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Abstract: Background: Accumulating experimental and clinical evidence suggests that human urinary kallidinoge-
nase (HUK) improves stroke outcome. Here, a systematic review and meta-analysis was conducted to evaluate the 
effects of HUK on cerebral ischemia in animal models. Methods: A systematic search of the literature published be-
fore June 2018 was performed using PubMed, Embase, Medline, and Cochrane Library. The outcome was assessed 
using the infarct volume and heterogeneity was analyzed using Cochrane Library’s RevMan 5.3. Results: From the 
471 studies that were initially examined, a total of nine studies were selected. When compared with the control 
group data, HUK therapy resulted in an overall 4.52% reduction in infarct size (95% confidence interval: 3.66-5.39, 
P < 0.00001). Subgroup analysis showed that maximal neuroprotective effects were reached when HUK was admin-
istered immediately after middle cerebral artery occlusion (MCAO). Conclusions: HUK had a neuroprotective effect 
in animal models of MCAO, especially in animals administered HUK immediately after MCAO.
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Introduction

Stroke is one of the most common causes of 
mortality and disability worldwide; moreover, 
with 87% of strokes being ischemic [1]. Cur- 
rently the only clinically validated therapy for 
acute ischemic stroke is intravenous adminis-
tration of tissue-type plasminogen activator 
within 3 hours of onset [2]. As few therapeutic 
options are available for the treatment of isch-
emic stroke, searching for new interventions to 
reduce ischemic brain damage has been a 
major research endeavor. Using experimental 
focal cerebral ischemia models (most often 
middle cerebral artery occlusion [MCAO]) that 
mimic acute stroke under strict control, studies 
have provided information on the pathophysio-
logical mechanisms of stroke and developed 
novel stroke therapies during the recent de- 
cades [3].

The kallikrein-kinin system (KKS), which con-
sists of kallikrein, kininogen, kininase, kinin, 
and kinin receptors, is an indispensable inflam-
matory modification system in vivo [4]. Human 

tissue kallikrein has been shown to exert pro-
tective effects in ischemic stroke patients by 
inhibiting apoptosis and inflammation following 
cerebral ischemic injury [5]. Human urinary kal-
lidinogenase (HUK) is a tissue kallikrein extract-
ed from urine with a substrate preference for 
cleaving low-molecular-weight kininogen to re- 
lease kinins. Consequently, vasoactive kinins 
trigger a series of biological effects by activat-
ing bradykinin B1 and B2 receptors [6]. China’s 
State Food and Drug Administration approved 
HUK as a new state category I drug for the ther-
apy of acute ischemic stroke, and it has been 
used since 2012.

During the past few decades, several clinical 
studies have revealed that HUK promotes cere-
bral perfusion, boosts cerebral glucose metab-
olism, extenuates brain edema, and blocks 
post-stroke inflammatory cascades. However, 
the efficacy of HUK for ischemic stroke has not 
been clarified in previous preclinical and clinical 
studies. The progress of HUK research in vivo 
has been limited by the small sample size and 
different experimental conditions. In this paper, 
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a systematic review and meta-analysis was 
performed to evaluate the therapeutic effect of 
HUK in animal models of MCAO. These findings 
may provide evidence for clinical judgment in 
the future.

Materials and methods

Methods

A meta-analysis was performed according to 
the Preferred Reporting Items for Systematic 
reviews and Meta-analyses (PRISMA) guide-
lines [7].

Database and literature search strategies

A systematic search of the literature from 
January 1960 to June 2018 was conducted 
using PubMed, Embase, Medline, and Cochrane 
Library. The keywords used for the search were 
“kallikrein” OR “Urinary Kallidinogenase” AND 
“isch(a)emia” OR “stroke” OR “infarct” OR “mid-
dle cerebral artery occlusion (MCAO)”. 

