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Abstract: Liver cancer is a common malignant neoplasm worldwide, causing high morbidity and mortality globally. 
The molecular mechanisms of hepatocarcinogenesis remains unclear. The goal of our study is to elucidate the 
mechanism which could improve the prognosis of liver cancer. GSE121248 was downloaded from the GEO data-
base, which is a gene expression profile data including 70 tumor samples and 37 adjacent normal samples from he-
patocellular carcinoma (HCC). The differentially expressed genes (DEGs) between cancer tissues and normal tissues 
were screened. Subsequently, the enriched GO terms, KEGG pathways and Database for Annotation, Visualization 
and Integrated Discovery (DAVID) were analyzed by on-line tools. Finally, STRING database and Cytoscape software 
were used to construct protein-protein interactions (PPI) network and genes with high degree. Kaplan-Meier plotter 
(KM plotter) was used to explore the predictive prognostic value of gene expression to overall survival (OS). The re-
sults showed that there were 202 DEGs between the case samples and control samples, including 59 up-regulated 
genes and 143 down-regulated genes in HCC tissue samples. The study obtained a total of 132 enriched GO terms 
and 16 KEGG pathways, such as extracellular region, organelle membrane, extracellular space, epoxygenase P450 
pathway, retinol metabolism, metabolic pathways, caffeine metabolism, tryptophan metabolism and drug metabo-
lism-cytochrome P450. PPI suggests that BUB1B, CCNB1, EZH2, NUSAP1 and CDC20 were the top 5 core genes. 
The patients with high expression of 5 core genes had poor OS according to online database. Using comprehensive 
bioinformatics analyses, our study attempts to identify DEGs and find potential biomarkers to predict the occurrence 
and development of HCC.
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Background

Primary liver cancer (namely hepatocellular car-
cinoma, HCC) is one of the fifth most common 
cancer which takes up the third top cause of 
cancer mortality [1]. In 2016, it afflicted in ex- 
cess of 1 million people and caused 800,000 
deaths globally [2]. HCC has interesting epide-
miologic features and a couple of well-substan-
tiated environmental potentially preventable 
risk factors have been confirmed for the dis-
ease [3]. Despite active research [1, 4, 5], the 
molecular mechanisms that induce HCC remain 
unclear. 

Gene expression profiles measure the expres-
sion of thousands of genes to build a global pic-

ture of cell function. Gene expression profiling 
may become an important diagnostic test [6, 
7]. Such new technique may have positive influ-
ence in improving our knowledge of carcinogen-
esis and facilitate screening and early detec-
tion of diseases.

In our study, we analyzed gene expression pro-
files (GSE121248) downloaded from GEO data-
base, to extract DEGs between liver cancer and 
normal samples. Moreover, KEGG pathways of 
those genes and most of the enriched GO terms 
that were correlated to HCC were also included 
in this research. In summary, our result may ad- 
vance the knowledge of HCC and explore poten-
tial therapeutic targets for further studies.

http://www.ijcem.com
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Materials and methods

Gene expression microarray data 

In this research, the gene expression microar-
ray data set GSE121248 was downloaded from 
GEO database (GEO, http://www.ncbi.nlm.nih.
gov/geo/), including 70 tumor samples from 
HCC patient and 37 adjacent normal samples 
[8]. We used k-nearest neighbors algorithm 
(k-NN) for classification and regression in pat-
tern recognition [9]. In addition, a supplement 
work was conducted for other genes with simi-
lar expression profiles as those with deletion 
value.

Differentially expressed genes (DEGs)

In the preprocessing section, the unwanted no- 
ise of the original microarray data was screened 
out. The original data and background correc-
tion were dealt with by the Affy [10] package in 
R. The differentially expressed mRNAs between 
tumor tissue and normal tissue samples were 
inspected using the Limma [11] package with 
the following criteria: |Log2 (fold change)|>1.5 
and false discovery rate <0.05. Morpheus is an 
on-line tool used to deal with heatmap (https://
software.broadinstitute.org/morpheus).

