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Abstract: Several previous studies have investigated the association between the peroxisome proliferator-activated 
receptor (PPAR) signal pathway and cancer risk; however, the results of these studies were inconsistent, and the role 
of the PPAR signaling pathway in cancer remains unclear. Therefore, the aim of this study was to further investigate 
the association between the PPAR signaling pathway and breast cancer risk. RNA-Seq expression data were derived 
from a breast cancer cohort of the Gene Expression Omnibus (GEO) dataset. A two-way hierarchical clustering analy-
sis (HCA), a support vector machine (SVM) classifier, and a protein-protein interaction (PPI) network were built in the 
training dataset (GSE42568) using the twenty-one differentially expressed genes (DEGs) which were annotated into 
the PPAR signaling pathway. The accuracy of the candidate informative DEGs using the training dataset (GSE42568) 
in risk-stratifying samples was 72.73%, and the accuracy of the SVM classifier was 97.52%. The predictive ability of 
the validation datasets, GSE29431 and GSE21422, achieved reliable outcomes, with the risk-stratifying samples 
at 96.97% and 94.74%, respectively, from the two-way HCA. The accuracy yields were 92.42% and 94.74%, respec-
tively, using the SVM classifier. A PPI analysis showed that the twenty-one DEGs formed a retinoid X receptor alpha 
(RXRA)-centric world with 14 nodes. Collectively, the twenty-one informative genes of the PPAR signaling pathway 
may represent the key genes associated with the occurrence of breast cancer. Our results provide the primary infor-
mation and basic knowledge necessary to better understand the mechanisms of cancer pathogenesis.

Keywords: Breast cancer, gene expression omnibus datasets, peroxisome proliferator activated receptors signal-
ing pathway, SVM classifier, two-way hierarchical clustering analysis

Introduction

Breast cancer (BC) is a common cancer among 
females in both developed and developing 
countries [1], with the risk of developing BC 
known to be influenced by both genetic and 
environmental factors. A total of 1.7 million new 
BC cases have been identified since 2012, with 
over 500,000 related deaths [2]. As BC cases 
continue to rise annually, corresponding to high 
mortality rates [3, 4], the association between 
potential environmental and genetic factors 
and BC risk needs to be further investigated. 
Recent studies have highlighted several genet-
ic factors that appear to correlate with BC risk 
[5-7], including metabolism-related genetic 
variations [8].

Peroxisome proliferator-activated receptors 
(PPARs) comprise a cluster of nuclear transcrip-
tion factors that are members of the nuclear 

hormone receptor super-family. They possess 
important functions in cellular differentiation 
and the regulation of carbohydrates and lipid 
metabolism [9]. Accordingly, polymorphisms in 
these receptors are assumed to affect the 
pathology of cancers and other diseases. Three 
PPAR subtypes, namely, PPAR alpha (PPARA), 
PPAR delta/PPAR beta (PPARD/PPARB), and 
PPAR gamma (PPARG), have been found to be 
dynamically regulated at multiple molecular lev-
els. Endogenous PPARA ligands include palmit-
ic acid, arachidonic acid, and stearic acid. In 
addition, other known ligands include com-
pounds such as fenofibrate, bezafibrate, and 
non-steroidal anti-inflammatory drugs [10, 11]. 
Thus far, genetic variants of PPARA have been 
related to lipoprotein levels [12], cardiovascular 
disease [13], obesity [14], and type 2 diabetes 
[15]. These conditions arise through etiologic 
mechanisms that may also be relevant to breast 
carcinogenesis, including inflammation and 
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insulin resistance. Although the biology and 
epidemiology of PPARA suggest that this recep-
tor may also play a role in BC, limited data exist 
on the possible link between PPARA and BC. 

PPARG plays a pivotal role in regulating adipo-
cyte differentiation, glucose and lipid homeo-
stasis, and intracellular insulin-signaling events 
[16]. In addition, PPARG appears to have a con-
tradictory role in tumorigenicity. Indeed, several 
studies have demonstrated the tumorigenic 
role of PPARG in a variety of cancers such as 
bladder tumors, renal pelvic tumors, hemangio-
ma, lipoma, skin fibrosarcoma, mammary ade-
nocarcinoma, and hepatic tumors. The tumori-
genicity of PPARs has not been fully recognized; 
however, recent studies have suggested vari-
ous mechanisms for this reported effect. In 
contrast, the anti-tumorigenicity of PPARG ago-
nists through other hypothesized mechanisms, 
as well as the downregulation of PPARG in some 
human cancers, has been reported [17-27]. 
Moreover, the activation of PPARG by its ligands 
can suppress the growth of tumor cells in liver, 
pancreatic, biliary, oral, esophageal, gastric, 
and colorectal tumors, suggesting that PPARG 
ligands may be a possible anticancer factor in 
PPARG-expressing tumors [28].