Study selection and inclusion criteria

Studies were independently screened by two 
investigators (MFX and BWX). Study inclusion 

intrinsic neuroprotection; (g) used an appropri-
ate animal model; (h) use of and appropriate 
sample size; (i) compliance with animal rights 
protection regulations; (j) made a statement 
about potential conflicts of interest [8, 9]. Each 
study was assessed by two investigators (MFX 
and BWX) and the group median was calcula- 
ted.

Data extraction 

Data from all reports was extracted indepen-
dently by two investigators (MFX and BWX), in 
accordance with the inclusion criteria described 
above (Figure 1). Comparisons were performed 
between the HUK treatment and control groups 
from the selected studies. For each compari-
son, the mean outcome, standard deviation, 
and number of animals in each group were 
examined. The data collected included time of 
ischemia, mode of HUK administration, timing 
of HUK administration, dosage of HUK, the 
infarct volumes, timing of treatment initiation, 
and outcome detection. When the results were 
presented graphically, the numerical data were 
requested from the original authors or extract-
ed using the image analysis software Image J 

Figure 1. Flow diagram of study selection process. Nine papers were in-
cluded in this study.

criteria were: 1) kallikrein used 
to treat ischemic stroke in- 
duced by MCAO; 2) study de- 
sign including a control group; 
and 3) infarct sizes compared 
between groups. Study exclu-
sion criteria were: 1) second-
ary study; 2) clinical studies; 3) 
studying a disease other than 
MCAO; and 4) kallikrein thera-
py not used. A third investi- 
gator (XZQ) resolved any dis-
agreement between the prima-
ry screening investigators. 

Quality of data

Study quality with a total of 10 
points was assessed using the 
criteria by Macleod et al., awar- 
ding points for: (a) publication 
after peer review; (b) tempera-
ture control instruction; (c) ran-
domly divided into the treat-
ment or control groups; (d) 
ischemia was blindly induced; 
(e) outcome was blindly scored; 
(f) used an anesthetic without 
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(National Institutes of Health, Bethesda, MD, 
USA). 

Data analysis

Statistical analysis was performed using the 
RevMan 5.3 software (Cochrane Library, Lon- 
don, UK). Data were aggregated using weighted 
mean differences and a fixed effects model. 
Subgroups were defined based on different 
experimental conditions and the source of het-
erogeneity was then analyzed. P < 0.01 was set 
as significance level for multiple comparisons. 

Results 

Study inclusion and characteristics

Nine publications [10-18] were identified 
describing the effects of HUK in focal cerebral 
ischemia that met the inclusion criteria (Table 
1). These publications included nine full arti-
cles published from 2006 to 2018; eight stud-
ies used rats (six Sprague-Dawley rats and two 
Wistar rats) and one study used mice (Kunming 
mice). The MCAO models from eight studies 
were injected with human tissue kallikrein 
(Techpool Bio-Pharma Co. LTD, Guangdong, 
China) with a molecular weight of approximately 
43 kD, and only one study used adenovirus-
carrying human tissue kallikrein cDNA (Ad.CMV-
TK). Injection of HUK was through tail vein in all 
included studies, and all publications reported 
relative infarct volume. Treatment initiation 
ranged from 0 to 24 hours after ischemia induc-
tion, and the outcome detection time ranged 
from 3 hours to 28 days.

Efficacy 

The detection time of the outcome in MCAO 
ranged from 3 hours to 28 days. Protective 
effects were observed at different detection 
time points. In particular, Figure 2 shows that 
HUK treatment decreased infarct volume to the 
greatest extent 24 hours after occlusion (χ2 = 
43.69, df = 4, P < 0.00001, I2 = 91%). 

Kallikrein treatment elicited a 4.52% reduction 
of infarct size (95% confidence interval (CI): 
3.66-5.39%, P < 0.00001) with significant het-
erogeneity (χ2 = 136.98, df = 8, P < 0.00001, I2 
= 94%). All treatment subtypes (repetitive or 
single administration) exhibited protective ef- 
fects (Figure 3). It showed that single adminis-
tration of HUK (9.22% reduction; 95% CI: 7.79-

10.65%, P < 0.00001) has a better impact on 
decreasing effect size when compared to repet-
itive administration (1.77% reduction; 95% CI: 
0.68-2.87%, P < 0.002).