Functional and pathway enrichment analysis 

The gene product function is supplied from The 
Gene Ontology website [12] (GO, http://www.
genneontology.org), a community-based bio 
informatics resource using ontologies to repre-
sent ontologies to represent biological knowl-
edge. GO provides a framework and a suit of 
concepts for describing the functions of gene 
products from all living organisms. KEGG (Kyoto 
Encyclopedia of Genes and Genomes, http://
www.kegg.jp/ or http://www.genome.jp/kegg) 
is used for interpretation of high-throughput 
data and other biological genome sequences 
[13]. DAVID [14] (https://david.ncifcrf.gov) is al- 
so a bioinformatic resources, consisted of ana-
lytic tools and biological knowledge base, ai- 
med at organically extracting biological activity 
from huge gene protein statement. GO terms 
and KEGG pathway analyses were accompli- 
shed with DAVID to recognize DEGs. P<0.05 
was executed as the cut-off value.

Protein-protein interactions (PPI) network con-
struction and analysis of modules

The STRING database (http://string-db.org) is a 
web resource aimed to predict protein-protein 

interactions and provide critical assessment, 
which includes physical and functional associa-
tions [15]. Cytoscape [16] is an open-source 
software platform for visualizing biomedical 
networks exploration and offering researchers 
utility and coactive visualization interface. The 
tools is used for exploring interconnections of 
complex biological networks supported by vary-
ing annotation and experimental results, there-
fore accelerating research works such as fore-
casting gene function and reconstructing path-
ways. The STRING was used to evaluate PPI 
network mapped DEGs and Cytoscape for visu-
alization. The combined score of greater than 
0.15 was executed as the cut-off value. Finally 
the cut-off criterion for screening hub gene was 
defined as node degree 10.

Exploring overall survival 

‘Kaplan-Meier plotter’ (KM plotter), online data-
base, was used to explore the predictive prog-
nostic value of gene expression to overall sur-
vival (OS) in different clinical data, such as clini-
cal grades, clinical stages, gender and race in 
liver cancer patients.

Statistical analysis

Matrix data were analyzed by one-way ANOVA, 
and statistical significance was determined as 
p<0.05. The results were compared between 
normal and tumor groups with Mann-Whitney 
Rank Sum Test.

Results

Differentially expresses gene (DEGs)

There were 202 DEGs between tumor samples 
and control samples. Comparing with adjunct 
tissue samples, 59 up-regulated and 143 do- 
wn-regulated genes were selected in case tis-
sue samples. The heatmap of the DEGs was 
shown in Figure 1.

GO enrichment terms and KEGG pathway 
analysis 

The study obtained totally of 132 GO enrich-
ment terms and 16 KEGG pathways. The first 
10 GO enrichment terms of the DEGs following 
P value were shown (Table 1). Table 1 indicated 
clearly that the mainly GO enrichment term was 
the cellular components (CC), such as extracel-
lular region, organelle membrane and extracel-
lular space. In addition, epoxygenase P450 
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biological process (BP). Arachidonic acid epoxy-
genase activity, oxidoreductase activity, iron 

Figure 1. Heatmap of 202 DEGs. 70 tumor cases and 37 normal group had 202 DEGs, including 59 up-regulated 
genes and 143 down-regulated genes in HCC samples.

pathway and oxidation-reduction process were 
also the enriched GO terms related to the cell 
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ion binding, monooxygenase activity and heme 
binding composed the molecular function (MF) 
of the cell.

The KEGG pathways were demonstrated in 
Table 2. The top 10 KEGG enriched pathways 
were mostly related to metabolism, such as 
retinol metabolism, metabolic pathways, caf-
feine metabolism, tryptophan metabolism and 
drug metabolism-cytochrome P450. Further- 
more, the other pathways may also influence 
on the progression of cancer via some biologi-
cal process, such as the complement and coag-
ulation cascades, Prion diseases, chemical car-
cinogenesis, p53 signaling pathway and miner-
al absorption.

PPI network and core genes in network

The PPI (Figure 2) network included 190 nodes 
(DEGs) and 756 edges (interactions) between 

the DEGs. The core genes, had higher degree in 
the PPI network, might had a stronger correla-
tion with liver cancer. Table 3 has shown the 
cores genes’ solid degree. Among those core 
genes, CDC20 had 33 degrees and 21 gene’s 
node degree were beyond 30.

