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Abstract: Purpose: Molecular biological mechanisms underlying the development and progression of pulmonary
arterial hypertension (PAH) have remained largely elusive. This study aimed to investigate long noncoding RNAs (In-
cRNA) and mRNA expression profiles, examining potential functional roles of these RNA molecules in PAH. Method:
Microarray and bioinformatics analysis was used to find potential INcRNAs useful in PAH in this study. Human
pulmonary arterial smooth muscle cells (HPASMCs) were cultured and stimulated by endothelin (ET)-1 to establish
a PAH cellular model. This study examined proliferation and apoptosis, identifying expression patterns of INcRNAs
and mRNAs via microarray analysis. Bioinformatics analysis was performed for further examination. Results: After
ET-1 treatment, proliferation and apoptosis resistance of HPASMCs was enhanced. Microarray data showed that
13 IncRNAs were significantly induced and 41 IncRNAs were suppressed in HPASMCs after ET-1 treatment (Fold
change > 2 and P £0.05). Additionally, 26 mRNAs were upregulated and 6 mRNAs were downregulated. Expression
levels of the four chosen IncRNAs and mRNAs were validated by quantitative reverse transcription-polymerase chain
reaction, confirming microarray analysis. Functional analysis suggests that several groups of IncCRNAs participate in
biological pathways related to PAH by cis- and/or trans-regulation of protein-coding genes. Conclusion: Aberrantly
expressed genes and key IncRNAs identified in this preliminary study might play important roles in PAH.
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Introduction

Pulmonary arterial hypertension (PAH) is a pro-
gressive and poorly characterized disease, with
a poor prognosis in terms of quality of life.
Despite the availability of several PAH-specific
vasodilator therapies, 1-year mortality remains
high at 10% to 15% [1]. Elevated pulmonary
artery pressure and pulmonary vascular resis-
tance with decreased pulmonary vascular com-
pliance can cause obstructive vascular remod-
eling of the small resistance pulmonary arter-
ies, eventually leading to right ventricular fail-
ure and death [2].

Apoptosis resistance and proliferation of hu-
man pulmonary arterial smooth muscle cells
(HPASMCs) are important features of PAH [3].

Endothelin (ET)-1 contributes to the vascular
remodeling of artery walls, thereby playing an
important role in the pathological process of
PAH [4]. ET-1 is a vasoconstrictor and pro-prolif-
erative agent in PAH by activating two G-protein-
coupled receptors, namely, ET, and ET_, which
are targets of highly selective antagonists [5].
In vitro experiments demonstrated that ET-1
can induce excessive proliferation of HPASMCs,
mainly by activating the ET, receptor, although
such effects can be eliminated remarkably by
the ET, receptor blocker BQ123 [6, 7]. Therefore,
researchers always establish a PAH cellular
model using HPASMCs stimulated with ET-1 [6].

Development of PAH involves a complex and
heterogeneous constellation of multiple genet-
ic, molecular, and humoral abnormalities. Non-
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acquired array images. Agilent GeneSpring GX
software package (v. 13.1, Agilent Technology,
USA) was employed to finish the basic analysis
with raw data. First, raw data was normalized
with the quantile algorithm. Probes in which at
least 1 out of 2 conditions having flags in “P”
were chosen for further data analysis. Di-
fferentially-expressed genes or IncRNAs were
then identified through fold changes. The
threshold set for up- and downregulated genes
was a fold change > 2 and P < 0.05. Next, the
functional roles of these differentially-expr-
essed mRNAs were determined by GO and
KEGG analyses.

Quantitative real-time PCR (qRT-PCR)

Following manufacturer instructions, 2 ug of
RNA samples was reverse-transcribed into
cDNA using the 1st Strand cDNA Synthesis Kit
(Thermo Fisher, USA) after RNA extraction. Di-
fferentially-expressed candidate IncRNAs were
verified by qRT-PCR using 2 x SYBR Green mix
(TOYOBO, Japan). The following reaction condi-
tions were used with the ABI 7300 instrument:
Cycling conditions of 95°C for 5 minutes, fol-
lowed by 40 cycles of 95°C for 15 seconds,
60°C for 20 seconds, and 72°C for 40 sec-
onds. GAPDH, a housekeeping gene, was app-
lied in each sample as an internal control.
Sequences of specific primers were as follows:

NONHSAT158348: 5-CTTGGCATTATCTTGACA-
CCA-3’ (forward), 5-CTTCTCTGGCATTAATGTTC-
T-3’ (reverse); NONHSAT155407: 5-AATATAAG-
CCTCTGGACCTCACTAAGT-3’ (forward), 5-ATAT-
GCTCTTCGTTTGACACACAGTCT-3’ (reverse); DL-
C1: 5-CGAACGGTACCTGCTTGATGTGCAGAAAG-
3’ (forward), 5-AAGGATCCTCACCTAGATTTGGT-
GTCTTTG-3’ (reverse); EFHC2: 5'-TGAAATGGTG-
TCATCACCGAGATA-3’ (forward), 5-TTTCACTTT-
GGACAGTTTATGCCT-3’ (reverse).

