
Int J Clin Exp Med 2019;12(8):9548-9558
www.ijcem.com /ISSN:1940-5901/IJCEM0094868

Review Article
Dry cod skin collagen oligopeptides ameliorate  
ovalbumin-induced asthma in a mouse model  
via inhibition of NLRP3 inflammasome
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Abstract: Background: The skin of many fish species contains bioactive and potentially therapeutic compounds, 
including anti-inflammatory peptides. The current study examined the effects of dry cod skin collagen oligopeptides 
(CP) on lung inflammation mediators in a mouse asthma model. Method: BALB/c mice were orally administered 
saline or CP. They were sensitized by OVA through intraperitoneal injections and exposed to aerosolized OVA. The 
lungs were analyzed for inflammatory cells and mediators, including cytokines and components of the NLRP3 in-
flammasome, via histological and immunohistochemical staining, RT-PCR, and Western blot analysis. Results: CP 
pretreatment significantly inhibited OVA-induced peri-bronchial inflammation, airway inflammatory cell recruitment, 
phosphorylation of NF-κBp65, activation of NLRP3 inflammasome, and production of some asthma-related cyto-
kines in lung tissues. Conclusion: Present results identify several molecular mechanisms of action of CP, providing 
support for its use in alleviating asthma, as well as other diseases related with airway inflammation.
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Introduction

Asthma is a chronic and complex airway inflam-
matory disease. It results from aberrant infiltra-
tion and activation of bronchus airway epitheli-
al cells and immune cells, as well as production 
of inflammatory mediators [1, 2]. The disease is 
characterized by increased airway hyperre-
sponsiveness, smooth muscle hyperplasia, and 
inflammatory cell aggregation. It is predomi-
nantly treated with inhaled corticosteroids. 
Incidence rates of asthma, in the past few 
decades, have steadily increased and are still 
on the rise, highlighting the need for develop-
ment of safer and more effective methods of 
treatment.

Inflammasomes are polyprotein complexes 
that regulate inflammatory response to a great 
many stressors. In numerous inflammasomes, 
the most well-featured and best well-recog-

nized complex is the Nod-like receptor protein 3 
(NLRP3) inflammasome [3]. It typically contains 
three components, NLRP3, ASC, and pro-cas-
pase-1 [4]. Exposure of the NLRP3 inflamma-
some to stimulation signals, such as microbial- 
and danger-associated molecular patterns, 
induces recruitment of the caspase-1 precursor 
to NLRP3 via ASC, leading to hydrolysis and 
becoming the enzyme activity caspase-1 [5]. 
Conversely, activated caspase-1 splits the cyto-
kines from their precursor forms, such as pro-
interleukin (IL)-1β and pro-IL-18, to their active 
forms. Secretion production of such cytokines, 
related with inflammation, further stimulates 
the host immune cells to produce additional 
inflammatory cytokines, including interferon 
(IFN)-gama and tumor necrosis factor (TNF)-α 
[6]. Collectively, these activated cells and 
inflammatory factors play a critical role in the 
etiopathogenesis of many diseases, including 
asthma.
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Dry cod skin collagen oligopeptide (CP) is a 
preparation of small proteins (average molecu-
lar weight <1 kDa) extracted from the dried skin 
of cod by biological enzymolysis, followed by 
lyophilization. The main components of CP are 
aspartic acid, glycine, and threonine, which 
enable human cells to fully replenish energy, 
nucleotides, electrolytes, and cell-signaling 
regulators. Recently, more and more studies 
have pointed out that CP increases the immune 
function of macrophages and lymphocytes. 
Other marine oligopeptides have also been 
confirmed to retard the progression of cancer 
and inflammatory diseases in animal models 
[7-12]. Chen et al. showed that collagen pep-
tides decrease inflammation in a mouse burn 
model [7]. Alemán et al. demonstrated that 
squid gelatin hydrolysates produce anti-hyper-
tensive, anti-cancer, and antioxidant activities 
in cell lines and animal models [8]. These stud-
ies have illustrated that CP may provide inflam-
mation-suppression effects in various diseas-
es, including asthma.

