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Abstract: Adamantinomatous craniopharyngioma (ACP) is an epithelial tumor that occurs in the sellar region; it may 
be derived from embryonic residue of the Rathke fissure epithelium. Surgery is difficult to perform and resection 
success rates are low because the tumor can invade and compress important surrounding structures. Therefore, 
it is necessary to find a safer and more effective treatment for ACP. Our research involved access to microarray 
data (GSE68015), and we identified differentially expressed genes (DEGs) between ACP and healthy samples using 
the limma package. We performed a gene set enrichment analysis (GSEA) based on Gene Ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG), constructed and analyzed a protein-protein interaction (PPI) 
network, and identified the significant modules. We identified 75 DEGs, comprising 64 upregulated genes and 11 
downregulated genes in ACP samples compared with their expressions in healthy brain samples. The GSEA of these 
DEGs provided a comprehensive overview of some major pathophysiological mechanisms involved in ACP, includ-
ing the roles played by the intermediate filaments, transport vesicles, and membranes. We also built a PPI network 
and identified five key genes: CDH1, KRT19, KRT16, KRT5, and KRT14. When comparing the ACP and healthy brain 
samples, 75 DEGs and five hub genes were identified that may be involved in the occurrence and progression of 
ACP, in particular the genes involved with the intermediate filaments.

Keywords: Adamantinomatous craniopharyngioma, gene set enrichment analysis, intermediate filament, gene 
expression omnibus

Introduction

Adamantinomatous craniopharyngioma (ACP) 
is an epithelial tumor that occurs in the sellar 
region [1, 2]. ACP can affect patients’ vision 
and visual field and is caused by the tumor’s 
compression of the optic nerve [3, 4]. Some 
patients may also suffer from increased intra-
cranial pressure, hydrocephalus, and con-
sciousness disorders [5]. However, this tumor’s 
propensity to invade or compress the surround-
ing important structures makes surgery very 
difficult, so its resection success rate is low [6]. 
Furthermore, ACP can develop into squamous 

cell carcinoma following radiotherapy [7]. Th- 
erefore, it is necessary to find a safer and more 
effective treatment for ACP.

With developments in molecular biology and 
technologies for targeted gene therapy, an 
increasing number of studies of the molecular 
pathology of ACP have recently been conduct-
ed [8-11]. Studies have confirmed that the over-
activation of the WNT/β-Catenin signaling path-
way is the molecular basis of ACP [12-15]. 
However, due to the lack of an effective diagno-
sis and treatment for ACP in its early stages, its 
early diagnosis and treatment remain difficult 
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[16, 17]. Therefore, in order to develop an effec-
tive diagnosis and treatment for ACP, it is vital 
that we ascertain the molecular mechanisms 
underlying its occurrence, proliferation, and 
recurrence.

Bioinformatics can help us to identify differen-
tially expressed genes (DEGs) and functional 
pathways related to the occurrence and devel-
opment of tumors, such as ACP [18-20].

In this study, we analyzed data downloaded 
from the Gene Expression Omnibus (GEO) da- 
tabase to screen DEGs between samples of 
brain tissue from healthy individuals and sam-
ples from patients with ACP, in order to explore 
the potentially important molecular biological 
mechanisms.

Materials and methods

Access to microarray data

A gene expression profile, GSE68015, was do- 
wnloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) [21]. The GSE68- 
015 array data comprised mRNA expression 
profiles of 15 samples from patients with ACP 
and 16 samples from healthy individuals. Th- 
ese gene expression profiles were sequenced 
using Affymetrix HG-U133plus2 chips (Plat- 
form GPL570). All the ACP samples were col-
lected from craniopharyngioma surgery tis-
sues, and the control samples were obtained 
from the brain tissues of healthy individuals 
without ACP.

Identification of DEGs

The linear models for microarray data (limma) 
package is a full-featured package that con-
tains both a RAW data input, a pre-processing 
(normalization) function for cDNA chips, and 
limma for the analysis of DEGs, especially for 
multifactor-design experiments. The limma 
package was used to identify the DEGs between 
the ACP and healthy brain tissue samples. The 
cut-off criteria were set as an adjusted p-value 
< 0.001 and a |logFC| ≥ 7.

