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Abstract: Objective: The aim of the current study was to screen potential novel biomarkers involved in AMI. Methods: 
Microarray data of AMI (GSE66360) was obtained from the Gene Expression Omnibus (GEO) database. Using the lim-
ma package, differentially-expressed genes (DEGs) between samples from AMI and healthy controls were screened. 
Based on the DAVID tool, functional analysis was carried out. Protein-protein interaction (PPI) and transcription 
factor (TF)-miRNA-target gene regulatory networks were visualized using Cytoscape software. Finally, drug-gene 
interactions were predicted using the DGIdb database. Results: A total of 339 DEGs between samples from AMI and 
healthy controls were identified. Upregulated DEGs were mainly enriched in 32 pathways, including osteoclast dif-
ferentiation, TNF signaling pathways, and transcriptional mis-regulation in cancer. Cytokine-cytokine receptor inter-
action was the main functional enrichment for downregulated DEGs. IL8, JUN, IL1B, TNF, and FOS were key nodes in 
the PPI network. In addition, three miRNAs, including has-miR-191, has-miR-101, and has-miR-20, nine TFs, includ-
ing NFKAPPAB, SRF, IK3, and NFKAPPAB65, and 34 regulatory relationship pairs were integrated. Prediction results 
revealed that TNF, IL1B, and TLR4 might be potential druggable genes for AMI patients. Conclusion: IL8, JUN, IL1B 
might be novel markers for atherosclerotic plaque instability. MicroRNAs, including miR-191, miR-101, and miR-20, 
might provide a window for exploration of potential biomarkers for diagnosis and prognosis for AMI patients.
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Introduction

Although a significant reduction in coronary 
heart disease has been obtained in recent 
years [1], acute myocardial infarction (AMI) 
remains a major cause of death in the general 
population. It is the most common disease 
related to Emergency Department crowding 
each year [2, 3]. Functional testing is the main 
diagnostic evaluation for AMI. However, becau- 
se of the disappearance of symptoms of coro-
nary blood flow in some patients, functional 
testing might lead to missed diagnosis [4]. 
Thus, it is necessary to explore improved diag-
nosis methods on other associated circulatory 
disorders or symptoms, aiming to reduce the 
risk of the disease.

Occurrence of AMI is usually accompanied with 
acute thrombo-occlusive disease with the tran-
sition from stable atherosclerotic plaque to rup-
tured plaque. The transition process involves 

multifactorial disorders, including sheer stress 
and biochemical factors, such as proinflamma-
tory and vasoactive factors [5, 6]. Recently, 
most studies have focused on exploring molec-
ular biomarkers associated with AMI diagnosis 
and treatment, especially serum biomarkers. 
For example, NLRP3-inflammasome and asso-
ciated IL-1 beta were demonstrated as prognos-
tic biomarkers of AMI. In vascular lesions, vas-
cular smooth muscle cells (VSMC) have been 
associated with limit plaque progression and/
or plaque stability improvements [7, 8]. A study 
by Yi et al. suggested that miR-379 might be a 
novel biomarker for AMI diagnosis, mediated by 
VSMC [9]. Furthermore, other molecular bio-
markers have been put forward, such as uro-
thelial carcinoma-associated 1 [10], miR-208a 
[11], and pregnancy-associated plasma protein 
A (PAPP-A) [12]. However, recent biomarkers 
have been limited in improving diagnosis and 
clinical therapy of AMI. Identification of novel 
biomarkers is urgently needed.
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Indicating molecular factors suggesting an 
impending cardiac event, Muse and his col-
leagues identified a transcriptomic signature of 
AMI derived from circulating endothelial cells 
[13]. To explore the potential molecular mecha-
nisms associated with AMI development, micro-
array data of AMI was downloaded. Differen- 
tially-expressed genes (DEGs) between sam-
ples from AMI and healthy controls were 
screened. Functional analysis was further car-
ried out. Aiming to further explore the function-
al network of DEGs of AMI patients, protein-
protein interaction (PPI) and transcription fac-
tor (TF)-miRNA-target gene regulatory net-
works, as well as drug-gene interactions, were 
predicted.

Material and methods

This study was approved by the Research Ethics 
Committee at the Shanghai University of Me- 
dicine & Health Sciences Affiliated Zhoupu 
Hospital. All patients provided written informed 
consent.