More and more studies have been conducted 
on the NLRP3 inflammasome. Evidence sug-
gests that the NLRP3 inflammasome active is 
associated with the development of pulmonary 
inflammation in respiratory diseases, including 
asthma [13-15]. It may play a pivotal regulatory 
role in chronic obstructive pulmonary disease 
[6]. Investigating this in more detail, the current 
study examined influences of CP pretreatment 
on inflammation, as well as lung pathophysiol-
ogy, in a mouse asthma model. 

Animal Care Ethics Committee. All effort was 
made to decrease suffering.

Experimental design

After 7 days of acclimation, the mice were sep-
arated into five groups, with 10 mice in each 
group. These included normal, ovalbumin (OVA; 
Sigma, Darmstadt, Germany), OVA+CP-300, 
OVA+CP-600, and OVA+CP-900 groups. The CP 
groups were pretreated with daily administra-
tion of 300, 600, and 900 mg/kg body weight 
by oral gavage for 20 consecutive days (days 1 
to day 20). Normal and OVA groups were orally 
administered an equal volume of saline on the 
same days. All OVA groups were immunized 
intraperitoneally with an OVA-alum solution. 
The concentration was 2.5 mg/mL (25 mg OVA 
plus 4 mL aluminum hydroxide adjuvant, plus  
6 mL saline) on days 1, 7, and 14. Afterward, 
the mice that were immunized were stimulated 
through inhaled 1% OVA-saline aerosol. This 
lasted for 30 minutes from day 17 to 19 (see 
Figure 1 for details). The mice were sacrificed 
on day 21 and processed as described below.

Sample collection

After the animals were sacrificed, the lungs 
were collected and separated into two portions. 
One part was fixed with 4% formaldehyde and 
inserted in paraffin. Fixed lung tissues were 
chipped into 4-μm sections and adsorbed on 
slides for histological staining. Regarding immu-
nohistochemistry, some sections were depa- 
raffinized and hydrated before staining, as 

Figure 1. Protocol for animal experiments.

Material and methods 

Animals

Male BALB/c mice, aged six-
to-eight-weeks, were provided 
by the Experimental Animal 
Center of Yanbian University 
(YanJi, China). Before the 
experiment began, the mice 
were fed under standard 
experiment facility conditions 
(20-24°C, 12-hour light/dark 
for one day) for 7 days. All 
experiments associated with 
animals were carried out in 
accordance with requiremen- 
ts of the Yanbian University 
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described below. The remaining lung tissue 
specimens were frozen in liquid nitrogen and 
transferred to -80°C refrigerator for mRNA and 
protein analysis.

Histological analysis

Prepared lung sections were dyed with hema-
toxylin and eosin (H&E), estimating the infiltra-
tion of inflammatory cells into lung tissues. 
Periodic acid-Schiff (PAS) staining was used to 
detect the proliferation of goblet cells. Mas- 
son’s trichrome staining was used to detect 
increases in collagen fibers. The sections were 
observed by light microscopy at the original 
magnification 200 ×.

Immunohistochemical (IHC) analysis

After deparaffinization and rehydration, pre-
pared lung tissue sections were incubated 
overnight with rabbit antibodies against mouse 

Frozen lung tissues were removed from the 
-80°C refrigerator and thawed. When the tis-
sues become soft, they were homogenized in a 
buffer containing protease inhibitors. A BCA 
assay kit (Biotime, Jiangsu, China) was used to 
test protein concentrations. Aliquots of homog-
enates (equivalent to 60 mg protein) were sep-
arated by 10-15% SDS-PAGE (Bio-Rad, Munich, 
Germany) and transferred to nitrocellulose 
membranes (Millipore, Burlington, MA, USA). 
Protein analysis was carried out by incubation 
of the membranes overnight with rabbit prima-
ry antibodies against mouse NF-κB p65 
(1:1000), β-actin (1:1000), phosphorylated 
NF-κB-p65 (Ser 536) (1:500), NLRP3 (1:300), 
ASC (1:1000), IL-17A, TNF-α (1:200), IL-6 
(1:1000), Cox2 (1:1000), caspase-1 (1:1000), 
and IL-18 (1:1000) or rat primary antibodies 
against mouse IL-5 (1:1000) (Novus Biologicals, 
USA), IFN-gama (1:1000), IL-4 (1:1000), and 
IL-13 (1:1000) (R&D Systems, MN, USA). 

