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Abstract: Objective: This study explores hepatic steatosis grading through imaging and deep learning in order to 
achieve an automatic classification of hepatic steatosis, therefore providing an intelligent and non-invasive method 
of hepatic steatosis classification. Methods: A retrospective study was performed on adult patients who underwent 
MR imaging of the upper abdomen with the mDixon sequence at Shanghai First People’s Hospital from June to 
August 2018. The MRI data and materials from the regions of interest were collected. Cases of mild to moderate 
hepatic steatosis were graded using radiomics and deep learning. A Spearman correlation analysis was performed 
comparing the clinical information and the liver steatosis grades. Results: The highest AUC obtained on the valida-
tion cohort was 0.81, and the AUC of the deep learning model was 0.70. Conclusion: Radiomics and deep learn-
ing can aid in automatic grading for hepatic steatosis. Correlation analysis also provides useful ideas for hepatic 
steatosis grading.
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Introduction

With the development of China’s economy, peo-
ple’s living standards are elevated, and their 
dietary habits have gradually changed, the 
common metabolic abnormalities associated 
with obesity. The long-term intake of high-sugar 
and high-fat foods causes an excessive accu-
mulation of lipid substances and fat deposits  
in certain organs and tissues, such as the liver 
and pancreas, causing ectopic lipid deposition 
[1] and fatty degeneration. As the central organ 
of energy metabolism, the liver plays an impor-
tant role in metabolism. Hepatic steatosis af- 
fects the physiological function of the liver and 
further aggravates the abnormal lipid metabo-
lism. Varying degrees of steatosis can cause 
many diseases, such as fatty liver, liver fibro- 
sis, cirrhosis, and even liver cancer [2]. Often 
these are not irreversible processes, so it is  
of great clinical significance to explore mild to 
moderate steatosis.

The histological examination is the gold stan-
dard for diagnosing the degree of liver steato-

sis, but it is invasive, and the potential risks of 
infection and bleeding at the puncture site can-
not be ignored, and there are shortcomings 
such as sampling and interpretation errors and 
poor repeatability [3, 4]. At present, ultrasound 
imaging is mainly used in clinical examinations, 
but it has a maximum sensitivity of 55% when 
the fat content is less than 20%, and it provides 
an insufficient penetration depth for obese 
patients. CT examinations determine liver fatty 
degeneration mainly by measuring the liver 
attenuation. Owing to the limited accuracy in 
the diagnosis of mild hepatic steatosis [5], a 
more accurate method should be developed. 
CT is also radioactive. On basis of the differ-
ence in the precession frequency of hydrogen 
protons in fat and water molecules under differ-
ent magnetic field strengths, MRT can more ac- 
curately measure the volume fraction of fat in 
the liver, so that it can be more reliable for mild 
liver fatty degeneration.

According to the results of a national survey  
[6], the overall prevalence of dyslipidemia in 
Chinese adults is as high as 40.40%, a signifi-
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cant increase from 2002. A study [7] shows 
that the increase of serum cholesterol will lead 
to an increase of about 9.2 million cardiovascu-
lar patients in China during the period 2010- 
2030.

Continuous improvements in new hardware 
and standardized protocols in the imaging field 
have advanced medical big data technology, 
and radiomics [8, 9] and deep learning have 
been increasingly integrated into medical imag-
ing. Through the in-depth analysis of patient 
images, more potential and effective informa-
tion can be tapped.

In this study, radiomics and deep learning me- 
thods were used to study the region of inter- 
est from patients’ abdominal MRI images, and 
their liver steatosis was graded, and then the 
differences between the results of two meth-
ods were compared to provide more reliable 
means and ideas for the study of hepatic 
steatosis.

Materials and methods

Patient data

This study collaborated with the First People’s 
Hospital of Shanghai Jiaotong University to col-
lect the medical records and data of patients 
who underwent MR imaging of the upper ab- 
domen with the mDixon sequence from June 
2018 to August 2018 (Figure 1). Inclusion cri- 
teria: Patients over 18 years old; patients able 
to provide a complete personal history and 
complete relevant imaging and laboratory ex- 
aminations. Exclusion criteria: Patients with 
other liver diseases who are undergoing che- 

mical and radiotherapy for malignant tumors. A 
total of 50 patients were included in this study, 
including 38 patients with mild hepatic steato-
sis and 12 patients with moderate hepatic 
steatosis.

