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Abstract: The goal of this study was to identify hub genes as potential targets in rheumatoid arthritis (RA) using 
weighted gene co-expression network analysis (WGCNA). Gene expression profiles of GSE17755 were download-
ed from the GEO database and screened for differentially expressed genes (DEGs) with the limma package in R. 
Significant modules in the network were identified via WGCNA. Then, Gene Ontology (GO) functional enrichment of 
genes in the most significant module was analyzed using Database for Annotation, Visualization, and Integrated 
Discovery (DAVID). Finally, the disease-related gene co-expression network was visualized using Cytoscape, and hub 
genes were identified on CytoHubba. Overall, 3666 DEGs and 8 modules were identified. The turquoise module in-
cluding 1044 genes was identified as the most relevant to RA. GO functional enrichment showed genes in the most 
relevant module were mainly related to the inflammatory response and the type I interferon signaling pathway. Ten 
hub genes, including PIGL, PRKAA1, and MRPS10, were identified. Genes related to the inflammatory response and 
the type I interferon signaling pathway possibly play critical roles in RA pathogenesis. PIGL, PRKAA1, and MRPS10 
may be new targets for treating RA.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoim-
mune disease involving multiple systems and is 
characterized by persistent inflammatory syno-
vitis of peripheral joints. Its incidence is approx-
imately 1% worldwide and it mostly affects 
women [1]. It is known that failure to control 
inflammation over time causes cartilage dam-
age, bone erosion, and joint ankylosis, which 
leads to joint deformities and functional loss 
[2], but the pathogenesis of RA remains unclear. 
Nevertheless, great progress has been made in 
RA treatment following the advent of targeted 
drugs, such as tumor necrosis factor (TNF)-α 
antagonists, interleukin (IL)-6 inhibitors, and 
JAK pathway inhibitors. Thus, studying the 
molecular mechanism of RA is beneficial for 
early diagnosis and prognosis improvement.

With the rapid development of genomics, tran-
scriptional and sequencing technology in recent 
years, the application of gene co-expression 
networks is gradually expanding in biological 
research. These networks are widely used in 
high-throughput chip data, RNA sequencing 

data, DNA methylation data, and other data 
analysis. The most representative analysis is 
weighted gene co-expression network analysis 
(WGCNA) [3], which has been widely used and 
has provided meaningful findings in the gene 
analysis of many diseases [4]. However, litera-
ture review returned only two studies of apply-
ing WGCNA to RA. Their samples were small in 
size and came from the synovium and T cells, 
respectively [5, 6]. Since RA is a systemic dis-
ease, its lesions are not restricted to the synovi-
um, and peripheral blood is easy to collect. 
Therefore, WGCNA was first used to analyze the 
gene expression profiles in peripheral blood, 
clarify the association between modules and 
RA as well as find potential biomarkers by 
exploring the genes in relevant modules. 

Materials and methods

Data collection

The National Center for Biotechnology Infor- 
mation (NCBI) Gene Expression Omnibus (GEO) 
database provides a large collection of microar-
ray expression data [7]. The gene expression 
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profiles were searched using “rheumatoid 
arthritis” as the key word according to two crite-
ria: 1) the dataset was generated from periph-
eral blood cells of patients with RA; 2) the 
expression profiles of peripheral blood cells of 
RA patients and healthy individuals were av- 
ailable in the dataset. Finally, GSE17755, 
GSE15573, GSE68689, and GSE100191 were 
selected. There were 112 patients with RA and 
45 healthy individuals in the GSE17755 datas-
et, which had the largest sample size among 
the selected datasets.

Therefore, the GSE17755 series was selected 
as the research object, and the microarray data 
were obtained on the GPL1291 platform and 
submitted by Lee H and colleagues [8]. A total 
of 244 samples are included in this series, of 
which there were 112 RA and 45 healthy con-
trol samples for a total of 157 samples that 
were selected in this study for subsequent 
analysis. Ethics approval was not required 
because the expression profiles were down-
loaded from a public database and did not 
directly perform any experiments with patients 
or animals.