For complete activation, PPARs must heterodi-
merize with retinoid X receptors (RXR) to form a 
PPAR/RXR complex. This complex then binds to 
a specific DNA sequence, termed the PPAR-
response element, in a given target gene [29]. 
RXRA is a nuclear receptor that regulates tran-
scription, both as a homodimer and an obligate 
heterodimerization partner for 14 other nuclear 
receptors, including PPARA, PPARD, and PPARG 
[30].

Bioinformatics is an effective tool for collecting, 
classifying, and analyzing biological datasets, 
including gene expression microarray datasets 
[31, 32]. In fact, gene expression analysis by 
bioinformatics methods has been widely em- 
ployed in genomics and biomedical research, 
broadening insights into the molecular mecha-
nisms underlying human biology and disease 
[33]. Data mining of the available microarray 
datasets could assist scientists to bridge the 
research gap and to carry out more efficient 
experiments. 

In this study, we analyzed public microarray 
data using a two-way hierarchical clustering 
analysis and a support vector machine (SVM) 
classifier in order to clarify potential associa-

tions between the PPAR signaling pathway and 
BC. Differentially expressed genes (DEGs) were 
first identified between the normal and tumor 
groups. From these DEGs, optimal informative 
genes were extracted using the DEGs annotat-
ed into the PPAR signal pathway. Candidate 
genes were then subjected to build a SVM clas-
sifier; the predictive capability of the candidate 
informative genes was then verified using two 
independent datasets. These informative gen- 
es were also utilized to construct protein-pro-
tein networks. Finally, we attempted to identify 
PPAR signal pathway-related genes to gain 
insight into the pathogenesis of BC.

Materials and methods

Data source 

Two mRNA-seq expression datasets were acc- 
essed from the Gene Expression Omnibus da- 
ta portal (https://www.ncbi.nlm.nih.gov/geo/). 
The GSE42568 dataset was used as a training 
set, which included 104 primary breast sam-
ples and 17 normal control samples. The GSE- 
29431 and GSE21422 datasets were used as 
validation sets and consisted of 54 primary 
melanoma samples and 12 normal control 
samples and 14 primary melanoma samples 
and 5 normal control samples, respectively. 
The three mRNA expression datasets were 
assessed using GPL570 Platform. All microar-
ray data were called using the GC robust mul-
tichip average method [34] and quantile nor-
malized using the “affy” Bioconductor package 
by contributor. 

Data preprocessing and differentially ex-
pressed genes (DEG) screening

Annotations to the probes were performed; 
probes that were not matched to the gene sym-
bol were excluded. The average expression val-
ues were taken if different probes mapped to 
the same gene. DEGs in patients with BC ver-
sus those in healthy matched controls were 
analyzed using the DESeq package (version 
3.10.3) of Bioconductor. A strict cutoff thresh-
old was used and set to P<0.05 and fold change 
≥2.0.

Predictive capacity in proposed HCA and SVM 
classifier model

The DEGs that were annotated into the PPAR 
pathway were selected for further analysis. 
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Two-way HCA was performed on the expression 
values of genes that were significantly overlap-
ping using the heatmap2 package (21) in R, 
and the distance was under default value.

A SVM classifier was constructed using the sup-
port vector classification function in sklearn in 
the svm package of Python (version 3), with the 
linear Kernel function (C=0.3) and a 3-fold 
cross-validation. In addition, the random seed 
was held at 100 to shuffle the training set. The 
capacity of classification were evaluated based 
on six metrics, including the accuracy, sensitiv-
ity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and area under 
the receiver operating curve (AUC).

Verification of the classification model using 
other two independent dataset

Two-way HCA and the SVM classifier, based on 
the candidate informative genes, were con-
ducted sequentially to further verify classifica-

associated with other genes were identified 
with degrees ≥10 [37, 39].

Results

HCA and SVM classifier for distinguishing dis-
ease status

To examine the PPAR signal pathway on BC risk, 
we used two independent methods, namely, 
HCA and SVM classifier. Using these methods, 
we identified shared DEGs in the PPAR signal 
pathway. Using HCA, the association between 
the expression pattern of candidate genes and 
the disease status of the samples were identi-
fied with the Euclidean method. SVM classifier 
discrimination between cancer patients and 
healthy samples was based on a hyperplane to 
maximize the distance between two samples 
on different sides of the plane, which were the 
closest samples to the plane in each category, 
respectively. The general workflow were showed 
in Figure 1.

