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Abstract: Skeletal muscle (SKM) injury is a common clinical problem that lacks effective treatment methods. Thus, 
establishment of an appropriate animal model of SKM injury will provide a foundation for the discovery and verifi-
cation of effective therapies. Several treatment methods have been employed for SKM injury in experimental and 
clinical studies. However, few studies have reviewed a method of establishing a unified standard for SKM injury in 
animal models. In the present investigation, we provide an overview of a bupivacaine-induced animal model of SKM 
injury from a morphological perspective to provide a review of this available and effective approach.
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Introduction

Many factors, such as muscle strains, cardio 
toxins and sports trauma, cause skeletal mus-
cle (SKM) injury, the health cost of which is 
more than 790 billion USD in the United States 
per year [1, 2]. Hence, it is necessary to eluci-
date the mechanisms of SKM that cause per-
manent disability due to inadequate regenera-
tion of injured SKM [3, 4]. Developing efficient 
therapies for SKM injury will reduce social and 
economic burdens, as well as alleviate person-
al-psychological pressures [5].

There are few animal models of SKM injury  
that have been fully characterized within the  
literature [6]. By contrast, several SKM-injury 
animal models have been used to analyze the 
therapeutic effects of various treatment meth-
ods [7-14]. Therefore, reviewing an accepted 
and easily implemented animal model of SKM 
injury is critical for better elucidating mecha-
nisms of SKM injury and for developing and 
evaluating therapeutic strategies to assist an 
aging society that has a high incidence of SKM 
injury [15-17].

Bupivacaine is a local anesthetic that has been 
used as a myotoxic drug to induce SKM injury in 

animal models since 1968 [18]. Numerous 
papers on bupivacaine-induced SKM injury 
have been reported [19-26]; however, there 
are no reviews that delineate a standard for 
bupivacaine-induced SKM injury models. 

Therefore, the purpose of this review is to pro-
vide an overview of a bupivacaine-induced ani-
mal model of SKM injury from a morphological 
perspective to facilitate the reproducibility and 
future applicability of the model. This report  
will serve to support an animal model of SKM 
injury and facilitate the reproducibility and 
future applicability of the model.

Morphological changes of SKM after bupiva-
caine injection

Thirteen studies have addressed acute or 
chronic morphological changes following intra-
muscular injection of bupivacaine [18, 27-38]. 
Detailed information was extracted from these 
studies and is listed in Tables 1-3.

Publication year and location of study

Thirteen studies were conducted between 
1968 and 2015. Only two [28, 38] studies were 
performed at medical research centers, while 
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Table 1. Basic information and interventional methods of the reviewed studies

Study Place Special/Weight Injured SKM Intervention (type/amount/ 
concentration/syringe) Control method

Sokoll [18]. 1968 University of Lund 200-220 g M/W EDL s.c. 0.5 ml 0.5% 25 G NS

Benoit [27]. 1970 Tufts University School of Medicine 200 g M albino rats Gracilis/posticus muscle s.c. 0.5 ml 0.5% NR NS

Hall-Craggs [30]. 1974 University College London 175-265 g F/W TAS i.m. 0.5 ml 0.5% 23 G NS

Schultz [37]. 1978 University of Wisconsin, Madison 4/24 month quail PLM i.m. 0.5 ml 0.75% Hypodermic needle NI

Foster [29]. 1980 University of Michigan 55-80 gm F/SD TAS s.c. with 0.2 ml 0.75% 27 G NS

Newman [33]. 1983 University of Oxford 200-250 g M/SD Calf muscle i.m. 3 ml 0.5% NR NS

Komorowski [31]. 1990 University of Michigan NR monkey APBM i.m. 350 μl/kg 0.75% 22 G Mepivacaine/Lidocaine+Epinephrine/NS/NI

Polit [36]. 2006 University of Athens 180-250 g M/W Soleus muscle i.m. 1 ml 0.5% 0.5 mm needle NS

Plant [35]. 2006 University of Melbourne 30 g M C57BL/10 mice EDL i.m. 100 μl 0.5% 30 G Notexin/NI