After PCR amplification, melt curve analysis
was generated to identify possible contribu-
tions of unspecific products to the fluorescence
signal. Expression fold changes of each gene
were calculated via the 222t method. All assays
were performed three times.

Bioinformatics analysis

Feature Extraction software (v. 10.7.1.1, Agilent
Technologies) was used to analyze array imag-
es to obtain raw data. Genespring (v. 14.8,
Agilent Technologies) was employed to finish
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the basic analysis of raw data. To begin, raw
data was normalized with the quantile algo-
rithm. Probes in which at least 1 out of 2 condi-
tions had flags in “P” were chosen for further
data analysis. Differentially-expressed genes
or IncRNAs were then identified through fold
changes, as well as P-values calculated with
t-test. The threshold set for up- and downregu-
lated genes was a fold change = 2.0 and P <
0.05. Hierarchical clustering and volcano plots
were performed to display distinguishable gene
expression patterns among samples. GO and
KEGG analyses were applied to determine the
roles of these differentially-expressed mRNAs.
Finally, this study further explored how these
dysregulated IncRNAs may exert their function
through cis- and/or trans-regulating protein-
coding genes. Cis-regulation regions were iden-
tified by the following procedures. For each
IncRNA, this study identified mRNAs as “cis-
regulated mRNAs” when: (1) The mRNAs loci
were within 300 kb windows up- and down-
stream of the given IncRNA; (2) Pearson’s cor-
relation of INcCRNA-mRNA expression was sig-
nificant (P-value of correlation < 0.05). To cate-
gorize IncRNAs, which potentially have trans-
regulating functions, this study superimposed
IncRNA target predictions onto the IncCRNA-TF
or INcRNA-TF-mRNA correlation network using
Cytoscape (http://www.cytoscape.org).

Statistical analysis

All experiments are representative of at least
three trials. Data are expressed as the mean +
standard deviation (SD). Significant differences
between the groups were analyzed using St-
udent’'s t-test. Statistical analysis was per-
formed using SPSS (v. 18.0; SPSS, Inc.) and P <
0.05 indicates statistical significance.

Results

ET-1 induced proliferation and apoptosis resis-
tance of HPASMCs

CCK-8 assays were performed to examine the
effects of ET-1 on proliferation of HPASMCs.
Cell proliferation increased more than 1.3
times when treated with 1 yM of ET-1 for 72
hours, compared with that of cells in the control
cultures (Figure 1A). This result was further
confirmed using an EdU incorporation assay, in
which ET-1 stimulation significantly promoted
the proliferation of HPASMCs (Figure 1B and
1C).
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Annexin V-APC/7-AAD double staining was us-
ed to detect the apoptosis of HPASMCs after
treatment with 1 yM ET-1. Compared with con-
trol cells, HPASMCs treated with ET-1 signifi-
cantly decreased the population of Annexin
V-positive cells, consequently leading to apop-
tosis resistance (Figure 1D and 1E).

Analysis of aberrantly expressed IncRNAs and
MRNAs in untreated or ET-1-treated HPASMCs

To explore potential INcRNAs involved in PAH,
this study examined IncRNA and mRNA expr-
ession profiles in untreated and 1 uyM ET-1-
treated HPASMCs using microarray analysis. All
assays were performed three times. According
to present data, 54 IncRNAs were significantly
induced or suppressed in HPASMCs after ET-1
treatment, of which 75.9% (41 IncRNAs) were
suppressed and 24.1% (13 IncRNAs) were
induced (fold change > 2, P < 0.05). NON-
HSAT158348 (4.8-fold change) was the most
significantly downregulated IncRNA and NON-
HSAT155407 (2.9-fold change) was the most
significantly upregulated.

Regarding mRNAs, expression profiling data
showed that 32 mRNAs were aberrantly ex-
pressed in ET-1-treated cells, relative to control
cells (fold change > 2, P < 0.05), of which 81.3%
(26 mRNAs) were upregulated and 18.7% (6
MRNAs) were downregulated. Of these mRNAs,
DLC1 (4.1-fold change) was the most upregu-
lated protein-coding gene, while EFHC2 (2.3-
fold change) was the most downregulated.