Figure 1. The procedure of the proposed method. The workflow consisted 
of three key parts: gene expression data processing, screening PPAR signal 
pathway-related differential genes, and distinguishing the disease status of 
the samples.

tion reliability by computing 
other two independent datas-
et as the test set.

Construction of mRNA-mRNA 
networks

The Search Tool for the Re- 
trieval of Interacting Genes/
Proteins (STRING; http://www.
STRING database.org/) [35] is 
a gene or protein analysis tool 
designed to provide a critical 
assessment and integration 
of protein-protein interactions 
(PPIs). In this study, overlap-
ping genes were mapped into 
the STRING database for PPI 
analysis and PPI scores >0.4 
were selected as significant 
[36, 37]. A PPI network was 
then constructed using Cyto- 
scape software (version 3.5.1) 
[38], and the degree was used 
for stating the role of the pro-
tein nodes in the network. 
Specifically, the greater the 
degree, the more important 
the nodes were in the net-
work. In PPIs, genes closely 
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Identification of selected informative genes

A total of 1833 DEGs were identified between 
normal and control samples using R software. 
Of these, 684 were upregulated, whereas 1149 
were downregulated. Twenty-one candidate in- 
formative genes of the PPAR pathway were 
selected for further analysis. These included 
FABP4, LPL, ACADL, PCK1, SCD, ME1, ADIPOQ, 
PLIN4, ACADM, ACSL1, PPARG, CD36, PLIN1, 
PLIN2, NR1H3, ANGPTL4, EHHADH, FABP5, 

PLTP, RXRA, and SCP2. The distribution of the 
expression levels of the twenty-one candidate 
PPAR pathway-associated genes was shown in 
Figure 2A, with the detailed information pro-
vided in Table 1.

PPI network analysis

In view of the controversy between PPARs and 
cancer, the twenty-one candidate associated 
genes were selected to perform further analy-

Figure 2. Analysis of twenty-one candidate signature genes in the training cohort (GSE42568). A. Expression distri-
bution of twenty-one differentially expressed genes in breast cancer patients and normal samples in the discovery 
cohort analyzed by microarray. The red color represents the normal group, whereas grey represents the tumor 
group. The log2 ratio of expression (normal/tumor) is displayed on the y-axis, and the gene category is displayed on 
the x-axis. B. PPI network. The color depth represents the weight of genes in the network; nodes less than 3 are in 
sky blue, with a gradual change from sky blue to dark blue indicating nodes greater than 3 and less than 10. Red 
indicates the hub genes, with nodes greater than 10. C. Heatmap showing the gene expression profile of twenty-
one candidate PPAR pathway-related genes based on hierarchical clustering. The blue color represents the normal 
group, whereas the red color represents the tumor group. Upregulated and downregulated genes are indicated by 
red and green, respectively. D. Receiver operating characteristic (ROC) analysis of the SVM classifier based on the 
twenty-one candidate signature in the training set. All samples in the training set were classified into the tumor 
group and normal match group via the SVM classifier; tumor samples were set as the positive group, whereas the 
normal samples were set as the negative group.
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sis. This PPI network was visualized using 
Cytoscape. Hub genes with a degree of interac-
tion >10 were defined as those that strongly 

able result with the accuracy of 97.52%, a sen-
sitivity of 99.05%, a specificity of 83.33%, a 
PPV of 97.25%, a NPV of 94.44%, and AUC of 
97.62% (Figure 2D; Table 3).

Validation of the classification model in 
GSE29431 cohort

The performance of two-way HCA and the SVM 
classifier based on the twenty-one candidate 
signature genes was verified using the testing 
datasets. The results of two-way HCA indicated 
that all the samples in the validation dataset 
were stratified into two groups. The accuracy 
was thus determined to be 96.97% (64/66), 
only 2 normal samples incorrectly clustered 
into the tumor group and all tumor samples 
were extremely accurate classified into the cor-
responding group (Figure 3A; Table 2).

Likewise, the SVM model could correctly distin-
guish the tumor sample and normal samples 
attaining high accuracy (92.42%), and AUC, the 
sensitivity, specificity, PPV and NPV reaching 
88.27%, 94.44%, 83.33%, 96.23%, 76.92%, 
respectively (Figure 3B; Table 3). 