Vignaud [38]. 2007 INSERM, U787, Paris, F-75013 France 15-20 g M/mice TAS i.m. NR Venom/cardiotoxin/NI

Cherng [28]. 2010 National Defense Medical Center 320-400 g M/W TAS i.m. 0.2 ml 0.25/0.5/1% 20 G NS

McNeill [32]. 2011 Federal University of São Paulo 300 g M/W GNM i.m. 0.5 ml 0.5% 26 G NI

Oz Gergin [34]. 2015 Erciyes and Cukurova University 180-200 g F/W GNM i.m. 100 μl 0.5% 27 G Levobupivacaine/Ropivacaine/NS
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Table 2. Outcome measures and morphological changes of the injured muscle

Study Outcome 
measures Morphological changes 

Sokoll [18]. H&E Atrophied and normal fibers were seen at 4 d. Marked atrophy of superficially located muscle fibers at 7 d by 
twice daily injections. CMF was seen during the recovery phase. Deeply located muscle fibers have atrophied, and 
the diameter was still reduced after the cessation of twice-daily bupivacaine injections for 7 d.

Benoit [27]. H&E Hyalinized fibers with pyknotic nuclei were scattered among normal fibers at 15 min. Damaged fibers were filled 
with macrophages at 24 h. 

Hall-Craggs [30]. H&E Fibers were reduced in caliber with leucocytic infiltration at 1 d. Intense infiltration and macrophages were seen 
at 2 d. Macrophages invaded and degeneration phenomenon appeared at 3 d. Basophilic cytoplasm, striations 
and myotubes with PPN appeared at 4 d and 5 d. Young muscle fibers with transverse striations were seen at 6 d. 
Fifteen days after injection, fibers showed ectopic nuclei and reduced caliber. 

Schultz [37]. H&E Injured muscle was stained with methylene blue in sodium borate. Complete breakdown and fragmentation of 
myofibers with cellular invasion after injection. Numerous basophilic cells appeared beneath the basal lamina of 
degenerating fibers at 17 h. Regeneration process appeared subsequently.

Foster [29]. H&E Damaged muscle fiber was broken down by a synchronous phagocytic reaction and the regenerating process was 
completed at 30 d, but with numerous central nuclei persisting. Vascular supply and nerves were not affected. 

Newman [33]. H&E Small cell infiltrations with numerous polymorphonuclear leukocytes appeared at 1 d. Inflammatory infiltration 
formed by macrophage and fragmentation of fibers were seen at 2 d with CMF displayed at 3 d. Regeneration was 
apparent at 5 d. Diameter of the fiber had increased and small cell infiltration almost resolved at 10 d.

Komorowski [31]. TEM Breakdown phenomenon was seen at 2 h. Phagocyte-mediated fragmentation of the degenerating muscle fibers 
was intense during 3 d and 4 d. Myotubes appeared at 6 d and matured at the 2nd week. 

Polit [36]. H&E
TEM

No significant variation was observed by H&E. TEM: Necrotic fibers infiltrated with mononuclear cells on the day 1. 
Numerous replicating myoblasts began to fuse the injured place at 3 d. Myotubes appeared at 5 d, and the regen-
erating fibers with PPN appeared at 7 d. The diameter of the regenerating fibers was increased at 14 and 21 d.

Plant [35]. H&E The proportion of CSA occupied by degenerating fibers was 24%, 51%, and 33% at 1, 2, and 3 d, respectively. The 
proportion of CMF in the total muscle CSA was ~23% at 7 and 10 d after bupivacaine injection. 

Vignaud [38]. H&E Numerous CMF filled 80-100% of the CSA. Bupivacaine injection resulted in near destruction of the muscles.

Cherng [28]. H&E Muscle damage was decided by the concentration of bupivacaine. Specifically, 0.25% caused mild focal mono-
nuclear cell infiltration. Next, 0.5% induced severe muscle damage with neutrophil and lymphocyte infiltration. 
Finally, 1% caused severe muscle damage with marked neutrophil and lymphocyte infiltration.