Table 1. Primer sequences for RT-PCR
Target genes Primer sequences Product length
NLRP3 F: GAGTTCTTCGCTGCTATGT 107 bp

R: ACCTTCACGTCTCGGTTC
Caspase-1 F: TATCCAGGAGGGAATATGTG 170 bp

R: ACAACACCACTCCTTGTTTC
ASC F: ACACTTTGTGGACCAGCACA 116 bp

R: CACGAACTGCCTGGTACTGT
IL-1β F: CAACCAACAAGTGATATTCTCCATG 152 bp

R: GATCCACACTCTCCAGCTGCA
IL-4 F: TCATCGGCATTTTGAACGAGGT 224 bp

R: GCATCGAAAAGCCCGAAAGAG
IL-5 F: AGCACAGTGGTGAAAGAGACCTT 117 bp

R: TCCAATGCATAGCTGGTGATTT
IL-6 F: AGTTGCCTTCTTGGGACTGA 159 bp

R: TCCACGATTTCCCAGAGAAC
IL-13 F: CCTGGCTCTTGCTTGCCTT 116 bp

R: GGTCTTGTGTGATGTTGCTC
IL-17 F: CTCAAAGCTCAGCGTGTCCA 171 bp

R: TATCAGGGTCTTCATTGCGGTGGA
IL-18 F: AGTAAGAGGACTGGCTGTGACC 214 bp

R: TTGGCAAGCAAGAAAGTGTC
IFN-γ F: TGAGCTGATTGAATGCTTGG 148 bp

R: GCCATCAGCAACAACATAAGC
TNF-α F: GGCAGGTCTACTTTGGAGTCATTG 299 bp

R: ACATTCGAGGCTCCAGTCAATTCGG
β-actin F: TCTGGTCGTACCACAGGCAT 329 bp

R: CGCTCGTTGCCAATAGTGAT

NF-κB p65, Cox2 (both from CST, 
MA, USA), NLRP3, or caspase-1 
(both from Abcam, Cambridge, UK) 
at 4°C. The sections were slowly 
washed with phosphate-buffered 
saline and incubated at an appropri-
ate temperature with anti-rabbit IgG 
(ZSGB-BIO, Beijing, China), lasting 
for 20 minutes. Color development 
was achieved by incubation of sec-
tions with 3,3’-diaminobenzidine for 
4 minutes in a black environment. 
Lastly, the sections were dehydrat-
ed, sealed, and observed by light 
microscopy at an original magnifica-
tion 200 × or 400 ×.

RT-PCR

TC-512 PCR System (TECHNE, UK) 
was used to perform PCR, with  
the following amplification program: 
95°C for 5 minutes, 95°C for 30 
seconds, 58°C for 30 seconds, and 
72°C for 30 seconds, for 30 cycles, 
as well as 72°C for 5 minutes and 
extension at 4°C for 30 minutes. 
Primer sequences for cytokines and 
the NLRP3 inflammasome are listed 
in Table 1.

Western blotting
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Nitrocellulose membranes were then slowly 
washed and covered with peroxidase-conjugat-
ed goat anti-rabbit or goat anti-rat IgG (1:5000) 
(Absin, Shanghai, China) at an appropriate tem-
perature lasting for 1 hour. They were then 
washed to remove surplus reagent. Finally, an 
ECL detection system (Millipore) was used, fol-
lowing manufacturer instructions, to detect 
antibody binding.

Statistical analysis

Data are presented as mean ± SD and were 
analyzed with SPSS 14.0 (SPSS Inc, Chicago, 
USA). Two-tailed Student’s t-tests were chosen 
to determine statistical significance (p<0.05 
indicates significant differences).