Overall survival based on core genes

Firstly, the prognostic value of BUB1B was 
accessed in the database. The RNA-seq ID is 
701 for BUB1B. OS curves were plotted for all 
liver cancer patients (n=364) (Figure 3A), BU- 
B1B has related to poor OS in HCC patients, 
HR=2.01 (1.42-2.86), P=6.6e-05. Next, the 
prognostic significance of CCNB1 was evaluat-
ed in the database. The desired RNA-seq ID is 
891. CCNB1 revealed a remarkable correlation 
with worse OS among liver cancer patients, 
HR=2.34 (1.55-3.54), P=3.4e-05 (Figure 3B). 
Similarly, EZH2 (RNA-seq ID 2146) exhibited a 

Table 1. Top 10 enriched GO terms are sorted in ascending order by P value
Category Term Gene Number P Value
CC GO:0005576~extracellular region 47 7.04E-11
BP GO:0019373~epoxygenase P450 pathway 8 4.33E-10
CC GO:0031090~organelle membrane 12 1.25E-09
MF GO:0008392~arachidonic acid epoxygenase activity 7 5.10E-09
MF GO:0016705~oxidoreductase activity, acting on paired donors, with 

incorporation or reduction of molecular oxygen
10 6.28E-09

MF GO:0005506~iron ion binding 13 6.16E-08
MF GO:0004497~monooxygenase activity 9 1.34E-07
MF GO:0020037~heme binding 12 1.75E-07
CC GO:0005615~extracellular space 36 2.19E-07
BP GO:0055114~oxidation-reduction process 23 4.31E-07

Table 2. The top 10 KEGG pathways in DEGs
Category Pathway Name Gene Number P Value
KEGG_PATHWAY hsa04610: Complement and coagulation cascades 8 3.84E-05
KEGG_PATHWAY hsa00830: Retinol metabolism 7 2.20E-04
KEGG_PATHWAY hsa05020: Prion diseases 5 1.11E-03
KEGG_PATHWAY hsa01100: Metabolic pathways 30 1.26E-03
KEGG_PATHWAY hsa00232: Caffeine metabolism 3 1.80E-03
KEGG_PATHWAY hsa00380: Tryptophan metabolism 5 2.05E-03
KEGG_PATHWAY hsa05204: Chemical carcinogenesis 6 4.59E-03
KEGG_PATHWAY hsa04115: p53 signaling pathway 5 1.30E-02
KEGG_PATHWAY hsa00982: Drug metabolism-cytochrome P450 5 1.37E-02
KEGG_PATHWAY hsa04978: Mineral absorption 4 2.19E-02
KEGG_PATHWAY hsa05323: Rheumatoid arthritis 5 3.19E-02
KEGG_PATHWAY hsa00140: Steroid hormone biosynthesis 4 4.44E-02
KEGG_PATHWAY hsa04060: Cytokine-cytokine receptor interaction 8 4.79E-02
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Figure 2. The PPI network of 190 nodes and 756 edges. The 47 red nodes had higher expression in the tumor samples; whereas the 103 blue nodes have lower 
expression values.
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to screen 202 DEGs fr- 
om HCC tissues and nor-
mal liver tissue, includ-
ing 59 up-regulated ge- 
nes and 143 down-regu-
lated genes in tumor 
samples.

Enrichment GO analyses 
identified significant on- 
tology categories includ-
ing epoxygenase P450 
pathway and oxidation-
reduction process. The 
human liver microsome 
metabolizes arachidonic 
acid in NADPH and pro-
duces epoxyeicosapen-
taenoic acid and its 
hydrated metabolite di- 
hydroxyeicosapentaeno-
ic acid as the main reac-

worse correlation with OS within liver cancer 
patients, HR=2.23 (1.56-3.19), P=6.8e-06 (Fi- 
gure 3C). The prognostic value of NUSAP1 was 
also determined in the database, RNA-seq ID 
51203. A strong association was identified 
between NUSAP1 expression and poor OS for 
liver cancer, HR=1.67 (1.17-2.4), P=0.0046 
(Figure 3D). Figure 3E demonstrated the prog-
nostic value of CDC20 in the database. The 
RNA-seq ID is 991. CDC20 was significantly 
correlated with poor OS for liver cancer patients, 
HR=2.49 (1.72-3.59), P=5.1e-07.