GO and KEGG gene set enrichment analysis

Gene Ontology (GO) includes three aspects of 
biology: cellular components, molecular func-
tions, and biological processes [22]. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 

(https://www.kegg.jp/) aims to ascertain adv- 
anced functions and biological systems [23]. 
Gene set enrichment analysis (GSEA) can be 
used to analyze all sequenced genes in two 
sample groups. Its input is a gene expression 
matrix in which the genes are divided into two 
groups; all the genes are first sequenced and 
then used to indicate changing trends in the 
expression of the genes between the two 
groups. GSEA analyzes whether all the genes  
of an a priori defined set are enriched at the top 
or bottom of this sequence list [24]. GO and 
KEGG pathway enrichment analysis was per-
formed for the identified DEGs using GSEA. 
GSEA was also conducted for all the sequenced 
genes from the ACP tumor tissues and the 
healthy brain tissues, using GSEA software, 
after importing the gene annotation files, refer-
ence function sets, and all gene data from both 
the ACP tumor tissues and the healthy brain  
tissues. This software performs analyses and 
sequences genes according to an algorithm, to 
produce a gene sequence list. It then analyzes 
the position of all the genes in the sequence list 
and scores them to obtain an enrichment score 
(ES). Once the ES has been standardized, we 
can obtain a comprehensive understanding of 
the biological functions of the genes through 
the enrichment of functional sets. The cut-off 
criterion is P < 0.05.

Construction and analysis of the protein-pro-
tein interaction (PPI) network and significant 
modules

The common DEGs were imported into the 
Search Tool for the Retrieval of Interacting 
Genes (STRING; http://string-db.org) (version 
10.5), an online tool used to predict and trace-
out PPI networks [25]. Cytoscape (version 
3.6.1), a free visualization software application, 
was used to visualize the PPI networks [26]. 
Based on topology principles, the molecular 
complex detection (MCODE) (version 1.5.1) 
plug-in of Cytoscape can be used to discover 
tightly coupled regions [27]. MCODE was used 
to screen the modules of the PPI network with 
a degree cut-off of 6 and a node score cut-off  
of 0.2. Once the degrees were set (degrees 10), 
the hub genes were excavated.

Statistical analysis

SPSS software (version 25.0; IBM, Chicago, IL, 
USA) was used to perform the statistical analy-
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Table 1. Functional enrichment analysis of the DEGs in ACP, using GSEA
Gene set name SIZE ES NES P-value
Upregulated
    GO_REGULATION_OF_TRANSCRIPTION_ELONGATION_FROM_RNA_POLYMERASE_II_PROMOTER 22 0.68 2.13 0.000
    GO_INTERMEDIATE_FILAMENT_BASED_PROCESS 32 0.69 1.91 0.000
    GO_REGULATION_OF_ACTIVIN_RECEPTOR_SIGNALING_PATHWAY 23 0.66 1.82 0.000
    GO_LATERAL_PLASMA_MEMBRANE 44 0.63 1.81 0.000
    GO_REGULATION_OF_DNA_BINDING 82 0.59 1.80 0.000
    GO_REGULATION_OF_MITOCHONDRIAL_OUTER_MEMBRANE_PERMEABILIZATION_INVOLVED_IN_APOPTOTIC_SIGNALING_PATHWAY 37 0.66 1.79 0.000
Downregulated
    GO_GLUTAMATE_RECEPTOR_BINDING 34 -0.75 -1.70 0.000
    GO_TRANSPORT_VESICLE_MEMBRANE 128 -0.61 -1.68 0.000
    GO_REGULATION_OF_RESPONSE_TO_FOOD 16 -0.74 -1.66 0.000
    GO_EXOCYTIC_VESICLE_MEMBRANE 49 -0.85 -1.63 0.000
    GO_VESICLE_DOCKING_INVOLVED_IN_EXOCYTOSIS 32 -0.56 -1.61 0.017
    GO_ADULT_BEHAVIOR 110 -0.69 -1.60 0.000
DEGs: differentially expressed genes; ACP: adamantinomatous craniopharyngioma; ES: enrichment score; NES: normalized enrichment score.
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Figure 1. Six significant enrichment plots from the functional enrichment analyses of the DEGs in ACP, using GSEA. 
A. GO_REGULATION_OF_TRANSCRIPTION_ELONGATION_FROM_RNA_POLYMERASE_II_PROMOTER. B. Enrichment 
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ses. The measurement data were presented as 
the means ± standard error. Comparisons am- 
ong the two groups were made using Student’s 
t-tests. A P-value < 0.05 was considered statis-
tically significant.

Results

Identification of DEGs in ACP

The analysis of the GSE68015 dataset identi-
fied 75 DEGs (adjusted P < 0.001, logFC ≥ 7 or 
≤ -7), comprising 64 upregulated genes and 11 
downregulated genes in the ACP samples, com-
pared with their expressions in healthy brain 
tissues.

