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Abstract: Post-stroke limb hemiplegia has an important impact on the quality of life of patients. Strokes above 
the tentorium cerebelli often lead to contralateral limb hemiplegia. However, in clinical practice, some cases of 
limb hemiplegia after ipsilateral brain hemisphere stroke also occur from time to time. The discrepancy of clinical 
symptoms and neuroimaging performance complicates diagnosis and differential diagnosis. In this paper, different 
aspects of ipsilateral motion path in adults, neurodevelopmental malformation, cortical motor function remodeling 
in stroke recovery, and double crossing of the corticospinal tract fibers were reviewed to explain the mechanisms of 
limb hemiplegia after ipsilateral brain hemisphere lesions. 

Keywords: Corticospinal tract, neural remodeling, hypoplasia, hemiplegia

Introduction

Cases of limb hemiplegia after ipsilateral brain 
hemisphere stroke can be encountered by 
chance in clinical practice (Table 1) [1-17]. Limb 
movement is mainly mediated by the cortico-
spinal tract (CST). About 75-90% of the cortico-
spinal tract (CST) originating from the central 
anterior gyrus, premotor area, and parietal lobe 
crosses to the contralateral side at the inter-
section of the medulla oblongata, forming a lat-
eral CST [18, 19]. Only approximately 10% of 
the fiber bundles do not cross but form the 
anterior CST which terminates in the ipsilateral 
anterior horn [6]. Some anterior CST fibers do 
not cross, and some authors believe that they 
dominate the movement of the ipsilateral limb 
only during human embryonic development and 
that the ipsilateral CST function is inhibited by 
the corpus callosum after 10 years of age [20]. 
Therefore, a stroke in the cerebellum tentorium 
usually leads to hemiparesis opposite to the 
side of the infarct lesion. However, in real prac-
tice, we often encounter limb hemiplegia follow-
ing ipsilateral brain hemisphere stroke, which is 
difficult to explain due to the mismatch between 
the brain lesions and clinical manifestations.

Ipsilateral motion path in adults

Patients with refractory epilepsy underwent 
intracranial implantation of subdural electrode 
arrays and/or depth electrodes for monitoring 
changes in intracranial potential parameters 
without taking epilepsy drugs [21]. It was found 
that the cortical motor potentials of these 
patients were significantly associated with their 
ipsilateral limb activities, suggesting that some 
limb movements may be controlled by the ipsi-
lateral cerebral cortex. The ipsilateral cerebral 
hemispheres may dominate the movement of 
the limbs through non-intersecting fiber bun-
dles or through the corpus callosum pathway 
[22].

Alurkar reported a case in which the main 
symptoms were a recurrent right upper limb 
weakness and paresthesia within 3 months. 
Magnetic resonance imaging (MRI) showed that 
the acute cerebral infarction lesion was located 
in the right coronary region. Carotid angiogra-
phy showed severe stenosis of the right internal 
carotid artery, and the blood flow velocity was 
significantly slowed down. The vascular condi-
tion was consistent with the infarction lesion 
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Table 1. Reported cases of limb hemiplegia after ipsilateral brain hemisphere stroke

Author-date Gender-age Dominant  
hemisphere

Stroke 
type Lesion of infract Stroke history Confirmatory  

imaging
Fisher [1], 1992 F, 75 NA IS L, internal capsule, putamen and caudate nucleus R, internal capsule and caudate nucleus, IS Neuropathology

Hosokawa [2], 1996 M, 60 L ICH R, internal capsule and thalamus No CT, MRI, MEP, SEP

Terakawa [3], 2000 M, 62 L ICH L, internal capsule and basal ganglia No CT, MRI, fMRI, TMS, SEP

Ago [4], 2003 M, 59 L IS L, corona radiata R, putamen, ICH MRI, fMRI

Song [5], 2005 F, 62 L IS L, corona radiata R, corona radiata and thalamus, ICH MRI, fMRI

M, 41 L IS L, corona radiata R, corona radiata, IS MRI, fMRI

Yamamoto [6], 2007 M, 74 L IS R, thalamus L, corona radiata, IS MRI, SPECT

M, 76 L IS R, corona radiata L, corona radiata, IS MRI, SPECT

M, 64 L IS R, corona radiata and globus pallidus L, paraventricular Region, IS MRI, SPECT

Ng [7], 2011 M, 55 NA IS L, corona radiata and thalamus No MRI, DTI

Kang [8], 2012 M, 35 NA IS R, right middle and inferior frontal gyrus, supramar-
ginal gyrus, insular gyrus, internal capsule, head of 
caudate nucleus, putamen, and globus pallidus