Results

CP attenuates lung injuries in the mouse 
asthma model

To determine whether CP can alleviate and/or 
prevent asthma, the current study employed a 
well-known OVA-induced mouse asthma model. 
In this model, the mice are sensitized by OVA 
injections. Asthma is induced by OVA inhala-
tion. Groups of mice were pretreated with CP by 

oral administration of 0 (saline for normal and 
OVA control groups), 300, 600, or 900 mg/kg 
daily for 20 days during the period of OVA sensi-
tization and challenge. Histological analysis of 
the mouse lungs indicated that OVA induced 
marked pathological alterations, compared 
with lungs of the normal mouse group, includ-
ing inflammatory cell aberrant infiltration, 
lumen stenosis, epithelial collagen fiber deposi-
tion, goblet cell hyperplasia, and mucus secre-
tion (Figure 2). However, these changes were 
virtually absent from the lungs of mice pretreat-
ed with 300-900 mg/kg CP and challenged 
with OVA (Figure 2). Results suggest that CP 
administration markedly reduced asthma-
associated lung injuries. 

CP attenuates inflammatory cytokine mRNA 
expression in the mouse asthma model

Next, this study asked whether the beneficial 
effects of CP were accompanied by a reduction 
in inflammatory cytokine expression in the 
injured lungs. For this, RT-PCR analysis was 
conducted for cytokine mRNAs in homogenized 
lung tissues. As shown in Figure 3, OVA injec-
tions and inhalation significantly increased 
mRNA levels of nearly all cytokines, compared 

Figure 2. Effects of CP on histological changes in mouse lung tissues. A. H&E staining; B. Masson’s trichrome stain; 
C. Periodic acid-Schiff’s stain. Magnification 200 ×. Scale bars, 50 μm.
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with the normal group. However, these chang- 
es were all obviously inhibited in mice exposed 
to OVA and pretreated with CP-900 group 
(p<0.05, Figure 3A-F). In the CP-300 group, 
IL-5 and IL-6 mRNA levels were downregulated 
(p<0.05, Figure 3B, 3C). In the CP-600 gro- 
up, only IL-5 and IL-17 mRNA levels were inhib-
ited, compared with the OVA group (p<0.05, 
Figure 3B, 3E). Results suggest that the 
CP-900 group had the best results, while the 
other two groups have partial effects. Notably, 
IFN-gama mRNA levels were decreased after 
induction of asthma. However, levels were sig-
nificantly increased by CP treatment (p<0.05, 
Figure 3F). Thus, CP attenuates the transcrip-
tion of inflammatory cytokines in the lungs of 
asthmatic mice.

CP attenuates inflammatory cytokine protein 
expression in the mouse asthma model

After the effects of CP treatment on cytokine 
mRNA levels were confirmed, Western blot 
analysis was conducted to observe protein lev-
els in the lung tissues. IL-4, 5, 6, 13, 17A, and 
TNF-α protein levels were obviously upregulat-
ed in the OVA group, compared to the normal 
group. However, as observed for mRNA levels, 
protein upregulation was significantly inhibited 
by CP treatment for all cytokines (p<0.05, 
Figure 4A-G), except IFN-gama, which was sig-
nificantly increased by CP treatment (p<0.05, 
Figure 4H). Results confirm that CP can attenu-
ate OVA-induced inflammatory cytokine expres-
sion in this asthma model.