MR equipment parameters

The Philips Ingenia 1.5T MRI system was ad- 
opted with the following sequence acquisition 
parameters: the number of echoes = 6; TE = n 
× 1.15 ms, N = 1, ..., 6; flip angle = 5°; TR = 
10.3 ms; FOV = 400 × 350 × 210 mm3; ac- 
quisition matrix = 320 × 256 × 70, the scan 
time was 16 s; breath holding. The receiving 
coils were 32-channel surface coils covering 
the entire abdomen.

Data preprocessing

The data preprocessing mainly includes ROI 
(region of interest) extraction and data am- 
plification.

ROI extraction. 0 points for the percentage of 
fat within the hepatocytes ranging 0 to 5%; 1 
point for 5% to 33%; 2 points for 34% to 66%, 
and 3 points for 66% or more. The distribution 
of the liver steatosis grades in the 50 patients 
includes 38 cases of 0 points (24 males and  
14 females) and 12 cases of 1 point (6 males 
and 6 females).

3D slicer software was used to outline the ROI 
(region of interest) from each patient’s image. 
The ROI was positioned at the hepatic paren-
chyma, avoiding large blood vessels, focal 
lesions, and significant artifacts. 6 ROIs were 
selected for each patient, of which 4 were lo- 
cated in the right lobe parenchyma (segments 
IV, VI, VII, and VIII), and 2 were located in the 
left lobe parenchyma (segments II and III). The 
size of each ROI was 16 × 16 pixels.

Data amplification. According to ROI selection 
rules, a total of 300 ROIs were selected from 
the 50 patients. The small sample size in this 
study may cause problems such as over-fitting 
in the deep learning models, so the number of 
samples was increased through data amplifi- 
cation. In this study, the data amplification 
methods include translation, mirroring, rota-
tion, adding random noise, etc., to amplify the 
data by 8 times.

Figure 1. MR upper abdomen mDixon imaging.
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radiomics features (2) Feature processing (3) 
Machine learning modeling and classification.

Feature extraction

Radiomics features, including intensity featur- 
es and texture features, were extracted from  
6 ROIs of each patient. Intensity features de- 
scribe the first-order characteristic values of 
the voxel intensity in the ROI area, including  
the average, maximum, and minimum values. 
The texture features include the gray level co-
occurrence matrix, the gray scale run length 
matrix, the gray level size zone matrix, the gray 
tone difference matrix, and the gray correlation 
matrix. A total of 126 features were extracted 
using Python, including 18 intensity features 
and 108 texture features.

Feature processing

The extracted features vary in their dimension 
and value ranges, so all the features need to be 
processed in advance, including feature selec-
tion [10] and normalized processing.

The purpose of feature selection is to reduce 
the amount of useless calculations in the mod-
eling process by eliminating overly redundant 
features. There is no modification of the fea- 
ture values in the feature selection, and more 
emphasis is placed on finding a few features 
that greatly improve the performance of the 
model. Since two-dimensional image data is 
explored in this study, some feature vectors 
describing three-dimensional features can be 
eliminated, such as flatness and so on. After 
the feature selection, 27 features were remo- 
ved, and 93 features remained.

The normalization process mainly deals with 
the difference between the maximum and mi- 
nimum values of the different features. If the 
gap in a feature value is too large, it will induce 
unnecessary feature dimension calculations 
during the training of the classification model. 
After the feature processing, the data set was 
prepared for the training of the machine learn-
ing classification model.

Machine learning classification

After the features are processed, a machine 
learning model needs to be established to clas-
sify them. This study uses integrative learning 
to guide the machine learning. Compared with 
the traditional machine learning classification 

Figure 2. Radiomics process.

Radiomics methods

The radiomics process used in this study (Fig- 
ure 2) mainly includes: (1) The extraction of 
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methods, integrative learning generates multi-
ple learners through specific rules and then 
combines these learners to obtain the final 
result. Multiple learners in integrated learning 
are generally homogeneous “weak learners”. 
Multiple learners are generated through a dis-
turbance sample set, input disturbance, out- 
put disturbance, algorithm parameter distur-
bance, etc., from weak learners. After integra-
tion, a “strong learner” with better accuracy is 
obtained, which is the final integrative learning 
model.