Heat maps and volcano plots of differentially-
expressed noncoding and coding genes are
shown in Figures 2 and 3. Complete microarray
data will be publicly available at Gene Expre-
ssion Omnibus (GEO) database (https://www.
ncbi.nim.nih.gov/geo/).

Validation of RNA expression levels via gRT-
PCR

To confirm the accuracy and repeatability of
microarray data, two IncRNAs (NONHSAT15-
8348 and NONHSAT155407) and two mRNAs
(DLC1 and EFHC2) were selected for validation
by qRT-PCR, based on different expression pat-
terns between untreated and ET-1-treated HP-
ASMCs. Expression patterns of these RNAs,
detected by qRT-PCR analysis, were identical
to those determined by microarray analysis.
Thus, NONHSAT155407 and DLC1 were induc-
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ed, while NONHSAT158348 and EFHC2 were
suppressed after ET-1 stimulation (Figure 4).

GO and KEGG pathway analyses of differen-
tially-expressed mRNAs

GO analysis was used to find the potential fun-
ction of aberrantly expressed mRNAs on the
regulation of pathological responses against
ET-1 stimulation. The significance of enrich-
ment of each GO term was assessed by P <
0.05 and FDR < 0.05. GO terms were filtered by
enrichment scores (-Lg [P]) in aberrantly ex-
pressed mRNAs. Enrichment analyses of GO
terms are listed in Figure 5. GO analysis sh-
owedthat chorio-allantoic fusion (GO:0060710),
proteinaceous extracellular matrix (GO:00055-
78), and inhibin binding (GO:0034711) were the
most enriched GO terms targeted by differen-
tially upregulated mRNAs in biological process,
cellular component, and molecular function,
respectively. Additionally, negative regulation of
cell growth (GO:0030308), apical plasma mem-
brane (G0:0016324), and metalloendopepti-
dase inhibitor activity (GO:0008191) indicated
the most enriched GO terms targeted by differ-
entially downregulated mRNAs in biological pro-
cess, cellular component, and molecular func-
tion, respectively.

KEGG pathway analysis is a knowledge base
for systematic analysis of gene function, linking
genomic information with a higher-order func-
tional information. This study identified the mo-
st significantly enriched pathways of upregulat-
ed mRNAs and downregulated mRNAs ana-
lyzed by KEGG analysis, using either Chi-sg-
uared test or Fisher’s exact test. The top three
upregulated pathways were axon guidance
(pathway ID: hsa04360), TGF-beta signaling
pathway (pathway ID: hsa04350), and HTLV-I
infection (pathway ID: hsa05166). The top th-
ree downregulated pathways were vitamin di-
gestion and absorption (pathway ID: hsaO40-
60), alpha-linolenic acid metabolism (pathway
ID: hsa00592), and linoleic acid metabolism
(pathway ID: hsa00591). Enrichment analyses
of pathways are shown in Figure 6.

Cis-regulation of IncRNAs

According to chromosomal coordinates, the cl-
osest differentially-expressed neighboring mR-
NAs, within 300 kb from transcription start and
stop sites, were determined for each diffe-
rentially-expressed IncRNA using a custom R
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Figure 1. ET-1 induced proliferation and apoptosis resistance of HPASMCs. (A) CCK-8, (B & C) EdU, (D & E) Annexin
V-APC/7-AAD double staining. All data are represented as the mean + SD from the three independent experiments,
*P <0.05, **P < 0.01, ***P < 0.001, Student’s t-test.

script. It was found that two differentially-ex- Discussion
pressed IncCRNAs may play cis roles as gene ) )
regulators. Moreover, INcRNA NONHSAT151314 Recent discoveries have shown that IncRNAs

was predicted as a positive moderate role in could play different roles in pathogenesis and

the cis-regulation of AHDC1, while NONHS- tumorigenesis. They gould be novgl clinical bip-
markers and potential therapeutic targets in

diseases [9]. However, only a few IncRNAs were
confirmed to be related to diseases. Most re-

AT201343 played as a negative moderate role
in CXCL8 regulation.