Table 1. Detail information of twenty-one candidate 
signature genes

Status Gene 
name log2FC p-value p-adjust

Downregulated FABP4 -4.54 2.32E-55 5.46E-51
LPL -5.43 1.08E-30 1.02E-27

ACADL -4.33 4.56E-15 5.42E-13
PCK1 -6.62 4.76E-27 2.67E-24
SCD -3.5 1.29E-11 9.75E-10
ME1 -3.89 3.31E-24 1.26E-21

ADIPOQ -4.3 4.59E-36 9.00E-33
PLIN4 -5.3 3.24E-28 2.24E-25

ACADM -2.18 4.72E-12 3.86E-10
ACSL1 -3.78 6.27E-29 4.76E-26
PPARG -4.98 4.24E-24 1.56E-21
CD36 -4.67 6.61E-26 3.11E-23
PLIN1 -5.99 1.01E-38 2.98E-35
PLIN2 -1.89 2.50E-05 5.97E-04

NR1H3 -1.89 3.64E-05 8.28E-04
ANGPTL4 -2.09 4.21E-08 1.76E-06
EHHADH -2.71 4.45E-09 2.29E-07
FABP5 -2.19 3.19E-04 5.66E-03
PLTP -1.95 4.13E-05 9.20E-04
RXRA -1.92 5.22E-04 8.60E-03
SCP2 -1.03 1.44E-04 2.84E-03

Table 2. Summary of clinical samples in the 
training and two test datasets

Cancer Healthy Total
Cancer 86 2 88
Healthy 18 15 33

104 17 121
Note: The row was the actual class, and the column was 
the predicted class (training dataset, GSE42568).

Cancer Healthy Total
Cancer 54 2 56
Healthy 0 10 10

54 12 66
Note: The row was the actual class, and the column was 
the predicted class (test dataset, GSE29431).

Cancer Healthy Total
Cancer 14 1 15
Healthy 0 4 4

14 5 19
Note: The row was the actual class, and the column was 
the predicted class (test dataset, GSE21422).

interacted with other candidate genes, 
including RXRA, LPL, FABP4, and PPARG 
(Figure 2B). These hub genes may repre-
sent key genes affected by the PPAR signal 
pathway that were associated with BC. 

HCA of candidate mRNAs

A total of twenty-one candidate PPAR path-
way-associated logarithmic expression val-
ues were subjected to HCA using the train-
ing set. As shown in Figure 2. As the result 
showed that all samples were distinctly 
subdivided into two clusters. The accuracy 
was 72.73% (88/121) and more specifi-
cally, 15 out of the 17 normal samples 
were incorporate into individual cluster 
and 86 out of the 104 tumor samples were 
classified into the other cluster (Figure 2C; 
Table 2). 

Assessment on the training dataset using 
the SVM classifier model

To further confirm whether the candidate 
signature genes can discriminate between 
the two types of samples, an SVM classifi-
er model was proposed on the basis of 
their expression values and achieved reli-



The PPAR signaling pathway in breast cancer

7332 Int J Clin Exp Med 2019;12(6):7327-7336

Further validation in the GSE21422 cohort

Further validation of the predictive value of the 
candidate genes in the diagnosis of BC was 
conducted using another independent valida-
tion cohort. HCA of all samples (n=19) revealed 
clear distinctions between BC patients and 
healthy samples. Samples were classified into 
cluster 1 and cluster 2, and achieved a predic-
tion accuracy of 94.74% with one normal sam-
ple incorrectly clustered into the tumor group 
(18/19) (Figure 3C). The SVM-based candidate 
gene risk classifier performed remarkably we- 
ll. The accuracy was 94.74%, with an AUC of 
95.71%, a sensitivity of 100.00%, specificity of 
80.00%, PPV of 93.33%, and a NPV of 100.00% 
(Figure 3D; Table 3). In total, these results con-
firmed the twenty-one candidate signature 
genes can reliably discriminate the normal 
sample from controls in BC.

Discussion

Many studies have shown that BC is a meta-
bolic disease [40, 41]. For example, the gluta-
mate-to-glutamine ratio and aerobic glycolysis 
have been proposed as biomarkers of ER and 
Her2 status, respectively [42, 43]. PPARs are 
key transcriptional factors that catalyze and 
coordinate a variety of biochemical events in 
order to achieve energy homeostasis associat-
ed with many types of cancer, including hepato-
cellular carcinoma [44], lung adenocarcinoma 
[45], squamous cell carcinoma of the head and 
neck [46], bladder cancer [47], and skin carci-
noma [48]. However, the association between 
the PPAR pathway and cancer risk remains con-
troversial, and a prospective analysis is essen-
tial to determine any potential relationships.