Data preprocessing

GSE17755 series matrix files were download-
ed, and the probe names for platform GPL1291 
were transformed into gene symbols based on 
the Hitachisoft AceGene Human Oligo Chip 30K 
Chip, Version 1. If multiple probes correspond-
ed to the same gene symbol, the mean value 
was calculated using the aggregate function in 
R as the expression value of that particular 
gene. If the expression value of the probe was 
absent, the nearest neighbor average (KNN) 
algorithm in the impute package of R was used 
[9]. The obtained data were standardized.

Differentially expressed genes (DEGs) analysis

DEGs in RA samples compared to healthy con-
trols were screened using the t test in the limma 
package of R [10]. Then, the P values were 
adjusted using the FDR method. Only genes 
with adjusted P<0.05 were recognized as sig-
nificantly and differentially expressed genes. 

Construction of weighted gene co-expression 
network

Analysis in the WGCNA package (version 1.63) 
of R was performed as described later [11]. The 
soft threshold of an adjacency matrix was 
selected to ensure closeness to the scale-free 

network (model index = 0.9), but the minimum 
threshold was chosen to make the curve 
smooth. Such settings allowed the network to 
contain sufficient information for module min-
ing. The adjacency matrix was computed and 
transformed into a topological overlap matrix 
(TOM), through which a hierarchical clustering 
tree was generated. With the dynamic tree cut 
method, the minimum module size was set to 
30, and several gene modules were determined 
in which module 0 preserved the genes outside 
all modules and was expressed in gray [12].

Detection of disease-related modules

Two methods were used to determine the asso-
ciation between each module and RA [3]. 1) 
The biological significance of each gene was 
evaluated using gene significance (GS). The dif-
ferential expression between RA patients and 
controls was examined via the t test. Later, the 
correlation between the module and RA status 
was assessed using module significance (MS), 
which was defined as the average GS of all 
genes in a module. 2) The modular eigengene 
(ME) in each module was used as the charac-
teristic expression of all genes in the module to 
correlate with the sample phenotypes, and the 
most disease-related module was identified.

GO functional enrichment of genes in the 
disease-related module

The genes in the disease-related module were 
submitted to DAVID (Database for Annotation, 
Visualization and Integrated Discovery) for 
functional enrichment analysis based on the 
Gene Ontology (GO) database [13]. Significant 
enrichment was set as P<0.05.

Identification of hub genes in the disease-
related module

The collective weighted value was calculated 
among genes in selected modules and set the 
threshold at >0.6. The gene co-expression net-
work was visualized on Cytoscape 3.6.0, and 
then hub genes in the network were identified 
on CytoHubba, which is a plugin of Cytoscape 
[14].

Results

Data preprocessing and DEGs screening

After data preprocessing, expression matrices 
of 13101 genes were obtained from the 157 
samples. Overall, 3666 DEGs with adjusted 
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P<0.05 were screened out for subsequent 
analysis.

Detection of RA-related co-expression modules

Using the WGCNA package of R, a set of candi-
date soft thresholds were selected and 
returned to the detected model (Figure 1). 
Clearly, the appropriate soft threshold was five. 
In the hierarchical clustering tree, eight co-
expression modules were identified with the 
dynamic tree cut method (Figure 2).

and thus the turquoise module involving 1044 
genes was identified as the most relevant mod-
ule to RA.

GO functional enrichment of genes in the 
disease-related module

Genes in the turquoise module were tested via 
GO functional enrichment analysis (Table 1). It 
was found that the selected genes were signifi-
cantly associated with inflammatory response, 
vasculogenesis, transforming growth factor 

Figure 1. Threshold value analysis. The X-axis in the left figure represents the candidate thresholds and the Y-axis 
corresponds to the index of a scale-free network model; the right figure shows the mean connectivity of a network 
corresponding to the thresholds.

Figure 2. In the tree diagram, every leaf node represents a gene. Modules 
represented by different colors were identified using the dynamic tree cut al-
gorithm. The distance between two genes was shown as height on the y-axis.