McNeill [32]. H&E Intense inflammatory response was seen at 5 d. CMF appeared at 14 d. The higher presence of normal muscle 
fibers appeared at 21 d and the muscle was almost normal at 28 d.

Oz Gergin [34]. H&E
TEM

H&E: Serious inflammation was observed at 2 d. Mononuclear leukocyte infiltration and necrobiotic changes were 
observed. Inflammatory edema and a wavy appearance were visible. TEM: Mitochondrial swelling and membra-
nous whorl formations were remarked in sub-sarcolemmal areas. Disruption of the myofibrillar organization and 
intracytoplasmic edema areas in sarcoplasm were seen. Numerous macrophages were observed around the 
muscle fibers.

Table 3. Comparison between single and sequential injections
Study Way of injection Differences compare to a single injection
Benoit [27]. 12-h-interval injections with 

bupivacaine lasting one week
The degree of the sequential injection was not more serious than a single injection, and each 
injection appeared to initiate a new injury to the unaffected fibres. Regenerating fibres were 
unaffected by drug exposure.

Sokoll [18]. 12-h-intervals injection with 
bupivacaine lasting 2/4/7 d

The diameter of superficial muscle was reduced more, and muscle atrophy was deeper when 
comparing sequential with the single injection method.

Hall-Craggs [30]. Daily injection for 3 d Degeneration and regeneration processes appeared more active and advanced when compar-
ing sequential with the single injection method.

the other studies were completed at universi-
ties (Table 1). Among these, four [27, 29, 31, 
37] studies were conducted in the USA. 

Experimental animals and injured SKM mod-
els

Detailed information of the animals was report-
ed in all studies, except for animal weight which 
was not reported in one [31] study. The tibialis 
anterior muscle in four [28-30, 38] studies, 
gastrocnemius muscle in three [32-34] studies, 

and the extensor digitorum-longus muscle in 
two [18, 35] studies were injured via bupiva-
caine injections. The soleus muscle, abductor 
pollicis-brevis muscle, peroneus longus mus-
cle, and gracilis-posticus muscle were all dam-
aged in a single study (Table 1 [27, 31, 36, 37]).

Interventional and control methods

Interventional methods consisted of single/
sequential injections of bupivacaine. Eight [18, 
27, 28, 30, 31, 33, 34, 36] studies applied nor-



Bupivacaine-induced skeletal muscle injury

10 Int J Clin Exp Med 2020;13(1):7-15

mal saline, while three [31, 32, 37] studies 
used blanks as controls. Animal venom and 
blanks were used as controls in two [35, 38] 
studies, while one study [38] adopted cardio-
toxin as a control. Two [31, 34] studies applied 
different types of anesthetics or anesthetics 
plus hormones as controls (Table 1).

Bupivacaine injection

(i) The concentration and amount of bupiva-
caine: a concentration of 0.5% bupivacaine 
was used most often. Four [18, 27, 30, 32] 
studies injected 0.5 ml, two [34, 35] studies 
injected 0.1 ml, and 1 ml [36] and 3 ml [33] 
were each adopted in one study. Additionally, 
0.75% bupivacaine was used in three [29, 31, 
37] studies, which included injections with 0.2 
ml [29], 0.5 ml [37] and 350 ul/kg [31]. One 
[28] study applied 0.2 ml bupivacaine with 
three different concentrations (0.25%, 0.5%, 
1%), while another [38] study did not report  
the concentration or amount of bupivacaine 
(Table 1).

(ii) Injection method: direct intramuscular injec-
tions were most frequently applied in previous 
work, and two [35, 36] studies employing this 
technique surgically exposed the injured mus-
cle. Two [18, 27] studies applied subcutaneous 
injections, while another study [29] used percu-
taneous injections (Table 1).