Data source

Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo/) is a database used to 
build gene expression data. It is an online 
resource used to retrieve gene expression data 
from any species or man-made source [14]. The 
data expression profile GSE66360 was down-
loaded from the database. The current study 
included 49 circulating endothelial cell samples 
from AMI patients and 50 circulating endothe-
lial cells samples from healthy cohorts. Expre- 
ssion profiles of all samples were analyzed on 
the platform Affymetrix Human Genome U133 
Plus 2.0 Array. 

According to the study by Muse et al. [13], inclu-
sion criteria were as follows: Patients aged 
18-80 years old of both sexes that presented 
to one of five San Diego County Medical Centers 
with a diagnosis of acute myocardial infarction 
(AMI); Healthy control patients between the 
ages of 18 and 35, without a history of chronic 
disease, and diseased control patients (with 
known but stable cardiovascular disease) 
between the ages of 18-80 years old; All AMI 
cases met strict diagnostic criteria, including 
chest pain symptoms with electrocardiographic 
(ECG) evidence of ST-segment elevation of at 
least 0.2 mV in two contiguous precordial leads 
or 0.1 mV in limb leads, in addition to angio-

graphic evidence of obstructive CAD in the set-
ting of positive cardiac biomarkers.

Data preprocessing and DEGs screening

Original CEL data was obtained from the GEO 
database. Normalization and background corre- 
ctions were performed using the R (version 3.4) 
software package affy (version 1.58.0, http://
bioconductor.org/help/search/index.html?q= 
affy/) [15], including conversion of raw data  
formats, missing value complements, back-
ground correction (MAS method), and data nor-
malization using quantile methods. The pro- 
be was annotated with a platform annotation 
file, removing probes that did not match the 
gene symbol. If the same gene was mapped by 
different probes, the average value of the dif-
ferent probes would be defined as the final 
expression of the gene.

Using the limma package, DEGs from samples 
between AMI and controls were screened out 
[16]. The Benjamini-Hochberg method was 
used to adjust P-values. The threshold was 
defined as |log2 (Fold change)| > 1 and P- 
values < 0.05.

Functional analysis

KEGG pathways and functions of these DEGs 
[17] were analyzed using the Database for 
Annotation, Visualization and Integrated Dis- 
covery (DAVID) tool. A comprehensive biological 
information database was included in DAVID. 
This system can be used to mine biological 
functions for numerous genes and protein IDs 
[18] (version 6.8, https://david-d.ncifcrf.gov/). 
The threshold was designed as count ≥ 2 and 
P-values < 0.05.

Construction of PPI network and module

Search Tool for Retrieval of Interacting Genes 
(STRING) is an online tool that evaluates PPI 
networks [19]. Using the STRING (version 10.0, 
http://www.string-db.org/) database, the PPI of 
DEGs was analyzed. The input gene was set as 
a DEG, while the species was set as human 
beings. PPI score was set as 0.7 to create sub-
sets of high-confidence human PPI networks. 
The network was visualized by Cytoscape (ves-
rion 3.2.0, http://www.cytoscape.org/) [20].

CytoNCA (version 2.1.6, http://apps.cytoscape.
org/apps/cytonca) was used to analyze the 
topology properties of the node network. The 
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parameter was set without weight. Scores of 
nodes were obtained. The importance of nodes 
in the PPI network was sequenced by the score 
[21].

Traditionally, proteins in the same module have 
the same or similar functions. They act as a 
module with the same biological role. Thus, the 
module in the PPI network was explored using 
MCODE of Cytoscape plugin (degree cutoff = 2, 
node score cutoff = 0.2, k-core = 2, and max. 
depth = 100) [22]. The threshold was designed 
as scores > 5.

TF-miRNA-target regulation forecast

MiRNA prediction was performed using the 
WebGestalt GAST [21] (http://www.webgestalt.
org/option.php) tool. Enrichment analysis of 
miRNA-target and TF-target of DEGs from mod-
ules was performed using the Overrepresen- 
tation Enrichment Analysis (ORA) enrichment 
method. For analysis, species was selected as 
h-sapiens. The threshold of P-values < 0.05 
was designed as significant.