Trans-regulation of IncRNA main unrevealed, including those in PAH. Thus,
the present study aimed to uncover the roles of
Using a threshold of P < 0.01 and FDR < 0.01, IncRNAs in the pathological development of
this study found 218 IncRNA-TF pairs corre- PAH. To the best of our knowledge, this study is
sponding to 36 TFs. Next, this study generated first to report altered IncRNA levels in ET-1-
a core network using the top 100 IncRNA-TF stimulated HPASMCs, examining their possible
pairs with the most credentiality (lowest P val- roles in PAH. Such roles have contributed to a
ues and FDRs), as shown by Figure 7. Most of better understanding of the pathogenesis of
these potential trans-regulatory IncRNAs par- this devastating disease. Molecular mecha-
ticipated in pathways regulated by three TFs, nisms of ET-1-induced proliferation of PASMCs
namely, SUZ12, FOSL2, and STAT3. In the core have been studied in depth [6, 10], but most of
network of INcRNA-TF pairs, SUZ12 participates the involved gene transcriptional regulations
in 32 of the 100 pairs, FOSL2 in 15 pairs, and are still indefinite. In the present study, IncRNA
STAT3 in 14 pairs. and mRNA expression profiles of ET-1-stim-
ulated HPASMCs were built using gene expr-
The IncRNA-TF-mRNA correlation network was ession microarrays, such as IncRNA profiling,
built using Cytoscape. This co-expression net- which has the potential to identify PASMC-
work consisted of 253 mRNA—InCRNA/TF pairs. associated factors related to PAH.
As shown in Figure 8, several TFs, including
SUZ12, STAT3, and XRCC4, were potential tar- ET-1 is observably upregulated in patients with
gets in the transcriptional regulation of gene PAH and exerts diverse actions on HPASMCs by
expression in the INcRNA-TF-mRNA network. interacting with G protein-coupled receptors
SUZ12 was a transcription regulator playing an [11]. ET-1 is also the most potent vasoconstric-
important role in the core network. tor and directly modulates HPASMC growth by

4688 Int J Clin Exp Med 2019;12(5):4685-4696



RNA expression profiles in PAH

>
R |

Inc-|

NH
IH;
IH;

-
22200

SET

ggggsagaazEzay
%‘gﬁﬁs’gﬁ"‘

IncRNAs

i -
NHSAT221

et

HSAT1
NH. 11%“80

1

T A

e

E BST2

MSTN

RFX8
GALNT12

ADAMTSE
TDRD10

HLA-DOB1
RAB3B
WNT7B
AGPATY
LYPD6B
INHBA
DIRAS3
DLC1
CYR61
NRP1
SERPINE1
AKAP12
SRFBP1
SEMATA
LoX
NTSE
HS3ST3A1
WFDC108
SCG5
FST
NCEH1
EPHB2

mMRNAs

Figure 2. Transcriptomic landscape of HPASMCs with/without ET-1 treatment. (A) Hierarchical clustering analysis
of 54 aberrant IncRNAs and (B) 32 aberrant mRNAs (Fold change > 2 and P < 0.05). Red and green colors indicate
high and low expression levels, respectively. In the heatmap, columns represent the samples and rows represent
individual genes. The scale of the expression level is shown on the horizontal bar.
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Figure 3. (A) Volcano plots show the distribution of IncRNAs and (B) mRNAs in HPASMCs with/without ET-1 treat-
ment. Significantly up- and downregulated RNAs are presented as red or blue dots, respectively, and RNA expression
levels that were not significantly differentially expressed are presented as green or grey dots (Fold change > 2 and
P < 0.05).

acting as an autocrine and paracrine secretion
mitogen [12]. Along with its strong vasocon-
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strictive action, ET-1 can promote HPASMC pro-
liferation. It also has anti-apoptotic effects on
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Figure 4. qRT-PCR results of the four chosen IncRNAs and mRNA all validate
those of the microarray (P < 0.05, Student’s t-test). The heights of the columns
in the chart represent the mean fold changes in the expression for each of
these genes. Bars represent SD. Fold change is positive when expression is

upregulated and negative when downregulated.

HPASMCs [13]. Present results prove that ET-1
could induce proliferation and apoptosis resis-
tance of HPASMCs. The cellular model of PAH
was built using ET-1-treated HPASMCs.

The present study identified aberrantly expre-
ssed IncRNAs (41 downregulated and 13 upreg-
ulated) and mRNAs (6 downregulated and 26
upregulated) between ET-1-treated HPASMCs
and control cells, using bioinformatics analys-
is. Further function annotation showed that
upregulated mRNAs were mainly involved in
chorioallantoic fusion, proteinaceous extracel-
lular matrix, and inhibin binding, while down-
regulated mRNAs were involved in the negative
regulation of cell growth, apical plasma mem-
brane, and metalloendopeptidase inhibitor ac-
tivity. This finding is consistent with the knowl-
edge that HPASMC proliferation is the main
cause for PAH development and progression
[14].