Treatment of HUK ranged from 0 to 24 hours 
after the onset of ischemia, and protective 
effects were found for all treatment timings 
(Figure 4). However, the maximum neuro-pro-
tective effect was observed immediately after 
reperfusion (10.56% reduction; 95% CI: 8.54-
12.58%, P < 0.00001).

Quality of studies

The median included quality score was 6 (range 
4 to 7). None of the included studies declared 
masked induction of ischemia and masked 
assessment of outcome. Six studies stated 
temperature control and three stated random 
allocation to HUK treatment or control groups. 
All of the studies reported the use of appropri-
ate anesthetics and animal models. The overall 
quality score table is included as Table S1.

Discussion

The current meta-analysis supports the neuro-
protective effects of HUK in cerebral ischemia-
reperfusion (I/R) injury. Except for one study 
using adenovirus carrying human tissue kalli-
krein cDNA, the rest of the studies used HUK 
protein directly, and all studies were performed 
by intravenous injection of the tail vein. Delayed 
treatment of HUK was found to not be as effec-
tive as immediate treatment, which was consis-
tent with previous guidelines that recommend 
rapid identification, emergency care, and early 
rehabilitation for acute ischemic stroke [19, 
20]. It is important to highlight that single HUK 
treatment is more effective than repetitive 
administration, which might be relative to the 
detection time points selected. Additional stud-
ies are required to define the HUK therapeutic 
window and course after cerebral I/R injury. 
Moreover, animal species, route of administra-
tion, and pharmaceutical dosage are also im- 
portant variables influencing the outcome. 
Unfortunately, the limited data show a non-sig-
nificant trend towards differential variables.

Plasma and tissue kallikrein, a subgroup of ser-
ine protease, cleave kininogens to form kinins 
and have been recommended as an attractive 
target linking several pathological hallmarks to 
cerebral ischemic damage [21]. Previous stud-
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Table 1. Characteristics of the animal studies included in the meta-analysis

Year Author Species Time of  
ischemia# Route of HUK treatment Injection 

region Dosage Time of onset Outcome Behavioral 
Test Detection time

1 2015 Han SD 2 h Human urinary kallidinogenase Tail vein 1.6*10-2 PNA U/kg Immediately after reperfusion 3* Longa Score 3 h, 1 d, 3 d, 7 d and 14 d

2 2008 Ling SD 2 h Human urinary kallidinogenase Tail vein 1.6*10-2 PNA U/kg 24 h after occlusion, daily 3* Bederson scores 3 d, 7 d, 14 d and 28 d

3 2010 Chen Kunming mice 2 h Human urinary kallidinogenase Tail vein 2.0*10-2 PNA U/kg 24 h after reperfusion 3* NSS 6 h, 24 h, 48 h and 72 h

4 2016 Dong SD 2 h Human urinary kallidinogenase Tail vein 8.75*10-3 PNA U/kg 30 min after occlusion 1* - 72 h

5 2006 Xia SD 1 h Ad.CMV-TK Tail vein 1011 PFU 8 h after reperfusion 3* Bederson scores 3 d, 7 d and 14 d

6 2016 Shi SD 1.5 h Human urinary kallidinogenase Tail vein 1.6*10-2 PNA U/kg Immediately after reperfusion 3* NSS 24 h

7 2009 Tang Wistar rats 2 h Human urinary kallidinogenase Tail vein 1 mg/kg Immediately afterocclusion 3* NSS 24 h

8 2018 Liang Wistar rats 2 h Human urinary kallidinogenase Tail vein 1.6*10-2 PNA U/kg 24 h after occlusion, daily 3* Bederson scores 3 d and 7 d