(iii) Specification of syringes: the syringes used 
ranged from 20-gauge [28] to 30-gauge [35]; 
two [29, 34] studies used 27-gauge syringes. A 
0.5-mm hypodermic syringe was used in one 
study [36], and a hypodermic syringe was used 
in another study [37]. Two [33, 38] studies did 
not list details about the syringes used (Table 
1).

Outcome measures

Hematoxylin-eosin (H&E) staining was most 
commonly used to analyze the morphology of 
the injured muscle. Two [34, 36] studies also 
performed TEM. One [31] study only reported 
TEM changes (Table 2).

Morphological changes of injured muscle

According to the H&E or TEM images at differ-
ent time points, the injured muscle experienc- 
ed inflammation and/or regeneration. At the 
inflammatory stage, severe inflammatory-cell 

infiltrations included macrophages and leuko-
cytes. Necrotic fibers with mononuclear-cell 
infiltration, mitochondrial swelling, disordered 
lines and bands, and disruption of the myofi- 
brillar organization were observed by TEM anal-
ysis. During the regeneration period, centro-
nucleated muscle fibers, basophilic cells, and 
young muscle fibers appeared; also satellite 
cells and regenerated myoblasts were also 
observed from the TEM images (Table 2).

Comparison between single and sequential 
injections

Sequential injections of bupivacaine were 
applied in three [18, 27, 39] studies. It was  
indicated that the severity of muscle injury 
induced by sequential injection was greater 
than for single injections [18, 39]; one study 
held the opposite opinion [27]. 

Comparison of TEM analysis

Different ultra-structural changes were seen 
according to observed time points from 2 h to 
21 d (Table 2). Inflammatory reactions were 
observed during the first 2 d after muscle  
injury in three [31, 34, 36] studies; detailed 
information was provided in one [34] study, 
including the changes of mitochondrial, sub-
sarcolemmal and surrounding supportive tis-
sues. Myoblasts were recognized at 3 d, and 
myotubes appeared at 5 d, according to the 
description of the regeneration process. The 
injured muscle was recoverable but without 
completed repair until 21 d, as shown by the 
TEM results.

In all 13 studies, two of the studies analyzed 
the muscle damage severity according to the 
morphological changes 2 [34] and 3 [28] d 
after bupivacaine injection. Although muscle 
histology is a good static indicator of injury [40], 
the measurement of muscle function by force 
evaluation is important to assess injury and 
recovery comprehensively [41]. 

Functional analysis of SKM injury after bupiva-
caine injection

Three studies provided functional analysis of 
the injured muscle after bupivacaine injection 
[32, 35, 38]. Muscle mass, maximal twitch 
force, contraction time, half relaxation time and 
maximal tetanic force were reported in two 
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studies [35, 38], while muscle mass and mus-
cle force were analyzed in one investigation 
[32]. Due to the different muscles and exami-
nation times, a statistical comparison was not 
completed. 

Regarding the change of muscle mass, conflict-
ing results were presented. One study [38] 
showed that the injured muscle mass was 
reduced at 5 d and increased at 56 d as com-
pared to control muscles. In contrast, muscle 
mass was 17% greater after bupivacaine-injec-
tion during the first 3 d but was not statistically 
different from non-injected muscle later on 
[35]. The change of twitch and tetanic force 
were consistent; the data revealed that the 
force was decreased after muscle injury and 
nearly recovered within 28 d [32, 35, 38]. With 
the recovery of the injured muscle, the contrac-
tion and half relaxation time were gradually 
reduced compared with the control muscles 
[38]. 

Discussion

Bupivacaine was recommended by the United 
States Food and Drug Administration (FDA) for 
use as a local anesthetic, although the side 
effects have not been fully recognized [42]. The 
experimental myotoxic effects are robust and 
reproducible, although only a few case reports 
of myotoxic complications in patients have 
been published [43]. Therefore, we reviewed 
the utility of the bupivacaine-induced SKM-
injury rat model herein as well as provided a 
novel utilization of bupivacaine.