Furthermore, enriched KEGG pathways of upre-
gulated mRNAs included axon guidance, TGF-3
signaling pathways, and HTLV-I infection. TGF-3
signaling pathways play a major role in the ini-
tiation and progression of PAH. TGF- is not
only an important regulator of vascular remod-
eling and inflammation in the lungs but also of
hypertrophy and fibrosis in the heart [15].
Downregulated mRNAs have been related to
vitamin digestion and absorption, alpha-linole-
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nic acid metabolism, and

linoleic acid metabolism.
I microarray Patients with PAH are char-
o apeeR acterized by having chang-
es in fatty acid composi-
tions, with elevated linoleic,
oleic, and docosahexanoic
acids in phospholipids [16].
Therefore, monitoring these
signaling pathways may aid
in the prediction and treat-
ment of PAH progression.

Cis-regulatory elements are
regions of noncoding DNA
that regulate the transcrip-
tion of nearby genes [17]. It
was found that two differ-
entially-expressed IncRNAs
may play cis-regulator rol-
es for the closest differen-
tially-expressed neighbor-
ing mRNAs, within 300 kb
from the transcription start and stop sites.
Moreover, INcRNA NONHSAT151314 was pre-
dicted as a positive moderate role in the cis-
regulation of AHDC1, while NONHSAT201343
played a negative moderate role in the regula-
tion of CXCLS8.

The former mRNA AHDC1 was never reported
to join the biological mechanisms of occur-
rence and development of PAH. However, the
latter mRNA CXCLS8 is a pro-inflammatory factor
that is frequently over-expressed in PAH [18].
Inflammation plays an important role in the
pathogenesis of human PAH and anti-inflam-
mation treatment exerts reverse-remodeling
effects by augmenting apoptosis and reversing
inflammation in PASMC [19]. Present microar-
ray results showed that cis-regulation of the
over-expressive status of CXCL8 genes may be
possible by downregulating the nearby IncRNA
NONHSAT201343. Hence, IncRNA NONHSAT-
201343 may be a key factor to prevent and
reverse pulmonary vascular remodeling.

Although some IncRNAs are cis-regulators, mo-
st functionally characterized IncRNAs are act-
ually trans-regulators [20]. This study predicted
the function of trans-regulatory IncRNAs th-
rough TFs that possibly regulate their expres-
sion. In the core network of both IncRNA-TF and
IncRNA-TF-mRNA pairs, SUZ12 was the tran-
scription regulator acting a central role in sig-
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Figure 6. Pathway analysis of differentially-expressed genes in HPASMCs with/without ET-1 treatment. (A) Significant pathways of upregulated genes and (B) down-
regulated genes. The pathways are considered statistically significant at P < 0.05.
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Figure 7. IncRNA-TF core network consisting of the top 100 pairs of INcRNA and TF with the most relevance. The red arrows represent IncRNAs and blue squares
represent TFs. Edges between them indicate that the INcCRNAs were potentially regulated by the TFs. IncRNAs = long noncoding RNAs, TF = transcript factor.
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naling pathways. SUZ12, one of the core poly-
comb repressive complex 2 (PRC2) compo-
nents, has been increasingly appreciated as a
key mediator during human tumorigenesis.
PRC2, a member of the polycomb group, har-
bors multiple core members executing their
functions by histone modifications [21]. SUZ12
has been found to be frequently over-expressed
in several solid cancers. Its aberrant overex-
pression has been significantly associated wi-
th aggressive clinicopathological features and
inferior survival [22-25]. However, expression
patterns and biological mechanisms of SUZ12
in PAH remain largely unexplored. Present data
shows that SUZ12 was recruited by 32 IncRNAs,
according to trans-regulation analysis of the
top 100 IncRNA-TF pairs, suggesting that coor-
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dinated patterns of IncRNAs and transcription
factors involved in PAH development may be
present. Further functional studies are neces-
sary to determine expression patterns, as well
as clinicopathological significance and biologi-
cal roles in PAH.

This preliminary study identified a subset of
aberrantly expressed IncRNAs in ET-1-stim-
ulated PASMCs. These IncRNAs might contrib-
ute to the proliferation and anti-apoptosis of
HPASMCs and PAH development by cis- and/or
trans-regulation of protein-coding genes. Fur-
ther mechanism studies of these IncRNAs are
needed. These studies may expand the under-
standing of PAH pathogenesis, providing new
approaches for treatment of this disease.
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