The integrative learning methods used in this 
study include: AdaBoost [11] (Adaptive Boost- 
ing), GBDT [12] (Gradient Boosting Decision 
Tree), and XGBoost [13] (Extreme Gradient 
Boosting).

Deep learning methods

The DenseNet model: The deep learning pro-
cess in this study is shown in Figure 3, where 
the deep learning model is DenseNet (Dense 
Convolutional Network). DenseNet won the top 
award at CVPR2017. It is different from the 
method of deepening the number of network 
layers, such as ResNet, and the method of  
widening the network structure is represented 
by Inception to improve the performance. Den- 
seNet facilitates feature reuse in each layer, 
which not only greatly reduces the amount of 
network parameters but also alleviates the 
problem of gradient disappearance.

DenseNet is mainly composed of two parts: a 
dense block and a transition layer, and each 
layer of dense block is associated with all the 
previous layers [14]. In the traditional convolu-
tional neural network, the L-layer network has  

L connections, but in DenseNet, there are L 
(L+)/2 connections. The input of each layer 
comes from the output of all previous layers, 
namely feature reuse. A transition layer was  
set up between the different dense blocks to 
achieve downsampling. The transition layer 
generally consists of a batch normalization 
layer, a convolution layer, and an average pool-
ing layer (Figure 4).

Statistics

The statistical analyses were performed using 
SPSS 25.0. P < 0.05 indicated statistical sig- 
nificance, and all the tests were two sided. 
Continuous variables were expressed as the 
average ± standard deviation, and categorical 
variables were presented as n (%). The correla-
tion analysis adopts the Pearson correlation 
analysis method.

Results

Classification performance

This study used two indicators to evaluate the 
classification results of the radiomics and deep 
learning methods: AUC (area under the ROC 
curve) and ACC (accuracy). AUC is an evaluation 
indicator to measure the pros and cons of the 
binary classification model. It represents the 
probability that the predicted positive example 
will be ranked before the negative example.

ACC
TN TP FN FP

TN TP=
+ + +

+

TP (true positive) represents the number of po- 
sitive samples predicted by the model as posi-
tive, FP (false positive) represents the number 
of negative samples predicted as positive by 
the model, and FN (false negative) represents 
the number of positive samples predicted by 
the model as negative, TN (true negative) re- 
presents the number of negative samples pre-
dicted to be negative by the model.

Classification evaluation

The classification results of the two methods 
were used to calculate the performance index 
(Table 1).

Correlation analysis

SPSS 24.0 statistical software was used to 
analyze the baseline data. Spearman correla-

Figure 3. Deep learning process.
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tion analyses were performed on the liver ste-
atosis grading and baseline data including age, 
gender, pancreatic steatosis grading, and met-
abolic syndrome. The same method was used 
to correlate the clinical information of the pati- 
ents with the grading of hepatic steatosis. P < 
0.05 indicated that a difference was statisti-
cally significant.

The correlations between the clinical informa-
tion and the hepatic steatosis grades are sh- 
own in Table 2. There is a high correlation be- 
tween the liver steatosis grades and the pan-
creatic steatosis grades. We found that the 
liver steatosis grades in the female patients 
had a significant correlation with age (P = 
0.002) and metabolic syndrome (P = 0.007).

Discussion

Lipids participate in the regulation of energy 
conversion, material transport, signal recogni-
tion and transmission, cell development and 
differentiation, and cell apoptosis [15, 16]. The 

fat degeneration. Hepatic steatosis results 
from fat accumulation. Severe hepatic steato-
sis causes irreversible damage to the liver.  
For example, hepatic stellate cell damage will 
develop into liver fibrosis. Therefore, the early 
diagnosis of hepatic steatosis has an impor- 
tant clinical significance.

Radiomics and deep learning methods were 
used to classify the patients with mild to mod-
erate hepatic steatosis, aiming to carry out an 
automated, intelligent screening of mild stea- 
tosis to achieve an early and accurate diagno-
sis. Three different machine learning methods 
was used for the radiomics classification, and 
the highest AUC of the validation set reached 
0.81. As for the deep learning, the highest AUC 
was 0.70. The accuracy of the deep learning 
methods is low, which may be caused by the 
small sample size. Although we performed a 
series of data amplifications, the small number 
of initial sample sets reduced the model’s 
generalizability.