GO and KEGG pathway enrichment analysis of 
DEGs in ACP using GSEA

GSEA was used to analyze GO and KEGG to 
explore the functions and pathways of the 
DEGs. The GO enrichment analysis showed that 
3211/4136 gene sets were upregulated in ACP, 
950 gene sets were significantly enriched at a 
nominal P-value < 0.05, and 334 gene sets 
were significantly enriched at a nominal P-value 
< 0.01. In addition, 925/4136 gene sets were 
downregulated in ACP, 125 gene sets were sig-
nificantly enriched at a nominal P-value < 5%, 
and 30 gene sets were significantly enriched at 
a nominal P-value < 0.01. The most significant 

enrichments for both up- and down-regulated 
gene sets, in order of significance of the nor-
malized enrichment score (NES), are listed in 
Table 1. Six significant enrichment plots are 
shown in Figure 1, such as “GO_REGULATION_
OF_TRANSCRIPTION_ELONGATION_FROM_
RNA_POLYMERASE_II_PROMOTER”, “GO_INT- 
ERMEDIATE_FILAMENT_BASED_PROCESS”, 
“GO_REGULATION_OF_ACTIVIN_RECEPTOR_
SIGNALING_PATHWAY”, “GO_GLUTAMATE_RE- 
CEPTOR_BINDING”, “GO_TRANSPORT_VESICL- 
E_MEMBRANE”, “GO_REGULATION_OF_RES- 
PONSE_TO_FOOD”. Our GO enrichment analy-
sis found that the gene sets upregulated in  
ACP were mainly associated with intermediate 
filaments and DNA binding, and the downregu-
lated gene sets were frequently correlated with 
transport-vesicle membranes. The KEGG en- 
richment analysis showed that 130/168 gene 
sets were upregulated in ACP compared with 
their expressions in the healthy brain samples, 
34 gene sets were significantly enriched at a 
nominal P-value < 5%, and nine gene sets were 
significantly enriched at a nominal P-value < 
1%. There were 38/168 gene sets downregu-
lated in ACP, and one gene set was significantly 
enriched at a nominal P-value < 5%. The top-
ten gene sets correlated with ACP, according to 
their NES, are shown in Table 2. Six significant 
enrichment plots are shown in Figure 2, such 
as “KEGG_PATHWAYS_IN_CANCER”, “KEGG_

Table 2. Pathway enrichment analysis of the DEGs in ACP, using GSEA
Gene set name SIZE ES NES P-value
Upregulated
    KEGG_PATHWAYS_IN_CANCER 287 0.56 1.67 0.000
    KEGG_BLADDER_CANCER 37 0.69 1.67 0.002
    KEGG_CHRONIC_MYELOID_LEUKEMIA 63 0.59 1.66 0.006
    KEGG_SMALL_CELL_LUNG_CANCER 77 0.64 1.63 0.000
    KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION 42 0.55 1.60 0.025
    KEGG_MELANOMA 64 0.53 1.59 0.006
Downregulated
    KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 23 -0.55 -1.44 0.036
    KEGG_CARDIAC_MUSCLE_CONTRACTION 62 -0.46 -1.37 0.103
    KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 30 -0.49 -1.36 0.096
    KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 203 -0.47 -1.30 0.080
DEGs: differentially expressed genes; ACP: adamantinomatous craniopharyngioma; ES: enrichment score; NES: normalized 
enrichment score.

plot: GO_INTERMEDIATE_FILAMENT_BASED_PROCESS. C. GO_REGULATION_OF_ACTIVIN_RECEPTOR_SIGNALING_
PATHWAY. D. GO_GLUTAMATE_RECEPTOR_BINDING. E. GO_REGULATION_OF_RESPONSE_TO_FOOD. F. GO_VESI-
CLE_DOCKING_INVOLVED_IN_EXOCYTOSIS.
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Figure 2. Six significant enrichment plots from the pathway enrichment analyses of the DEGs in ACP, using GSEA. A. 
KEGG_PATHWAYS_IN_CANCER. B. KEGG_BLADDER_CANCER. C. KEGG_CHRONIC_MYELOID_LEUKEMIA. D. KEGG_
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BLADDER_CANCER”, “KEGG_CHRONIC_MYEL- 
OID_LEUKEMIA”, “KEGG_PROXIMAL_TUBULE_
BICARBONATE_RECLAMATION”, “KEGG_ALAN- 
INE_ASPARTATE_AND_GLUTAMATE_METABO- 
LISM”. According to the KEGG pathway enrich-
ment analysis, the gene sets upregulated in 
ACP were mostly associated with pathways 
linked with cancer, and the downregulated gene 
sets participated in the alanine, aspartate, and 
glutamate metabolism and neuroactive ligand 
receptor interactions.