Construction of interaction between genes and 
potential drugs

Drug-gene interactions and gene druggability 
levels were described in the Drug-Gene In- 
teraction Database (DGIdb, www.dgidb.org) 
[23]. Based on DGIdb 2.0, the interactions of 
DEGs of samples from AMI and drugs and gene 
druggability of DEGs in the modules were ana-
lyzed. Moreover, the interaction network was 
constructed with Cytoscape.

Real-time quantitative polymerase chain reac-
tion (RT-qPCR) 

Circulating endothelial cell samples were ex- 
tracted from patients experiencing AMI (n = 10) 

and from healthy cohorts (n = 5), according to a 
previous study [13]. RT-qPCR analysis was per-
formed, detecting expression levels of several 
key genes. Briefly, total RNA was extracted from 
circulating endothelial cells (5 × 106) of the two 
groups using TRIzol® Reagent (Takara, Dalian, 
China). Next, cDNA was synthesized using 
PrimeScript™ RT Master Mix (Perfect Real 
Time) (Takara). Amplification was performed 
according to the following conditions with an 
ABI ViiA 7 real-time PCR instrument: 50°C for 3 
minutes, 95°C for 3 minutes, 25 cycles of 95°C 
for 10 seconds, 60°C for 30 seconds, followed 
by dissociation curve analysis (60°C-95°C: 
increment 0.5°C for 10 seconds). Primers are 
shown in Table 1.

Statistical analysis

Data are shown as mean ± standard deviation 
and were analyzed using SPSS 22.0 software 
and GraphPad prism 5.0 (San Diego, CA). 
Relative expression levels were normalized to 
GAPDH and calculated with the 2-ΔCt method. 
The overall significance level is set at p = 0.05 
or p = 0.01.

Results

Screening of DEGs

As shown in Figure 1, the median of expression 
profile data after standardization was on the 
same level. There were 339 DEGs, including 
281 upregulated genes and 58 downregulated 
genes, between samples from AMI and healthy 
controls.

DEGs functional pathways exploration

Figure 2 shows the main KEGG pathway enrich-
ment results. Upregulated DEGs were mainly 
enriched in 32 pathways, including osteoclast 
differentiation, TNF signaling pathways, and 
transcriptional mis-regulation in cancer. Cyto- 
kine-cytokine receptor interaction was the only 
pathway enriched by downregulated DEGs.

Network of PPI and sub-network module con-
struction

PPI networks of DEGs are shown in Figure 3. A 
total of 165 nodes and 454 proteins and pro-
tein interaction pairs were obtained. Further- 
more, three sub-module networks were calcu-
lated based on MCODE of Cytoscape plugin. A 

Table 1. Primers used in this study
Primer Primer sequence (5’-3’)
IL8-hF TGGACCCCAAGGAAAACTGG
IL8-hR TTGCTTGAAGTTTCACTGGCAT
JUN-hF CCAACTCATGCTAACGCAGC
JUN-hR CTCTCCGTCGCAACTTGTCA
IL1B-hF CAGAAGTACCTGAGCTCGCC
IL1B-hR AGATTCGTAGCTGGATGCCG
GAPDH-hF TGACAACTTTGGTATCGTGGAAGG
GAPDH-hR AGGCAGGGATGATGTTCTGGAGAG
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Figure 1. Data normalization boxplot. X axis refers to the log2 of the gene expression; Y axis represents the density.
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total of 13 nodes and 78 interaction pairs were 
include in Module A. Module B included 7 no- 
des and 21 interaction pairs. A total of 9 nodes 
and 24 interaction pairs were included in 
Module C. Genes with the top 10 degrees in the 
PPI network and genes included in the three 
modules are shown in Table 2, including IL8, 
JUN, IL1B, TNF, and FOS.

KEGG pathway analysis was further performed 
on DEGs included in the three modules (Figure 
4). Genes included in module A were mainly 
enriched in seven pathways, including chemo-
kine signaling pathways, cytokine-cytokine re- 
ceptor interaction, and neuroactive ligand-
receptor interaction. In total, 26 pathways were 
involved in genes in module C. The pathways of 
rheumatoid arthritis and TNF signaling were the 
main enriched pathways.