Compared with the traditional analysis that 
only relies on the intensity of the voxel values  
in the image, radiomics further explores some 
deep-level features in the image [17, 18] by 
analyzing the imaging significance of these fea-
tures, it aids a more comprehensive imaging 
study of liver steatosis [19, 20].

At present, the imaging methods for studying 
liver steatosis are mainly ultrasound and CT, 
both of which are less sensitive to mild to mod-

Figure 4. DenseNet.

Table 1. Performance index of the classification using the two 
methods

AUC (95% CI) ACC (95% CI)
Training set Test set Training set Test set

Radiomics AdaBoost 0.79 0.72 78.60 71.33
GBDT 0.73 0.70 76.80 67.12
XGBoost 0.84 0.81 81.94 78.26

Deep learning DenseNet 0.76 0.70 64.77 66.27

Table 2. The correlation coefficients between 
the baseline data and the liver steatosis 
grades

Baseline data Correlation 
coefficient P

Age 0.003 0.959
Gender 0.035 0.570
Pancreatic steatosis grading 0.702 0.000
Metabolic syndrome 0.890 0.147

liver, the central organ of energy 
metabolism, plays an important 
role in regulating lipid metabo-
lism, including lipogenesis and 
lipoprotein uptake and secre-
tion. Abnormal lipid metabolism 
will lead to an abnormal increa- 
se in lipids in liver tissue, such 
as increased lipid peroxide and 
free fatty acid (FFA), resulting  
in lipid accumulation and liver 
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erate steatosis, which could be resolved by 
using MRI and radiomics.

Our correlation analysis showed that the liver 
steatosis grade and the pancreatic steatosis 
grade had a significant correlation. When too 
much fat tissue is deposited in the pancreas 
parenchyma, pancreatic fatty infiltration, also 
known as fatty pancreas or pancreatic fat de- 
generation, occurs. This correlation indicates 
that liver fat accumulation and pancreatic fat 
accumulation show a certain synchronization.

Metabolic syndrome is caused by the abnormal 
metabolism of lipids and sugars, or by abnor-
mal metabolic pathways [19, 21, 22]. Hepatic 
steatosis is associated with metabolic syn-
drome. For example, the risk factors for non-
alcoholic fatty liver include insulin resistance, 
obesity, hypertension, dyslipidemia and type 2 
diabetes metabolic syndrome [20, 23]. Throu- 
gh a correlation analysis, it can be seen that 
the grade of liver steatosis in female patients 
has a significant correlation with age and me- 
tabolic syndrome, but the liver steatosis grade 
in male patients has no relationship with these 
factors. Since this study only deals with grade  
0 and 1 hepatic steatosis, the correlation bet- 
ween the moderate and severe hepatic steato-
sis grades and metabolic syndrome may be 
more significant.

Few studies have assessed the utility of ultra-
sound in quantifying steatosis, probably be- 
cause of the complexity of computer-assisted 
image analysis techniques [11, 20, 21] and in- 
terobserver and interoperator variability [22]. 
There are still some shortcomings to this study. 
Due to the small sample size used in the early 
stage, the advantages of radiomics and deep 
learning were not fully realized. Subsequent 
studies will continue to collect the abdominal 
MRI data of patients with varying degrees of 
liver steatosis, further improving the classifica-
tion accuracy, and mining more reliable and 
effective information in liver steatosis imaging 
data to provide a reference for imaging exami-
nation. In addition, this study only analyzed the 
correlation between age, gender, pancreatic 
steatosis grade and metabolic syndrome and 
liver steatosis grade. The relationships among 
blood lipids, blood glucose, blood pressure, 
and hepatic steatosis need further explora- 
tion.

In summary, liver steatosis grading based on 
radiomics and deep learning has the advan- 
tages of good performance and automated 
grading, and it can mine deeper and more ef- 
fective information in medical imaging. A Sp- 
earman coefficient correlation analysis pro-
vides insights for the correlation between liver 
steatosis grading and the related factors such 
as metabolic syndrome.
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