Use of SKM injury induced by bupivacaine-
injection 

Animal models of bupivacaine-induced SKM 
injury have been widely used for in vivo [20, 44] 
and in vitro experiments [45, 46] since the 
model was first successfully introduced in 
1968 [18]. Subsequently, more and more stud-
ies of bupivacaine-induced SKM have been 
used in the biomedical field [47-49]. A focus of 
many of these studies was to test the model’s 
success rate by biomedical indices or function-
al properties of injured muscle [24, 50, 51], but 
no report has reviewed and summarized the 
variety of ways for establishing the bupiva-
caine-induced SKM injury model.

Bupivacaine has been widely used to investi-
gate muscle injury through in vitro experiments 

[25, 39, 45, 46, 52-57]. Different muscular 
cells have been cultured with bupivacaine at 
varying concentrations to explain its myotoxici-
ty [46, 53] or effectiveness in treatment [55-
57]. While a variety of experiments have 
focused on human muscle injury produced by 
bupivacaine injections, these studies con-
tained no morphological analysis [58-60]. 
Animal models of bupivacaine-induced SKM 
injury can be used as SKM pain models, 
although diagnosis and treatment principles 
differ between muscle injury and pain [61]. 
These discrepancies are because: (i) the patho-
genesis of bupivacaine-induced SKM injury, 
such as acute muscle inflammation, is the 
pathological manifestation of muscle pain [62]; 
and (ii) bupivacaine injection can enhance sar-
coplasmic reticular Ca2+ release, which plays an 
essential role in the development of muscle 
hyperalgesia [63, 64]. Bupivacaine-induced 
sarcoplasmic/endoplasmic reticulum stress 
and apoptosis may be the reason for muscle 
pain [45]. Hence, this type of animal model is 
vital for related research about pain man- 
agement.

SKM injury induced by bupivacaine-injection

Animal models of bupivacaine-induced SKM 
injury using an intramuscular administration 
route conform to the pathological process of 
muscle injury and are convenient for research 
on muscle injury. Bupivacaine can be used as a 
myotoxic agent to induce SKM injury due to its 
neuromyotoxic properties [38, 65], ability to 
reduce muscle energy metabolism [66], ATP 
activity [33], mitochondrial function [64] and 
contractile properties [32, 35, 38], all of which 
are consistent with the morphological and  
functional changes of injured muscle. Review- 
ing the H&E/TEM results indicates that a  
single intramuscular injection with 0.1-0.5 ml 
0.5% bupivacaine can establish an animal 
model of SKM injury.

There are other important considerations when 
establishing bupivacaine-induced SKM injury 
models. One crucial aspect to consider is that 
recent studies evaluated morphological chang-
es, while only three [32, 35, 38] studies ana-
lyzed the function of the injured muscle, which 
is important for assessing the degeneration 
and regeneration degree of muscle [67]. There 
is a close relationship between morphological 
changes and muscular functional properties 
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[68-72]. Hence, it is reasonable to suggest that 
analysis of the injured muscle, both from mor-
phological and functional perspectives, should 
be included in further studies. 

H&E and TEM are widely used methods for 
assessing changes in muscle structure [73, 
74]. Other imaging technologies are also rec-
ommended such as CT or MRI scanning [75, 
76]. Another important factor is that the speci-
fication of the syringe should be taken into  
consideration. Different syringe specifications 
were used in the reviewed studies, and previ-
ous reports suggest that the syringe (size, 
length, and angle inserted into the muscle) may 
cause mechanical muscle damage or confound 
any therapeutic effects [77, 78]. One study, 
using saline as a control, found that mechani-
cal damage occurred near the injection site 
[79]. Thus, using the same specification syringe 
with a small diameter is recommended to avoid 
mechanical damage when establishing SKM 
models. 

Conclusion

Intramuscular injection of 0.1-0.5 ml 0.5%  
bupivacaine can establish an animal model of 
SKM injury. Bupivacaine injection is an appro-
priate animal model of SKM injury and has  
wide applicabiltiy in research. However, it is 
necessary to provide additional functional anal-
ysis of this kind of animal model in future 
investigations.
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