Discussion

HCC’s mortality has steadily increased in the 
last few years. It is now the fifth most common 
malignant tumor worldwide [17]. Hepatitis vi- 
ruses, gene mutations, cell damage, alcoholic 
liver diseases and aflatoxin poisoning have all 
been identified as risk factors for HCC [18]. As 
a potential diagnostic tool, tumor markers have 
been widely used in the early diagnosis of HCC. 
Alejandro Forner claimed that α-Fetoprotein 
was a brilliant star for HCC diagnosis [19]. Mo- 
reover, severe alpha-1-antitrypsin deficiency 
(AATD) played a key role in the development of 
liver disease [20]. However, further study on 
the mechanism of hepatocellular carcinoma is 
necessary for early diagnosis and optimal tr- 
eatment. 

In this work, a high-throughput method for ge- 
nome-wide gene expression analysis was used 

tion product [21]. These bioactive eicosanoids 
play a role in maintaining homeostasis in the 
liver. Under normal and pathophysiological  
conditions, human P450 cyclooxygenase (also 
known as CYP) and its derivatives arachido- 
nic acid metabolites may be expressed differ-
ently, thus affecting regulation of vascular fu- 
nction [22]. In one study, it was found that 
CYP2C9 was highly expressed in patients with 
esophageal adenocarcinoma (including pa- 
tients with early tumor stage and highly differ-
entiated tumors). Additionally, selective inhibi-
tion of CYP2C9 was shown to reduce the prolif-
eration of low tumor cells in in vitro experiments 
[23]. 

KEGG pathway analyzed DEGs and 13 path-
ways were screened out, such as retinol metab-
olism, tryptophan metabolism and drug metab-
olism-cytochrome P450, complement and co- 
agulation cascades. Previous studies have cov-
ered that majority of these pathways were com-
prised in cancer progression. In human cancer 
cell lines of skin, oral cavity, kidney and breast, 
retinol acyltransferase (LRAT) was reduced co- 
mpared with the normal counterparts, thus 
implicating aberrant retinoid metabolism in car-
cinogenesis [24]. Cytochrome P450 are hepat-
ic enzymes that may activate some procarcino-
gens. Studies have shown that CYPIA1 increas-
es the risk of peripheral adenocarcinoma type 
lung cancer [25]. And its polymorphism might 
be an important factor in the optimal use of 
selected anticancer drugs for cancer treatment 
[26].

Table 3. The cores genes and solid degree according to the PPI network

Gene symbol Node 
degree

Gene 
symbol

Node 
degree

Gene 
symbol

Node 
degree

Gene 
symbol

Node 
degree

CYP26A1 10 C8A 15 CDKN3 30 ZWINT 31
CYP2B6 10 F9 16 HMMR 30 BUB1B 32
ALDH8A1 11 IGF1 16 KIF4A 30 CCNB1 32
C6 11 SPP1 17 PTTG1 30 EZH2 32
CYP1A2 11 GINS1 20 ASPM 31 NUSAP1 32
CYP2C9 11 CENPW 22 DLGAP5 31 CDC20 33
EGR1 11 E2F8 22 DTL 31
HGFAC 11 CENPK 23 KIF20A 31
FOS 12 UHRF1 23 NCAPG 31
KLKB1 12 FAM83D 25 NDC80 31
SERPINE1 12 ANLN 27 PBK 31
MBL2 13 UBE2T 27 RAD51AP1 31
CCL2 14 RACGAP1 28 RRM2 31
CXCL12 14 NUF2 29 TOP2A 31
SPP2 14 PRC1 29 TTK 31
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Figure 3. The prognostic HRs value of BUB1B, 
CCNB1, EZH2, NUSAP1 and CDC20 in liver can-
cer in www.kmplot.com. (A: BUB1B, HR=2.01 
(1.42-2.86), P=6.6e-05. B: CCNB1,HR=2.34 
(1.55-3.54), P=3.4e-05. C: EZH2, HR=2.23 
(1.56-3.19), P=6.8e-06. D: NUSAP1, HR=1.67 
(1.17-2.4), P=0.0046. E: CDC20, HR=2.49 
(1.72-3.59), P=5.1e-07).
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The complement system is responsible for kill-
ing bacteria that infect the host. The secretion 
of proinflammatory mediators and ingestion of 
opsonized particles were led by complement 
activation [27]. On the other hand, coagulation 
activation occurs through two pathways, one 
exogenous and the other through an internal 
(contact activation) pathway that seems to be 
involved in inflammatory processes [28, 29]. In 
the occurrence and progression of tumor, 
tumor-promoting inflammation plays an impor-
tant role [30, 31]. The connection between 
inflammation and cancer can be made both 
externally and internally. The external pathway 
increases the risk of inflammation driving can-
cer, while the internal pathway is driven by ge- 
nes for inflammation and tumorigenesis [32].