Currently, several advanced biological tech-
niques, including gene array and high-through-

put sequencing, have been identified as ideal 
approaches for assessing the mechanisms of 
development and the immune responses to 
various diseases. In this study, a comprehen-
sive bioinformatics analysis of several gene 
array datasets was applied to determine DEGs 
in BC and their associated pathways. A total of 
1833 DEGs were identified to be associated 
with BC, including 684 upregulated DEGs and 
1149 downregulated DEGs. Twenty-one candi-
date downregulated signature genes were then 
annotated into the PPAR signal pathway. Key 
selected downregulated DEGs were further 
used to investigate the PPI network analysis. 
Our results demonstrated that the RXRA and 
FABP4 genes presented with substantially mo- 
re “weight” than the other genes in the interac-
tion network.

Recent studies have shown that PPARG inhibits 
cellular proliferation and induces apoptosis 
through the upregulation of phosphatase and 
tensin homolog (PTEN), the downregulation of 
survivin, the downregulation of the X-linked 
inhibitor of apoptosis (XIAP), suppression of 
NF-κB and glycogen synthase kinase (GSK)-3β, 
upregulation of cyclin-dependent kinase (CDK) 
inhibitors, downregulation of CDK and cyclin 
D1, downregulation of prostaglandin-endoper-
oxide synthase 2 (PTGS2), upregulation of Kru- 
ppel-Like Factor 4 (KLF4), upregulation of Bax, 
downregulation of Bcl-2, and inhibition of telom-
erase activity and human telomerase reverse 
transcriptase (hTERT) expression through mod-
ulation of the Myc/Mad/Max network [49]. 
However, complete activation is dependent on 
heterodimerization with RXR, thus forming a 
PPARG/RXRA complex. We therefore speculat-
ed that the downregulated expression level of 
the PPARG/RXRA complex induces cellular pro-
liferation and blocks apoptosis, resulting in BC.

To further investigate the association between 
the PPAR pathway and BC risk, the twenty-one 
candidate signature genes were selected for 
two-way HCA and to train the SVM classifier. 17 
normal samples versus 104 tumor samples 
were used in the trial. The resulting outcomes 
showed that the accuracy of the informative 
genes was 72.73%. The classification capability 
of the signature genes was further verified 
using two independent datasets (GSE29431 
and GSE21422) that included 12 normal sam-
ples versus 54 tumor samples, and 5 normal 
samples versus 14 tumor samples, respective-

Table 3. Performance of twenty-one candidate 
signature genes in SVM classifier

Metrics
Training dataset Test datasets

GSE42568 GSE29431 GSE21422
Accurancy 97.52% 92.42% 94.74%
Sensitivity 99.05% 94.44% 100.00%
Specificity 83.33% 83.33% 80.00%
PPV 97.25% 96.23% 93.33%
NPV 94.44% 76.92% 100.00%
AUC 97.62% 88.27% 95.71%
Note: The tumor samples were set as positive group, while the 
normal sample as negative group.
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ly. Two-way HCA and SVM classifier analysis 
achieved consistent results, supporting our 
conclusion that these twenty-one candidate 
PPAR pathway-related genes exhibit a potential 
association between PPAR and BC risk. How- 
ever, few reports exist regarding the involve-
ment of these candidate genes in BC. Hence, 
further studies implicating the associations 
between the genes identified in this study and 
BC are warranted.

In conclusion, the present study identified 
twenty-one key DEGs in the progress of BC. Our 

results indicated that the four key genes, RXRA, 
LPL, FABP4, and PPARG, had a high degree of 
interaction, implying that they may co-function 
in the tumorigenesis of BC by participating in 
the regulation of the PPAR signaling pathway. 
However, further laboratory experiments are 
still required to confirm the exact association 
between these genes in order to clearly under-
stand what correlation patterns exist among 
them. Collectively, the present study provided 
basic information, paving the road for future 
experimental research to investigate the mech-
anisms of BC development. Increasing knowl-

Figure 3. Performance of the two-way HCA and the support vector machine (SVM) classifier based on twenty-one 
candidate signature genes in the independent validation cohorts (GSE29431 and GSE21422). A. A heatmap of 
clustering analysis in the GSE29431 cohort. All samples were clustered into cluster 1 and cluster 2. B. ROC analysis 
of the SVM classifier in the GSE29431 cohort. All samples in the validation set were divided into the tumor group 
and normal group via the SVM classifier. C. The heatmap of HCA of all samples in the GSE21422 cohort. D. ROC 
analysis of the SVM-based twenty-one candidate signature genes in the GSE21422 cohort.
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edge regarding the mechanisms of BC may lead 
to improved diagnostic efficacy, as well as the 
development of novel treatments.
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