9 2017 Yang SD 2 h Human urinary kallidinogenase Tail vein 8.75*10-3 PNA U/kg 0 and 12 h after reperfusion 3* Longa Score 24 h
#All studies used the middle cerebral artery occlusion (MCAO) models. 1*: Infarction size; 2*: Neurobehavioral score; 3*: Infarction size combined Neurobehavioral score. PFU = Plaque-forming units. h = hours; d = days.
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ies have suggested that delivery of the kalli-
krein protein or gene plays a beneficial role 
after cerebral I/R injury, such as reducing 
infarct size and inhibiting inflammation and cell 
apoptosis [10, 22, 23]. However, KKS activa-
tion, especially kinins and their receptors, has 
been thought to induce pro-inflammatory re- 
sponses, which aggravates ischemic injury 
[24]. These results may help explain why kalli-
krein exerts biological functions through kinin 
B2-receptor signaling without kinin formation 
[25].

A previous meta-analysis by Zhang et al. 
assessed the efficacy of HUK for acute isch-
emic stroke patients, which included 24 trials 
and 2433 patients [26]. Patients treated with 
HUK had a greater neurological score and a 
better recovery than patients who received pla-
cebo. Considering these results, it is essential 
to introduce animal experiments to study 
potential mechanisms underlying HUK treat-

ment and evaluate its biological value. Although 
current focal or global cerebral ischemia mod-
els fail to precisely mimic human ischemia, ani-
mal models have no additional pathological 
changes and can be well controlled with highly 
consistent pathological effects. In addition, ani-
mal models offer opportunities to study the 
effects of HUK on the brain, improve our under-
standing of the complex physiopathologic cas-
cades, and identify possible therapeutic tar-
gets [27]. Preclinical data from animal models 
of ischemic stroke indicate the development of 
therapeutic strategies and help facilitate their 
translation to clinical practice. 

Some limitations in the present study should be 
mentioned. First, the included studied showed 
a high degree of heterogeneity because of lim-
ited data. Only nine animal studies were pooled 
to assess the effects of HUK. Second, the sub-
group analysis was not well implemented 
because of the lack of statistical power. Third, 

Figure 2. Evaluation of relative infarction size and 95% CI at different detection time. HUK treatment decreased 
infarction volume by 12.82% compared with controls at 1 day after occlusion with significant heterogeneity.
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possible adverse side effects of HUK were not 
reported in these experiments, making it diffi-
cult to determine the comprehensive effects of 
HUK. Finally, the quality of most included stud-
ies was not ideal. 

Conclusion

In conclusion, the current study reports that 
administration of HUK decreases the infarct 
size in animal models of MCAO. The neuropro-
tective effects for MCAO models reached a 
maximum when HUK therapy was implemented 
immediately after stroke and tended to be the 
highest 24 hours after I/R injury. These find-
ings may provide comprehensive evidence for 
the neuroprotective effects of HUK therapy in 

MCAO models and may be important to future 
clinical trials.
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Table S1. Quality Scores for Included Papers

Year Author
Publication 
after peer 

review

Temperature 
control  

instruction 

Random allocation 
to treatment or 

control

Ischemia 
was blindly 

induced

Outcome 
was blindly 

scored

Anesthetic 
without intrinsic 
neuroprotection

Appropriate 
animal model

Appropriate 
sample size

Compliance with 
animal welfare 

standards

Conflict of 
interest Total

2015 Han 1 0 0 0 0 1 1 0 1 1 5
2008 Ling 1 1 1 0 0 1 1 1 1 0 7
2010 Chen 1 1 1 0 0 1 1 0 1 1 7
2016 Dong 1 0 1 0 0 1 1 1 1 1 7
2006 Xia 1 0 0 0 0 1 1 1 0 0 4
2016 Shi 1 1 0 0 0 1 1 0 1 1 6
2009 Tang 1 1 0 0 0 1 1 1 1 0 6
2018 Liang 1 1 0 0 0 1 1 1 1 1 7
2017 Yang 1 1 0 0 0 1 1 1 1 0 6


