sys-
tem was incubated for 1 hour. Cell proliferation 
was then evaluated using the absorbance at 
450 nm.

Cell apoptosis assay

Chondrocytes were seeded in 6-well plates (5 × 
105/well). They grew adherently until reaching 
50% confluence. After treatment of chondro-
cytes with TNF-α, 1,25(OH)2D3, or IWR-1-endo, 
as described above, for 24 hours, cell apopto-
sis was assessed using flow cytometry. Briefly, 
cells were maintained for 15 minutes in the 
dark at 4°C with 5 μl fluorescein isothiocya-
nate-labeled recombinant annexinV (Annexin 
V-FITC). This was followed by 5 μl propidium 
iodide (PI) for another 5 minutes. 

Caspase-3 activity analysis

Caspase-3 Colorimetric Assay kit (KGA203; 
KeyGEN Biotech Co., Ltd, Nanjing, China) was 
used to measure Caspase-3 activity. Briefly, 3 × 
106 chondrocytes were suspended by 150 µl 
lysis buffer containing 1.5 µl DTT, disrupted on 
ice for 20-60 minutes, and centrifuged at 400 
× g for 5 minutes at 4°C. Next, 50 µl cell super-
natant containing 100-200 µg protein was 
added with 50 µl 2 × reaction buffer and 5 µl 
Caspase-3 substrate in black for 4 hours at 
37°C. Caspase-3 activity was then evaluated 
using the absorbance at 405 nm.

Real-time PCR

Total RNA from articular chondrocytes was 
extracted using the RNeasy Plus Mini Kit 
(Qiagen, Germany) and reversely transcribed 
using TaqMan reverse transcription kit (Appli- 
ed Biosystems, USA). Real-time PCR was per-
formed using the SYBR Green qRT-PCR kit 
(Promega, USA) on an ABI7500 system, follow-
ing manufacturer instructions. Primers used in 
the present study are as follows: β-catenin-F, 
5’-TCACGCAAGAGCAAGTAG-3’ and β-catenin-R,  
5’-CTGGACATTAGTGGGATGAG-3’; COL-II-F, 5’- 
TGGAAGAGCGGAGACTACTG-3’ and COL-II-R, 5’- 
TGGACGTTAGCGGTGTTG-3’; SOST-F, 5’-TGATG- 
CCACAGAAATCATCC-3’ and SOST-R, 5’-ACGTC- 
TTTGGTGTCATAAGG-3’; MMP13-F, 5’-CAGACA- 
GCAAGAATAAAGAC-3’ and MMP13-R, 5’-CAAC 
ATAAGCACAGTGTAAC-3’ GAPDH-F, 5’-GGAGTC- 
TACTGGCGTCTTCAC-3’ and GAPDH-R, 5’-ATGA- 
GCCCTTCCACGATGC-3’. Quantification of rela-

tive expression was normalized using GAPDH 
expression values and calculated using the 
2-ΔΔCt method.

Western blotting

Total protein was extracted using a total protein 
extraction buffer (Beyotime, China). Next, 10% 
sodium dodecyl sulfate polyacrylamide gel was 
prepared to isolate the proteins. After transfer-
ring to a nitrocellulose membrane, the bands 
were blocked with 5% non-fat milk. Blots were 
incubated with primary antibodies. Secondary 
antibodies were diluted to appropriate concen-
trations and added to the protein bands, 
respectively. Antibodies and reagents used 
were as follows: β-catenin (Abcam, ab32572, 
1:5000); COL-II (Abcam, ab34712, 1:5000); 
SOST (Abcam, ab63097, 1:1000); MMP13 (Ab- 
cam, ab39012, 1:3000); GAPDH (Cell Signaling 
Technology, #5174, 1:2000); HRP-labeled Goat 
Anti-Rabbit IgG (Beyotime, A0208, 1:1000); 
HRP-labeled Donkey Anti-Goat IgG (Beyotime, 
A0181, 1:1000); HRP-labeled Goat Anti-Mouse 
IgG (Beyotime, A0216, 1:1000). Results were 
used to visualize proteins using enhanced che-
miluminescence reagents (Thermo Scientific, 
USA).