Network of TF-miRNA-target gene construction

According to Webgestal prediction, three miR-
NAs, including hsa-miR-191, hsa-miR-101, and 
hsa-miR-20, nine TFs, including NFKAPPAB, 

SRF, IK3, and NFKAPPAB65, and 34 regulatory 
relationship pairs were integrated, including 13 
upregulated genes. As shown in Figure 5, 
Cytoscape was used to construct a TF-miRNA-
target network. Of these genes, EGR1, FOS, 
and EDN1 were hub genes, as they had higher 
degrees than other nodes.

Drug-gene interaction

As shown in Figure 6, based on DGIdb predic-
tions of all module genes, this study obtained 
51 drug-gene interaction pairs, including 11 
upregulated genes, two downregulated regulat-
ed genes, and 46 kinds of drugs (etanercept, 
adalimumab, and infliximab). Regarding these 
interaction pairs, TNF, IL-1B, and TLR4 might be 
potential druggable genes, as they had higher 
degrees.

RT-qPCR validation

Expression levels of hub genes IL8, JUN, and 
IL1B were detected. Results showed that mRNA 
levels of IL8, JUN, and IL1B were significantly 

Figure 2. Kyoto Encyclopedia of Genes and Genomes pathway enrichment of differentially-expressed genes (DEGs). 
Yellow represents upregulated DEGs enrichment, green represents downregulated DEGs enrichment results.
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Figure 3. Protein-protein interaction network construction and gene modules screening. Yellow circle represents 
upregulated genes and green prismatic represents downregulated genes. The node size represents the degree. A 
huge node refers to a high degree value.
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upregulated in the AMI group, compared with 
control samples (Figure 7). Results were con-
sistent with analysis results.

Discussion

In the current study, 339 DEGs of AMI and 
healthy controls were identified. Upregulated 
DEGs were mainly enriched in 32 pathways, 
including osteoclast differentiation, TNF signal-

ing pathways, and transcriptional mis-regula-
tion in cancer. Downregulated DEGs were main-
ly enriched in cytokine-cytokine receptor inter-
actions. IL8, JUN, IL1B, TNF, and FOS were key 
nodes in the PPI network. In addition, three 
miRNAs, including has-miR-191, has-miR-101, 
and has-miR-20, and nine TFs, including NF- 
KAPPAB, SRF, IK3, and NFKAPPAB65, were key 
molecules involved in TF-miRNA-target genes 
network. Finally, prediction results revealed 

Table 2. Top 10 genes in the protein-protein interaction network of differentially-expressed genes and 
gene lists in the three modules

Degree top 10 Module A Module B Module C
Nodes Description Degree Nodes Description Degree Nodes Description Degree Nodes Description Degree
IL8 UP 35 IL8 UP 35 DDX3Y UP 6 IL1B UP 25

JUN UP 30 FPR1 UP 18 EIF1AY UP 6 TNF UP 24

IL1B UP 25 FPR2 UP 17 KDM5D UP 6 TLR2 UP 19

TNF UP 24 CCR5 DOWN 17 ZFY UP 6 FOS UP 19

FOS UP 19 CXCL1 UP 15 UTY UP 6 TLR4 UP 18

TLR2 UP 19 CCL20 UP 14 USP9Y UP 6 EDN1 UP 17

TYROBP UP 19 CCR2 DOWN 14 RPS4Y1 UP 6 MMP9 UP 15

TLR4 UP 18 CXCL2 UP 13 ICAM1 UP 13

FPR1 UP 18 C5AR1 UP 12 EGR1 UP 7

CCR5 DOWN 17 CXCL3 UP 12

CXCL16 UP 12

HCAR3 UP 12

P2RY13 UP 12

Figure 4. Kyoto Encyclopedia of Genes enrichment (KEGG) results of differentially-expressed genes included in the 
module. Red cylindrical represents KEGG enrichment of DEGs from module-A; Blue cylindrical represents KEGG 
enrichment of DEGs from module-C.
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that IL-8 plays a key role in 
the development of athero-
sclerotic plaque [25]. JUN is 
another key node in the cur-
rent microarray data analy-
sis. In a mouse model, c- 
Jun pathways have been 
demonstrated as a media-
tor for IL-6, destabilizing 
atherosclerotic plaque [26]. 
Thus, genes such as IL8, 
JUN, IL1B might be novel 
markers of atherosclerotic 
plaque instability.