No MRI, TMS, SEP

Alurkar [9], 2012 M, 55 L IS R, corona radiata No MRI, DTI

Kwon [10], 2013 M, 55 L IS R, pons L, basal ganglia, frontal lobe, parietal lobe, temporal lobe, IS MRI, DTI

Saada [11], 2014 M, 57 L IS L, occipital, frontal and parietal lobes R, basal ganglia, IS MRI

F, 57 L IS R, frontal lobe R, internal capsule, IS MRI

Yamada [12], 2015 M, 55 NA ICH L, putaminal No CT, MRI, DTI

Kobayashi [13], 2015 M, 79 NA IS L, internal capsule R, pons, IS MRI, TMS, MEP

Xu [14], 2016 M, 58 L IS L, frontal lobe R, pons, IS MRI, CTA

Hebant [15], 2016 M, 74 R IS L, internal capsule R, internal capsule MRI

M, 68 NA IS R, internal capsule No MRI

Inatomi [16], 2017 M, 68 NA IS R, pons L, corona radiata, IS MRI

M, 73 NA IS L, corona radiata R, globus pallidum MRI, fMRI, TMS

M, 59 NA IS L, pons L, thalamus, IS R, thalamus, ICH MRI, fMRI, TMS

M, 60 NA IS L, precentral gyrus, superior parietal lobule R, putamen, ICH MRI, TMS

M, 72 NA IS R, corona radiata L, medulla, IS L, pons, IS MRI

F, 65 NA IS L, corona radiata and putamen R, corona radiata, IS MRI

F, 72 NA IS R, corona radiata R, medulla, IS MRI, TMS

F, 71 NA IS L, cingulate gyrus, corpus callosum R, corona radiata, IS MRI, fMR, TMS

F, 78 NA IS R, pons L, internal capsula to occipital lobe, IS MRI, fMRI

F, 68 NA IS L, internal capsula R, internal capsula, IS MRI, fMRI

M, 80 NA IS R, corona radiata and putamen L, corona radiata and internal capsula, IS MRI, fMRI, TMS

M, 73 NA IS R, corona radiata, sup.frontal gyrus No MRI, fMRI

M, 70 NA IS L, cingulate gyrus, precentral gyrus L, putamen and internal capsula, IS MRI, fMRI

M, 79 NA IS R, corona radiata L, corona radiata MRI, fMRI, TMS

Patra [17], 2018 F, 44 R IS R, fronto-temporal cortex No CT, CTA, MRI, DTI, DSA
CTA, computed tomogram angiogram; DSA, digital subtraction angiography; DTI, diffusion tensor imaging; F, female; fMRI, functional magnetic resonance imaging; ICH, intracerebral hemorrhage; IS, ischemic stroke; L, left; M, male; MEP, mo-
tor evoked potential; NA, not available; R, right; SEP, sensory evoked potential; TMS, transcranial magnetic stimulation.
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[9]. In order to further clarify the pathogenesis, 
diffusion tensor tractography (DTT) imaging 
revealed that the bilateral pyramidal tracts of 
the patient did not cross, which reasonably 
explained the ipsilateral limb weakness. A simi-
lar situation was mentioned in the report of 
Patra [17]. Jerry recently reported a non-cross-
ing CST in a microsurgical resection of vestibu-
lar schwannomas in a patient with structurally 
normal cerebral hemisphere [23]. These cases 
show that there is a complete non-crossing of 
the CST in some adults, and the hemisphere 
stroke in this type of patients affects only the 
ipsilateral limb.

In addition to primary motor area, human motor 
cortex also includes premotor cortex, and the 
supplementary motor area [24]. The nerve fiber 
bundles from the central anterior gyrus, the 
premotor area, and the parietal lobe pass 
through the radial crown and the inner capsule 
to the reticular nucleus of the brainstem, and 
the reticular spinal cord bundle subsequently 
descends [6]. Some of the fiber bundles do not 
cross and are used to control the ipsilateral 
side. Therefore, damage to a certain part of the 
cerebral cortex or of a fiber bundle can cause 
ipsilateral limb weakness. The supplementary 
motor area (SMA) is located in the superior 
frontal gyrus on the inner side of the cerebral 
hemisphere [25]. It is considered to be involved 
in the complex movement control of the human 
body [26, 27]. Using fMRI to observe the activa-
tion of brain areas when the human hand per-
forms different actions [28], it was found that 
while performing complex exercises, the bilat-
eral SMA was also activated (except for the acti-
vation of the primary motor area of the contra-
lateral cerebral hemisphere), indicating that the 
region can participate in bilateral upper limb 
movement. In addition, Saada [11] mentioned 
that the secondary motor zone in the precentral 
insular cortex can also participate in some 
bilateral limb movements. Inatomi [16] report-
ed the case of a patient with a cerebral infarc-
tion lesion located in the left cingulate gyrus 
and corpus callosum, which did not injure the 
CST. However, this type of lesion may damage 
the SMA, resulting in hemiplegia of the ipsilat-
eral limb.