Statistical analysis

Data are presented as mean ± SD. Each test 
was repeated at least three times. Statistical 
analysis was conducted using one-way ANO- 
VA with GraphPad Prism software, version 5 
(GraphPad Software, USA). P<0.05 indicates 
statistical significance.

Results 

TNF-α levels increased in patients with OA

TNF-α promotes the synthesis of PGE2 and  
collagenase in fibroblasts and chondrocytes, 
showing strong degradation effects on carti-
lage matrix [6]. Additionally, TNF-α may also 
induce the secretion of IL-1β in synovial cells 
and chondrocytes. Its activity is associated 
with IL-1β, which plays a synergistic role with 
IL-1β in the pathogenesis of OA [16, 17]. The 
current study found that TNF-α levels in synovi-
al fluid in patients with OA were increased, com-
pared with that in healthy controls (normal) 
(P<0.01; Figure 1), suggesting that TNF-α may 
be associated with the pathogenesis of OA. 



Protective effects of 1,25(OH)2D3 on chondrocytes induced by TNF-α

5300 Int J Clin Exp Med 2019;12(5):5297-5305

1,25(OH)2D3 inhibits TNF-α-induced decrease 
in the cell proliferation of chondrocytes

To confirm the present hypothesis, articular 
chondrocytes from rat knees were first collect-
ed and identified by immunohistochemical st- 
aining for Collagen II and SOX9. Results de- 
monstrated that the cells had strong protein 
expression of Collagen II and SOX9 (P<0.01; 
Figure 2A), indicating that cultured cells had 
the characteristics of chondrocytes and that 
chondrocytes were cultured successfully.

To investigate the effects of TNF-α on cell pro- 
liferation of chondrocytes, chondrocytes were 
treated with TNF-α (5, 10, 25, 50, 75, and 100 
ng/mL) for 24, 48, and 72 hours. Cell prolifera-
tion was measured by CCK-8 assay. TNF-α 
dose-dependently suppressed cell proliferat- 
ion of chondrocytes at 24, 48, and 72 hours 
(P<0.01; Figure 2B). Especially, TNF-α (5, 10, 
25, 50, 75, and 100 ng/mL) treatment inhibit-
ed cell proliferation of chondrocytes by 22.4%, 
30.9%, 39.9%, 51.3%, 60.0%, and 65.8% at 24 
hours, compared with controls, respectively. 
Therefore, 50 ng/mL TNF-α was used for the 
following experiments. Effects of 1,25(OH)2D3 
on TNF-α-mediated cell proliferation of chon-
drocytes were examined, subsequently. It was 
found that 1,25(OH)2D3 significantly inhibited 
TNF-α-mediated decreases in cell proliferation 
of chondrocytes in a dose-and time-depend- 
ent manner (P<0.01; Figure 2C). Especially, 
1,25(OH)2D3 (10 and 100 nM) increased cell 

proliferation of chondrocytes by 25.9% and 
46.3% at 24 hours, compared with TNF-α tre- 
atment, respectively. IWR-1-endo (5 mM) treat-
ment also significantly increased cell prolifera-
tion of chondrocytes by 51.7%, 90.9%, and 
138.9% at 24, 48, and 72 hours, compared 
with TNF-α treatment, respectively (P<0.01; 
Figure 2C). 

1,25(OH)2D3 inhibits TNF-α-induced increase 
in the cell apoptosis of chondrocytes

The function of 1,25(OH)2D3 in TNF-α-mediated 
cell apoptosis of chondrocytes was also exam-
ined. As shown in Figure 3A and 3B, 50 ng/ 
mL TNF-α treatment significantly induced cell 
apoptosis of chondrocytes by 12.3-fold, com-
pared with controls (P<0.01). Moreover, 1,25- 
(OH)2D3 (10 and 100 nM) treatment significant-
ly inhibited TNF-α-mediated increases in cell 
apoptosis of chondrocytes by 27.1% and 52.5%, 
respectively (P<0.01). IWR-1-endo (5 mM) treat-
ment also significantly decreased cell apopto-
sis of chondrocytes by 57.3%, compared with 
TNF-α treatment (P<0.01; Figure 3A and 3B). 
Moreover, the Caspase-3 activity in chondro-
cytes with treatment of TNF-α, 1,25(OH)2D3 and 
IWR-1-endo was also measured. It was found 
that 50 ng/mL TNF-α treatment significantly 
increased Caspase-3 activity by 2.3-fold, com-
pared with controls (P<0.01; Figure 3C). Ad- 
ditionally, 1,25(OH)2D3 (10 and 100 nM) treat-
ment significantly inhibited TNF-α-mediated in- 
creases in Caspase-3 activity by 16.1% and 
45.8%, respectively (P<0.01). IWR-1-endo (5 
mM) treatment also significantly decreased 
Caspase-3 activity by 55.5%, compared with 
TNF-α treatment (P<0.01; Figure 3C).