TNF-alpha has been recog-
nized as a factor that in- 
creases susceptibility to 
heart failure. A progressive 
chronic inflammatory disor-
der disease, Prondzinsky 
and his colleagues put for-
ward that TNF-alpha induc-
ing inflammatory response 
was associated with clinical 
outcomes of AMI [27]. Cli- 
nical data also showed that 

that TNF, IL1B, and TLR4 might be potential 
druggable genes for AMI patients.

A study by Muse et al. established the tran-
scriptomic signature of AMI. They demonstrat-
ed 11 genes upregulated in AMI, including hep-
arin-binding EGF like growth factor (HBEGF), 
synaptotagmin-like 3 (SYTL3), and endothelin 1 
(EDN1) [13]. These genes were also obtained 
by the DEGs screening in the current study. 
Moreover, present data showed that genes, 
including IL8, JUN, IL1B, TNF, and FOS, were 
key nodes in the PPI network. Occurrence of 
AMI is accompanied by acute thrombo-occlu-
sive disease with the transition from stable ath-
erosclerotic plaque to ruptured plaque. The 
process of atherosclerotic plaque develop-
ment, progression, and destabilization is acc- 
ompanied by the inflammatory process. Puz 
and his colleagues assessed the association 
between inflammatory molecules TNF, IL-6, and 
IL-10 in serum levels in patients and stenosis 
degrees and in ultrasound plaque morphology. 
Results showed that IL-6 and IL-10 in the serum 
play important roles in the degree of stenosis 
and unfavorable changes in atherosclerotic 
plaque morphology [24]. In accordance with the 
current study, a previous study also showed 

susceptibility to AMI was significantly related 
with genetic polymorphisms in TNF-alpha [28]. 
Traditionally, NFkappaB is involved in inflam- 
matory response. Current data suggests that 
NFkappaB was a key TF in the TF-miRNA-target 
genes network. Dabek and his colleagues dem-
onstrated that destabilization of atherogenic 
plaque and acute myocardial infarction occur-
rence was associated with genes involved in 
NFkappaB signaling pathways [29]. Moreover, 
TFs, such as SRF, IK3, and NFKAPPAB65, were 
also evaluated as important factors in the 
TF-miRNA-target genes network. Although no 
clinical data has been published concerning 
these genes, these findings might be useful for 
future advances in AMI diagnosis.

In recent years, miRNAs have been put forward 
as novel biomarkers. Many researchers have 
focused on exploring miRNAs to improve risk 
stratification, diagnosis, and prognosis of pa- 
tients with myocardial infarction. For human 
myocardial injuries in early stages, the poten-
tial biomarker roles of many miRNAs have been 
demonstrated in previous studies, including 
miRNA-208a [11], miRNA-21 [30], and miRNA-
124 [31]. In the current data analysis, several 
miRNAs, including hsa-miR-191, hsa-miR-101, 

Figure 5. Analysis of the TF-miRNA-target gene regulatory network. The yellow 
circle represents upregulated differentially-expressed genes, the blue hexagon 
represents the transcription factor, the red triangle represents miRNAs, and the 
arrow connecting line indicates the direction of regulation.
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and hsa-miR-20, were defined as important 
molecules in the development of AMI. Previous 
studies have shown lower expression levels of 
miR-191 in AMI [32]. No direct clinical data, 
supports the regulation roles of miR-101 and 
miR-20 in AMI. However, previous data has sug-
gested that miR-20 could promote the survival 
of mesenchymal stem cells exposed to hypoxia 
[33]. Moreover, miRNA-101 has been widely 
researched in cancers based on its regulation 

roles concerning cell proliferation, migration, 
and angiogenesis [34]. Although no direct roles 
of miRNA-101 have been found, it cannot be 
denied that abnormal activation might be relat-
ed to development of AMI.

In conclusion, 339 DEGs of AMIs and healthy 
controls were identified. Of these DEGs, IL8, 
JUN, and IL1B might be novel markers of ath-
erosclerotic plaque instability. MicroRNAs, in- 

Figure 6. Drug-gene interactions prediction. Yellow square represents upregulated genes, green square represents 
downregulated genes, and gray square represents the drug.

Figure 7. Expression levels of IL8, JUN, and IL1B detected by RT-qPCR. **P < 0.01 compared with controls.
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cluding miR-191, miR-101, and miR-20, might 
provide a new window, assisting the exploration 
for potential biomarkers for diagnosis and prog-
nosis for AMI patients.
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