PPI network construction and module analysis

The PPI network of the DEGs comprised 55 
nodes and 162 edges, with a PPI enrichment 
P-value < 1.0e-16 (Figure 3). The cytoHubba 

plug-in for Cytoscape was used to screen the 
hub genes in the PPI network. A significant 
module, including 10 nodes and 45 edges, was 
generated from the PPI network of DEGs by 
MCODE (Figure 4). Five genes were identified 
as hub genes: CDH1, KRT19, KRT16, KRT5, 
and KRT14 (Figure 5). These five hub genes 
were screened out in the heatmap (Figure 6). 

Discussion

There are different growth patterns of ACP, and 
within the sellar region, where this tumor 
occurs, there are many important structures, 
including the pituitary stalk, the optic nerve, the 
optic chiasm, and the hypothalamus [28-30]. 
Therefore, it remains a major challenge for neu-

PROXIMAL_TUBULE_BICARBONATE_RECLAMATION. E. KEGG_CARDIAC_MUSCLE_CONTRACTION. F. KEGG_ALA-
NINE_ASPARTATE_AND_GLUTAMATE_METABOLISM.

Figure 3. The protein-protein interaction (PPI) network of the differentially expressed genes (DEGs).
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rologists to effectively treat ACP without dam-
aging the surrounding tissues [31].

For this study, a total of 75 DEGs were identi-
fied, comprising 64 upregulated genes and 11 
downregulated genes in the ACP samples com-

potential target for the treatment and preven-
tion of ACP.

In this work we also built a PPI network and 
identified a total of five key genes: CDH1, 
KRT19, KRT16, KRT5, and KRT14. It was also 

Figure 4. The significant module, including 10 nodes and 45 edges.

Figure 5. Five genes were selected as hub genes: CDH1, KRT19, KRT16, 
KRT5, and KRT14.

pared with their expressions in 
the healthy brain tissues. The 
GSEA of DEGs provided a com-
prehensive overview of some 
of the major pathophysiologi-
cal mechanisms involved in 
ACP, including intermediate fil-
aments, transport vesicles, 
and membranes.

Intermediate filaments (IF) are 
one of the main types of pro-
tein filament that form the 
cytoskeleton [32, 33]. Many 
diseases are attributable to 
changes in cytoskeleton pro-
teins, especially changes in the 
IF protein [34-36]. Gene dele-
tions and the irregular expres-
sion of IF proteins can give rise 
to some types of tumors. Mu- 
Min Shao [37] concluded that 
cytokeratin (CK) immunohisto-
chemistry plays an important 
role in the development of 
breast carcinoma. High CK7, 
CK8, CK18, and CK19 expres-
sion rates have also been 
observed in breast carcinoma. 
Furthermore, CK8 and CK20 
play a very significant role in 
colorectal cancer, with high 
diagnostic and prognostic rele-
vance [38]. In addition, Minsun 
Jung found that the CK20-
positive state was associated 
with poorer prognoses and sh- 
orter survival times in patients 
with urinary bladder transition-
al cell carcinoma [39, 40]. The 
present study found that the 
expression of IF was noticeably 
upregulated in the patients 
with ACP compared with its 
expression in the healthy con-
trol group. Therefore, we infer 
that the over-expression of IF 
proteins might lead to ACP, 
which indicates IF could be a 
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discovered that the expression of CDH1 was 
enhanced in patients with ACP. CDH1 is the 
gene that codes for E-cadherin, which plays a 
role in suppressing tumor progression [41]. 
E-cadherin is a vital adhesion molecule. Tumor 
metastasis begins with a reduction in cell adhe-
sion, which relies on adhesion molecules [42-
44]. Jun Yang found that the expression of 
CDH1 is significantly upregulated in patients 
with ACP [20]. Other researchers have obse- 
rved CDH1 mutations in patients with heredi-
tary diffuse gastric cancer, including CDH1 
gene deletions, E-cadherin deletions, and de- 
creased E-cadherin expressions [45]. Heredi- 
tary diffuse gastric cancer is an autosomal 
dominant inherited disease associated with 
CDH1 gene mutations, and after lobular breast 
cancer is the second most frequent type of 
neoplasia [46]. CDH1 mutations, including 
gene deletions and decreases in expression, 
are also present in other frequently occurring 
tumors, such as ovarian tumors and colorectal 
tumors [47, 48].

However, our study has some limitations. First, 
the results are based only on a bioinformatics 
analysis, so laboratory studies will be neces-
sary to verify the functions of the key genes, 
using numerous tissue samples from patients 
with ACP. 

In conclusion, using a bioinformatics analysis, 
we identified 75 DEGs and five hub genes when 
we compared the ACP and the healthy brain 
samples. These genes may be involved in the 

occurrence and development of ACP, especially 
the genes involved with the intermediate 
filaments.
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