1,25(OH)2D3 inhibits TNF-α-mediated expres-
sion of SOST, β-catenin, COL-II, and MMP13 in 
chondrocytes

Expression of SOST, β-catenin, COL-II, and 
MMP13 in TNF-α-induced chondrocytes was 
also measured by real-time PCR and Western 
blotting. Present data shows that 50 ng/mL 
TNF-α treatment significantly increased ex- 
pression of β-catenin and MMP13, but decre- 
ased expression of SOST and COL-II, compared 
with controls (P<0.01; Figure 4A-C). Moreover, 
1,25(OH)2D3 or IWR-1-endo (5 mM) treatment 
significantly inhibited TNF-α-mediated expres-
sion of SOST, β-catenin, COL-II, and MMP13 in 
chondrocytes (P<0.01).

Figure 1. TNF-α levels increased in patients with OA. 
TNF-α levels in synovial fluid in patients with OA mea-
sured by ELISA. **P<0.01 vs. Normal.
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Figure 2. 1,25(OH)2D3 inhibits TNF-α-induced decrease in cell proliferation 
of chondrocytes. A. Expression of Collagen II and SOX9 in isolated rat knee 
articular chondrocytes was measured by immunohistochemistry (IHC) anal-
ysis. B. Chondrocytes were treated with TNF-α (5, 10, 25, 50, 75, and 100 
ng/mL) for 24, 48, and 72 hours. Cell proliferation was measured by CCK-
8 analysis. C. Chondrocytes were treated with TNF-α (50 ng/mL) with or 
without treatment of 1,25(OH)2D3 (10 and 100 nM) or IWR-1-endo (5 mM) 
for 24, 48, and 72 hours. Cell viability was measured by CCK-8 analysis. 
**P<0.01 vs. Control. ##P<0.01 vs. TNF-α.

Discussion

At present, the pathogenic factors and patho-
genesis of OA are not completely clear. Previ- 
ous studies have shown that the main reasons 
for cartilage degradation of knee OA are articu-
lar cartilage cell apoptosis, extracellular matrix 
degradation, and reconstruction of articular 
subchondral bone [18, 19]. TNF-α is a cytokine 
secreted by activated macrophages with many 
biological functions, including regulating in- 
flammatory response, apoptosis, and antiviral 
response. In the present study, articular chon-
drocytes collected from rat knees were treat- 
ed with TNF-α to establish the OA model in 
vitro. It was found that TNF-α treatment signifi-
cantly inhibited cell proliferation and induced 
apoptosis of articular chondrocytes, which was 
suppressed by treatment of 1,25(OH)2D3 or 
IWR1-endo. 

Cytokines are a kind of sub-
stance with strong biological 
activities in the body, having 
many physiological functions 
and characteristics. IL-1, an im- 
portant cytokine, promotes 
inflammatory effects through 
the production of collagenase. 
It also promotes the synthesis 
and release of PGE2 in carti-
lage synovial cells, thereby 
causing synovitis and bone 
resorption destruction. PGE2, 
in turn, further strengthens the 
effects of IL-1 on cartilage 
decomposition [20, 21]. IL-1 
can enhance the activity of 
TNF-α and TNF-α can induce 
the production of IL-1. TNF-α 
may induce chondrocyte syno-
vial cells secreting IL-1β and 
nitric oxide (NO), thereby play-
ing a synergistic role with IL-1β 
and NO in the pathogenesis of 
OA [5, 22]. In this study, TNF-α 
was found to be increased in 
OA patients, compared with 
healthy controls. TNF-α treat-
ment significantly inhibited cell 
proliferation and induced ap- 
optosis of articular chondro-
cytes, consistent with results 
of a previous study [23, 24]. 