In addition, PPI suggests that the top 5 core 
genes were BUB1B, CCNB1, EZH2, NUSAP1 
and CDC20, which might serve as potential tar-
gets for therapy. In normal cells, BUB1B (coding 
BUBR1) has been shown to prevent duplication 
of chromosome segregation, but its role has 
been controversial in cancer pathogenesis. 
BUB1B has overexpression in prostate cancer 
[33], adenomatous polyposis coli [34], HCC 
[35] and other cancer [36, 37], which is consis-
tent with our data; while low expression of 
BUB1B contributes to embryonal rhabdomyo-
sarcoma [38], colorectal cancer [39] and other 
cancers [40, 41]. CCNB1 (Cyclin B1), tumor an- 
tigen, is overexpressed in many cancers [42]. 
The autoimmune response of CCNB1 in HCC 
may include the aberration of CCNB1 regula-
tion leading to changes in product or its expres-
sion resulting in immune stimulation [43]. Wu 
suggest that CCNB1 may be a key target pro-
tein of human HCC cell line Lnc00312 [44]. 
Enhancer of zeste homolog 2 (EZH2) is a his-
tone-lysine N-methyltransferase enzyme, whi- 
ch participates in histone methylation and tran-
scriptional repression [45]. In some reports, 
inhibition of EZH2 function shrank malignant 
tumors because the tumor suppressor genes 
were not inhibited by EZH2 [46]. In HCC, EZH2 
partially inhibits the immune response and 
plays a carcinogenic role [47]. Nucleolar and 
spindle-associated protein 1 (NUSAP1) main-
tains normal cellular division and participates 
in regulating spindle assembly through microtu-
bule-binding and DNA-binding domains, which 
is an important regulator of mitosis and cell 
proliferation [48, 49]. Previous study indicated 

that the expression of NUSAP1 at the margin of 
liver cancer surgery was closely related to early 
postoperative recurrence and can be used as 
an index to predict early recurrence of HCC 
[50]. As a cell cycle regulating kinase, CDC20, 
an essential cell cycle regulator, is necessary to 
complete mitosis. Some studies have reported 
that CDC20 plays a key role in gastric cancer 
[51] and HCC [52]. CDC20 may potentially be 
used as a biomarker and therapeutic target in 
HCC [53].

Finally, our results showed that high expression 
of the top 5 core genes had worsening effect on 
the prognosis of liver cancer patients. Zhuang 
[54] reported that BUB1B, CCNB1 and CDC20 
could serve as predictive biomarkers for HCC, 
and they demonstrated that high expression of 
those genes was related to worse survival. As 
for NUSAP1, it was a valuable prognostic factor 
for hepatic carcinoma. Low NUSAP1 expression 
patients had better survival rate then high 
expression patients at both 6 months and 12 
months (89.3% VS 33.3%, 53.6% VS 17.9%) 
[55]. It was reported that precise anti-tumor 
drugs can be developed because EZH2 pro-
motes the occurrence and development of 
tumors [56]. This has the potential to improve 
survival in cancer patients.

Conclusion

Our study screened DEGs and identified poten-
tial biomarkers to forecast the occurrence and 
development of HCC. A total of 202 DEGs were 
screened including BUB1B, CCNB1, EZH2, 
NUSAP1 and CDC20. The many functional part-
nerships and PPI are core of cellular processing 
and their classified characterization helps to 
deal with context in molecular system biology. 
Survival analysis identified 5 core genes as 
potential therapeutic targets in the manage-
ment of HCC. However, our study lacks in vivo 
and in vitro validation. For future studies, the 
results of these bioinformatics analyses can be 
verified by experiments, such as Western Blot 
and qRT-PCR.
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