Neurodevelopmental malformation

Brainstem dysplasia is often accompanied by 
congenital non-crossing CST, horizontal gaze 
palsy with progressive scoliosis (HGPPS) [12], 

posterior fossa deformities such as Dandy-
Walker malformation, Joubert syndrome, Mö- 
bius syndrome (which may be associated with 
defects during neurodevelopment), cellular 
abnormal proliferation, abnormal guiding mech-
anisms, and other, yet undiscovered molecular 
mechanisms [29-31]. The motor brain of these 
people usually supports the limb movement of 
the ipsilateral cerebral motor cortex. Therefore, 
their limb paralysis caused by stroke occurs on 
the same side of the lesion, but it is often nec-
essary to perform head MRI and DTT to confirm 
the diagnosis.

HGPPS is a rare autosomal recessive heredi-
tary disease, and its pathogenesis is mainly 
related to a mutation in the gene ROBO3 [32]. 
The protein translated by this gene plays an 
important role in cell migration and axonal mid-
line crossing during brainstem development 
[33]. Therefore, when the ROBO3 gene is 
mutated, it can cause brainstem hypoplasia, 
resulting in non-crossing or partially-crossed 
nerve fiber bundles of the brainstem, which can 
cause many nerve fibers to mutate, leading to 
HGPPS. Ng reported a 55-year-old Indian man 
with left limb weakness [7]. The patient had 
horizontal gaze and scoliosis since he was 
born. The brain MRI showed left putamen and 
corona radiata infarction and indicated HGPPS 
imaging features such as split pons, butterfly 
medulla, and small brain stem. DTT indicated 
that there was no crossover in the patient’s 
CST. Gene sequencing analysis revealed that a 
G>T mutation occurred in exon 17 of the coding 
region of the ROBO3 gene, resulting in a change 
of the original sequence from GAG to TAG. That 
study was the first to provide adequate clinical 
evidence of ipsilateral limb paralysis after cere-
bral hemisphere infarction in HGPPS patients. 
However, some patients carrying a heterozy-
gous mutation of the ROBO3 gene do not pres-
ent related malformations [34], and, hence, the 
relationship between the ROBO3 genotype and 
phenotype needs further investigation. Studies 
of patients with posterior fossa deformity 
showed that the obvious shape characteristics 
are accompanied by brainstem hypoplasia and 
a non-crossing pyramidal tract [35, 36]. 
However, no reports of strokes in these cases 
were retrieved. 

Recently, uncrossed corticospinal tracts in a 
patient with ichthyosis and hemiparesis we- 
re reported. The ipsilateral hemiparesis after 
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stroke may be caused by the FLG gene muta-
tions which is associated with ichthyosis [37].

Cortical motor function remodeling in stroke 
recovery

Paralysis after stroke has a significant impact 
on the survivor’s quality of life [38]. Reha- 
bilitation training for hemiplegia after stroke is 
an important treatment for reducing disability. 
The activation of the cerebral cortex during the 
training is very important for the recovery of 
motor function [39, 40]. The mechanism 
includes increasing the stimulation of the sur-
rounding infarct area [41], increasing the 
dependence on the SMA and the premotor area 
[42], and remodeling the cortical motor func-
tion [43]. The recruitment of homologous 
regions in the contralesional hemisphere and 
the reorganization in perilesional tissue are sig-
nificant parts of the remodeling [44]. A remod-
eling of the cortical motor function may cause 
the limb to become dominated by the ipsilateral 
cortical motor area, and patients with recurrent 
stroke may thus have symptoms of ipsilateral 
limb paralysis.

Nelles found that patients with stroke had a sig-
nificant increase in regional cerebral blood flow 
in the bilateral sensorimotor cortex when pas-
sively moving the hemiplegic elbow [42]. 
Simultaneously, the bilateral parietal cortex, 
contralateral sensorimotor cortex, ipsilateral 
prefrontal cortex, SMA, and cingulate cortex 
were significantly activated. Therefore, the idea 
of remodeling the cortical function of the motor 
and sensory system during stroke rehabilita-
tion was proposed, but the location and mecha-
nism of remodeling could not be determined. 
Song studied 2 cases of left limb paralysis after 
left hemisphere stroke in patients with a histo-
ry of right cerebral hemisphere stroke without 
sequelae [5]. Functional magnetic resonance 
imaging (fMRI) further suggested that their left 
hand movement activated the bilateral senso-
rimotor cortex (SM) and the right motor cortex 
on the right side. We believe that the motor 
nerves in the healthy hemisphere were remod-
eled during the recovery period after stroke and 
that the ipsilateral limb movement pathway 
after remodeling was independent of the pre-
stroke CST. Kim [45] conducted an fMRI study 
of 10 post-stroke patients and found that the 
recovery of the motor function in the subacute 
phase relied mostly on the primary sensorimo-