Chondrocyte-associated gene SOX9 is coex-
pressed with Collagen II during chondrogenesis 
in mice and in cultured chondrocytes [25]. 
Collagen II and SOX9 were obviously expressed 
in primary cultured articular chondrocytes, sug-
gesting that the chondrocytes were success-
fully cultured. Osteoblast differentiation and 
proliferation are directly stimulated by 1,25- 
(OH)2D3 [7, 8], while the effects of 1,25(OH)2D3 
on proliferation and apoptosis of chondrocytes 
are not yet known. In the present study, 1,25- 
(OH)2D3 significantly inhibited TNF-α-mediated 
cell proliferation and apoptosis of chondro-
cytes, suggesting a protective role of 1,25- 
(OH)2D3 against TNF-α-induced cartilage degen-
eration in OA model in vitro. Type II collagen 
(Collagen II/COL-II) is a specific collagen of 
articular cartilage, distributed evenly through-
out the whole cartilage, accounting for 80%-
90% of total collagen. Collagen II not only par-
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ticipates in the regeneration and repair of 
articular cartilage, but also in the regulation of 
bone growth, development, differentiation and 

migration, and abnormal changes of the colla-
gen structure. These lead to articular cartilage 
degeneration and dysfunction [26]. MMP13 is 

Figure 3. 1,25(OH)2D3 inhibits TNF-α-induced increase in the cell apoptosis of chondrocytes. Chondrocytes were 
treated with TNF-α (50 ng/mL) with or without treatment of 1,25(OH)2D3 (10 and 100 nM) or IWR-1-endo (5 mM) for 
24 hours. Cell apoptosis was measured by flow cytometry analysis (A, B) and the Caspase-3 activity was measured 
by biochemical assay (C). (a) control; (b) TNF-α (50 ng/mL); (c) TNF-α+1,25(OH)2D3 (10 nM); (d) TNF-α+1,25(OH)2D3 
(100 nM); (e) TNF-α+IWR-1-endo (5 mM). **P<0.01 vs. Control. ##P<0.01 vs. TNF-α.
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secreted mainly by chondrocytes and is the 
most effective enzyme in Collagen II degrada-
tion [27]. These studies suggest that Collagen II 
and MMP13 are associated with the pathogen-
esis of OA. Similarly, current results show that 
TNF-α-induced decreased Collagen II and in- 
creased MMP13 was inhibited by 1,25(OH)2D3 
in chondrocytes. 

Wnt/β-catenin signaling has been shown to be 
associated with OA. Excessive increases or 
inhibition of the activity of β-catenin results in 
OA, but the mechanisms of the two are differ-
ent [28, 29]. Under normal physiological condi-
tions, β-catenin can promote chondrocyte mat-
uration and inhibit its apoptosis, but excessive 
expression can accelerate the maturation of 
articular chondrocytes, increase protease ex- 
pression, accelerate the degradation of carti-
lage matrix, and cause articular cartilage des- 
truction. However, when β-catenin expression 
is too low to meet physiological needs, articular 
cartilage cells will undergo excessive apopto- 
sis and cannot maintain and repair normal 
articular cartilage. These factors suggest that 
inappropriate expression of β-catenin is closely 
related to occurrence of OA. In the present 
study, TNF-α treatment increased β-catenin 
and MMP13 expression and decreased SOST 

and Collagen II expression in chondrocytes. 
This was inhibited by IWR-1-endo, a β-catenin 
signaling inhibitor, which also inhibited TNF-α-
mediated cell proliferation and apoptosis of 
chondrocytes. Increased SOST expression in 
chondrocytes inhibited cartilage degradation in 
OA [1], while decreased SOST expression result-
ed in OA through β-catenin-dependent and-
independent Wnt pathways [15].

Conclusion

In conclusion, current results indicate that 
TNF-α can inhibit cell proliferation and induce 
cell apoptosis and β-catenin signaling activa-
tion of articular chondrocytes in vitro. These 
are suppressed by treatment of 1,25(OH)2D3. 
Therefore, 1,25(OH)2D3 may serve as a novel 
therapeutic and β-catenin may serve as a novel 
therapeutic target for OA treatment.
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