Figure 3. Effects of CP on in-
flammatory cytokine mRNA 
levels in the lungs of mice with 
OVA-induced asthma. (A-G) RT-
PCR analysis of (A) IL-4, (B) IL-
5, (C) IL-13, (D) IL-6, (E) TNF-α, 
(F) IL-17, and (G) IFN-gama 
mRNA levels. Values are shown 
as mean ± SEM of 10 mice. 
*p<0.05, **p<0.01 vs. normal 
group; #p<0.05, ##p<0.01 vs. 
OVA group.
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CP reduces NF-κB signaling in the mouse 
asthma model

NF-κB is a well-known part of inflammation-
related transcription genes [16]. To evaluate 
the effects of CP on this transcription factor, 
the current study analyzed expression levels of 
the serine 536-phosphorylated (active) form of 
NF-κB p65 and one of its downstream target 
genes, cyclooxygenase enzyme Cox2 [17]. It 
was found that asthma was associated with an 
increase in NF-κB activity, as evidenced by ele-
vated phospho-NF-κB p65 and Cox2 protein 
levels in the lung tissues isolated from OVA-
treated mice, compared with mice in the nor-
mal group (Figure 5A-C). It was observed that 
CP treatment markedly reduced expression lev-
els of both phospho-NF-κB p65 and Cox2 in the 

CP-900 group (p<0.05, Figure 5A-C). To verify, 
IHC staining of lung tissues was performed. 
Analysis revealed a higher level of phospho-NF-
κB p65 in the nucleus of asthma model mice 
lung cells, compared to normal mice. Protein 
levels were markedly decreased in the lungs of 
CP-treated mice (Figure 5D). Consistent with 
these findings, Cox2 was also increased in the 
lung tissues of asthma model mice, compared 
to normal mice. OVA effects were reversed by 
CP treatment (Figure 5E).

CP reduces activation of NLRP3 inflamma-
some in the mouse asthma model

NF-κB activation leads to transcription of 
NLRP3 and is the first initiate signal of NLRP3 
inflammasome [18-20]. Given the finding that 

Figure 4. Effects of CP on inflammatory cytokine protein levels in the lungs of mice with OVA-induced asthma. (A-H) 
Western blot analysis of (B) IL-4, (C) IL-5, (D) IL-6, (E) IL-13, (F) IL-17A, (G) TNF-α, and (H) IFN-gama. Values are shown 
as mean ± SEM of 10 mice. *p<0.05, **p<0.01 vs. normal group; #p<0.05, ##p<0.01 vs. OVA group.
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CP inhibited transcription factor NF-κB activa-
tion in OVA-challenged mice lungs tissues, 
expression levels of compositions of NLRP3 
inflammasome were examined. It was discov-
ered that NLRP3, ASC caspase-1, and down-
stream cytokine IL-18 and IL-1β mRNA levels 
had a marked upregulation in the lungs from 
OVA-exposed mice. Consistent with the effects 
on NF-κB, these increases were significantly 
inhibited by CP treatment (p<0.05, Figure 
6A-E). Protein analysis revealed that OVA and 
CP had the same effects on expression of the 
corresponding proteins (p<0.05, Figure 6F-J). 
Finally, IHC analysis of lung tissues was con-
ducted. As expected, in OVA-exposed mice, 
NLRP3 and caspase-1 were increased, com-
pared with normal mice (Figure 6K, 6L). 
However, levels were reduced in mice treated 
with CP concomitantly with OVA sensitization 
and challenge (Figure 6K, 6L).

Discussion

Asthma is a complex respiratory disorder dis-
ease [21]. It is expressed by lung injuries and 

persistent airway inflammation associated with 
hyper-responsiveness [22]. It has become one 
of the most widespread diseases, worldwide, 
especially among children. Although mortality 
rates from asthma are relatively low compared 
with other diseases, it is a protracted illness 
accompanied by repeated attacks. It has a dif-
ficult healing process, severely impairing quali-
ty of life. Therefore, it is necessary to discover 
safe and effective treatments for this disease. 
The current study investigated influences and 
underlying mechanisms of action of CP, estab-
lishing an OVA-induced in vivo model of mouse 
asthma. Present data shows that CP signifi-
cantly ameliorates OVA-induced changes in 
lung histopathology and inflammatory cytokine 
production in lung tissues, providing support 
for the possible function of CP for asthma 
therapy.