tor cortex of the healthy brain. However, the 
activation signal in the chronic phase is mostly 
located in the sensory motor cortex of the 
injured hemisphere. A recent study also found 
an evidence implicated that ipsilateral second-
ary motor area plays a limited compensatory 
role for the paretic hand after stoke [46]. In 
summary, SM in bilateral cerebral hemisphe- 
res is involved in post-stroke remodeling pro- 
cesses.

A study proved that interhemispheric integra-
tion is decreased after stroke [47]. The DTI 
imaging showed that fractional anisotropy in 
the ipsilesional CST is increased during reha-
bilitation treatment of stroke patients [48]. 
Some scholar [16] believes that the crossed 
CST is preferentially injured in the first stroke, 
the non-crossing CST in the healthy hemisphere 
becomes active after stroke, and a recurrent 
stroke is more likely to damage these bundles. 
This may be related to the reduction of inter-
hemispheric inhibition [49]. In addition, animal 
experiments have shown that the CST that 
crosses the contralateral cervical spinal cord 
from the healthy hemisphere after stroke can 
undergo germination, crossing the midline once 
again and reaching the ipsilateral cervical spi-
nal cord, thus promoting the recovery of limb 
motor function [50]. However, it has been 
reported in the literature that the recovery of 
limb movement function under the influence of 
the ipsilateral motor pathway is poor and that 
mirror movement disorder is likely to occur [51]. 
Therefore, although the ipsilateral movement 
pathway plays an important role in the reha- 
bilitation process, its suppression is necessa- 
ry in order to achieve a better rehabilitation 
outcome.

Double crossing of CST

A double-crossing case of CST in a patient with 
split brain syndrome on the right side was 
reported [52]. The 49-year-old man of that case 
had a left hemiplegia from birth. fMRI showed 
activation areas in both cerebral hemispheres 
while the patient was moving his left upper 
limb. Moreover, the activated area of the left 
cerebral hemisphere was approximately the 
same as the activation corresponding to the 
right upper limb. The bilateral upper limb motor-
evoked potential was detected upon stimula-
tion of the left cerebral cortex. It was suggested 
that the left hemiplegic limb movement was 
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dominated by the ipsilateral cerebral hemi-
sphere. DTT showed that the CST from the 
undamaged cerebral hemisphere was divided 
into three groups of fiber bundles: the first 
group presented double crossed fiber bundles, 
the second group of fiber bundles did not cross 
but descended along the ipsilateral brainstem, 
and the third group intersected at the right of 
the medulla plane. Although this may have 
occurred due to the patient’s right cerebral 
hemisphere malformation, the first two groups 
of fiber bundles may explain why the left limb of 
the patient was dominated by the ipsilateral 
cerebral hemisphere. Similarly, in another case 
of a patient with malformations [53], the right 
brain innervating the bilateral limbs was found 
to be undamaged, but DTT showed that the 
fiber bundle from the motor cortex of the right 
cerebral hemisphere did not cross before 
reaching the ipsilateral spinal cord. This sug-
gested that not all ipsilateral motor innervation 
systems in patients with split-brain malforma-
tions are due to the double crossing of CST 
fibers. In addition, the mechanism of congenital 
mirror movements may also involve the ipsilat-
eral CST [54]. Until now, there has been no 
study of stroke events in this type of patient; 
therefore, it is not possible to confirm whether 
the deformity is one of the mechanisms of ipsi-
lateral hemiplegia after stroke.

Conclusion

Limb hemiplegia after ipsilateral brain hemi-
sphere stroke is rare. There are many mecha-
nisms for its occurrence, including damage in 
non-crossing motor pathways, brainstem dys-
plasia, and cortical motor function remodeling 
in stroke recovery. In clinical practice, these 
events should be carefully identified by DTT, 
fMRI, and transcranial magnetic stimulation for 
timely diagnosis and treatment. Due to the 
small number of sample cases and limited 
research methods, there is still a lack of under-
standing of the specific mechanisms of post-
stroke motor pathways remodeling and reha-
bilitation. In-depth study of its pathogenesis 
will help guide the recovery of this type of post-
stroke patients in the future.
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