Two methods were used to 
test the relevance between 
each module and RA. First, 
the MS of each module was 
calculated, and larger MS 
suggested higher relevance 
(Figure 3). The results showed 
the turquoise module had the 
highest MS among all the 
selected modules. Second, 
the relevance between the 
ME of modules and pheno-
types was calculated (Figure 
4). Clearly, the turquoise mod-
ule was still the most rele- 
vant (correlation coefficient = 
0.92). The results of the two 
methods were consistent, 
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Table 1. GO functional enrichment analysis of the turquoise module
Term Count P Value
Inflammatory response 40 9.2E-06
Vasculogenesis 13 1.3E-05
Transforming growth factor beta receptor signaling pathway 16 3.66E-05
Cell proliferation 37 5.22E-05
Positive regulation of the protein kinase B signaling 14 2.05E-04
Type I interferon signaling pathway 12 2.44E-04

turquoise module was vi- 
sualized using Cytoscape 
software, and its hub 
genes were identified via 
cytoHubba. Among the 12 
methods, MCC, which cap-
tures more essential pro-
teins in the top of the 
ranked list for both high-
degree and low-degree 
proteins, performs better 
than the others [14]. 
Therefore, the MCC meth-
od was used to identify 10 
hub genes and generated 
a circular co-expression 
network (Figure 5). The 
hub genes include PIGL, 
MRPS10, PRKAA1, SLC22- 
A17, LEPRE1, C19orf61, 
ZNF646, ZNF84, C8orf17, 
and FOXM1 (Table 2).

Discussion

RA is a common autoim-
mune disease, which prob-
ably causes joint deforma-
tion, interstitial lung dis-
ease and vasculitis. RA 
also disturbs patients’ nor-
mal lives and induces 
severe property losses. 
Currently, the pathogene-
sis of RA remains unclear, 
but the advent of target- 
ed therapy highlights the 
great significance of inves-
tigating RA at the molecu-
lar level, as researchers 
have done for tumors.

Currently, bioinformatics 
analysis is becoming more 
common in basic research 
on rheumatoid arthritis. 
Most of these investiga-

Figure 3. Module significance (MS) values of each module. Different colors indi-
cate different modules.

Figure 4. Relevance between each module and RA. Each row represents a mod-
ule. In each module, the numbers above represent correlation coefficients, and 
the numbers in brackets below represent P values.

beta receptor signaling pathway, cell prolifera-
tion, positive regulation of protein kinase B sig-
naling and type I interferon (IFN) signaling path-
way in the category Biological Process (BP).

Identification of hub genes in the disease-
related module

According to the collective weighted values 
among genes, the co-expression network in the 

tions are based on analysis of DEGs. WGCNA 
divides genes into multiple modules by analyz-
ing the association between genes. Then, 
through the correlation analysis between these 
modules and sample phenotypes, the molecu-
lar characteristics of specific phenotypes could 
be found. WGCNA is obviously more scientific 
and reasonable than DEGs analysis. Before this 
study, there was no study that applied WGCNA 
to analyze the expression of genes from the RA 
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a JAK inhibitor, was approved as a novel drug 
for RA treatment. Type I IFN signaling, which 
can interact with Toll-like receptor and TNF-α, 
was reportedly involved in the pathogenesis of 
RA [16, 17]. 

Of the top 10 hub genes identified in the dis-
ease-related module, PIGL is a protein-coding 
gene and its related GO annotations include 
N-acetylglucosaminylphosphatidylinositol dea- 
cetylase activity. PIGL mutations are associat-
ed with CHIME syndrome, which is character-
ized by colobomas, heart defects, ichthyosi-
form dermatosis, mental retardation, and ear 
anomalies. Although there is no report concern-
ing PIGL in RA, PIGL mutations can impair gly-
cosylphosphatidylinositol (GPI) biosynthesis, 
which is associated with RA [18]. A study 
showed that soluble GPI was released from 
activated neutrophils and was present at high 
concentrations in synovial fluids but not the 
sera of RA patients [19]. Therefore, PIGL may 
affect RA by regulating GPI biosynthesis.