Inflammation is a pivotal part of asthma occur-
rence and development. Asthma has always 
been an allergic disease with typical Th2 inflam-
matory characteristics [23]. When asthma 
occurs, Th2 cells have been shown to secrete 

Figure 5. Effects of CP on NF-κB p65 and Cox2 protein expression in the lungs of mice with OVA-induced asthma. (A-
C) Western blot analysis of (A) phosphorylated NF-κB p65 and Cox2, (B) total Cox2, and (C) total NF-κB p65. (D and 
E) Immunohistochemistry analysis of NF-κB p65 (D) and Cox2 (E) protein expression in lung tissue. Magnification 
200 × (Cox2) and 400 × (NF-κB). Scale bars, 50 μm (Cox2) and 25 μm (NF-κB). Values are shown as mean ± SEM 
of 10 mice. *p<0.05, **p<0.01 vs. normal group; #p<0.05, ##p<0.01 vs. OVA group.



CP ameliorates OVA-induced asthma

9555 Int J Clin Exp Med 2019;12(8):9548-9558

Figure 6. Effects of CP on expression of the 
NLRP3 inflammasome and related inflam-
matory cytokines in the lungs of mice with 
OVA-induced asthma. (A-E) RT-PCR analysis 
of NLRP3, ASC, caspase-1, IL-18, and IL-1β 
mRNA levels. (F-J) Western blot analysis of 
NLRP3, ASC, caspase-1, and IL-18 protein 
levels. (K and L) Immunohistochemistry of 
NLRP3 (K) and caspase-1 (L) protein in lung 
tissues. Magnification 200 ×. Scale bars, 
50 μm. *p<0.05, **p<0.01 vs. normal 
group; #p<0.05, ##p<0.01 vs. OVA group.
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IL-4, 5, 6, and 13 cytokines [24, 25], consistent 
with current findings. In the current study, Th1 
cytokine IFN-gama was decreased. Expression 
was increased after treatment with CP in the 
lung tissues of model mice. This finding is relat-
ed with the typical opposing response of Th1 
and Th2 cytokines in asthma resulting from 
hyperactivity of Th2 cells relative to Th1 cells 
[26]. This leads to an imbalance in Th1/Th2 
response, resulting in chronic airway inflamma-
tion [28]. IFN-gama and IL-4 have been consid-
ered as the characteristic Th1 and Th2 cyto-
kines, respectively, playing opposing positive 
and negative roles in the pathology of asthma 
[29]. Moreover, IL-4 promotes IgE synthesis, 
downregulates IFN-γ secretion, and partici-
pates in airway mucosal maintenance [27].

NF-κB is a crucial transcription factor in inflam-
matory diseases because it regulates the activ-
ity of many pro-inflammatory signaling path-
ways [30], including activation of the NLRP3 
inflammasome [31]. Thus, NF-κB acts as the 
start-up priming signal for activation of this 
inflammasome [32, 33]. The current study con-
firmed that levels of active (phosphorylated) 
NF-κB p65 were increased in OVA-induced 
asthma model mice lung tissues. Levels were 
significantly inhibited by CP treatment. Similarly, 
results showed OVA-induced elevated expres-
sion of NLRP3 inflammasome in lungs of asth-
matic mice. Caspase-1 is produced through 
pro-caspase-1 self-cleavage [34] and some 
other cytokine precursors. For example, pro-
IL-18 and pro-IL-1β could be cleaved by enzy-
matically active caspase-1 and changed to be 
the active forms [35]. Present results are pre-
cisely consistent with this scenario, in which 
IL-1β and IL-18 protein expression levels were 
noticeably increased in OVA-challenged mice 
lung tissues. CP treatment significantly inhibit-
ed expression levels.

Conclusion

In summary, present results suggest that CP 
inhibits lung injuries and inflammatory changes 
associated with asthma in an OVA-induced 
mouse model. The current study also demon-
strates that the mechanisms of action of CP 
involve suppression of NF-κB activation and 
suppression of NLRP3 inflammasome activity, 
as well as upregulation of asthma-related 
inflammatory cytokines. Therefore, current 

results supply strong support the potential clini-
cal utility of CP as an asthma therapy medicine, 
as well as other inflammatory diseases.
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