PRKAA1 encodes a catalytic alpha subunit of 
AMP-activated protein kinase (AMPK). As re- 

Figure 5. A circular gene co-expression network in the turquoise module. Ten 
hub genes were identified with the MCC method in cytoHubba. Different col-
ors for the genes indicate different degrees of importance that decrease 
from red to orange to dark yellow.

Table 2. Ten hub genes and their MCC scores 
in the circular gene co-expression network
Name Score
PIGL 170
MRPS10 141
PRKAA1 76
SLC22A17 68
LEPRE1 62
C19orf61 50
ZNF646 44
ZNF84 40
C8orf17 38
FOXM1 38

genes was found to be the 
most relevant to RA.

GO enrichment analysis show- 
ed the selected genes were 
mainly enriched in GO terms 
related to the inflammato- 
ry response, vasculogenesis, 
and the type I IFN signaling 
pathway. First, the 40 genes en- 
riched in the inflammatory re- 
sponse were partial chemo-
kines and their receptors, 
such as CCL5, CCL7, CCL13, 
CCL17, CCL20, and CCR7. 
Chemokines, which induce 
migration of inflammatory 
cells, were abundantly ex- 
pressed in the synovial tis-
sues of RA, which suggests 
chemokines are promising 
targets for RA therapy [15]. 
Second, the type I IFN signal-
ing pathway includes 12 
genes, such as JAK1 and HLA-
E. In recent years, JAK1 has 
become a focus for research-
ers in the field of rheumatoid 
arthritis. Tofacitinib, which is 

peripheral blood gene chip. Moreover, the se- 
lected series contains a large number of sam-
ples, which ensures the results are accurate 
and stable.

GSE17755 is currently the largest gene expres-
sion series in the GEO database that meets our 
study requirements. After screening 3666 
DEGs, we utilized WGCNA to identify 8 mod-
ules, and the turquoise module involving 1044 
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ported, mice deficient in PRKAA1 mildly elicited 
an increase of clinical arthritis versus wild type 
controls [20]. Recent studies showed that acti-
vation of AMPK can limit JAK-STAT-dependent 
signaling pathways for RA treatment [21, 22]. 
Methotrexate protects the vascular endotheli-
um of RA patients from inflammatory injury via 
activation of AMPK-CREB signaling [23].

MRPS10 encodes a subtype of mammalian 
mitochondrial ribosomal proteins that facilitate 
protein synthesis in the mitochondria. LEPRE1 
is a gene that is highly associated with a rare 
genetic disease called osteogenesis imperfec-
ta, and it may play a role in the biology of cellu-
lar senescence [24, 25]. FOXM1 encodes a pro-
tein that is a transcriptional activator in cell 
proliferation, and this hot gene has been 
exploited as a biomarker for diagnosis, progno-
sis and treatment of many different tumors [26, 
27]. Although the roles of these genes in RA 
have not been reported, predictions for the 
aforementioned genes were made using the 
same methods from previous studies, and it 
was reasonable to believe these genes were 
probably involved in RA pathogenesis. The- 
refore, these newly identified genes reflect the 
innovative value of our research, and this study 
explores new directions for future basic re- 
search of RA.

Nevertheless, this study is still in the bioinfor-
matics analysis stage, and the findings should 
be verified by several appropriate experiments. 
In addition, the samples from the GEO data-
base provide very few clinical data, and there is 
especially a lack of data concerning epidemiol-
ogy, disease activity and treatment, which pre-
vented us from analyzing the relationships 
between the selected modules and additional 
clinical data for RA.

Conclusions

A total of 8 modules was detected using 
GSE17755 data and this study identified the 
most relevant one for RA. Genes in the most 
relevant module were related to the inflamma-
tory response and type I IFN signaling pathway 
according to GO Biological Process. Ten hub 
genes, including PIGL, PRKAA1, and MRPS10, 
were identified in this module, which presum-
ably play critical roles in RA pathogenesis. 
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