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Abstract: Thrombospondin-4 is an extracellular matrix protein encoded by the human Thbs4 gene. TSP-4 plays a 
significant role in tissue remodeling, tissue proliferation, cell migration, angiogenesis, and synaptogenesis, and so 
forth. TSP-4 has several different functions that act differently in different tissues because TSP-4 has multiple dif-
ferent functional domains and can participate in different signaling pathways. Moreover, TSP-4 has unique features 
not shared by other TSP family members. Also, many previous studies have found that TSP-4 also plays an important 
role in the pathogenesis of many cardiovascular diseases, such as myocardial infarction, heart failure, hyperten-
sion, atherosclerosis, coronary artery disease and peripheral arterial disease. As a biomarker, TSP-4 can help the 
diagnosis and differential diagnosis of diseases and can also be used to assess disease progression and prognosis. 
Targeted activation or targeted inhibition of TSP-4 can also be used for the treatment of disease. Here, we review 
previous research papers on TSP-4, summarizing the structure, function, signaling pathways of TSP-4 and its roles 
in disease, especially its role in cardiovascular disease and its potential therapeutic value.
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Introduction

Thrombospondin-4 (TSP-4) is a protein encod-
ed by the Thbs4 gene in humans and is a mem-
ber of the TSP family. The TSPs are a family of 
five multidomain, calcium-binding matricellular 
glycoproteins that mediate cell-to-cell and cell-
to-matrix interactions and are involved in tissue 
remodeling, which is associated with embryon-
ic development [1-3], wound healing [3-6], syn-
aptogenesis [1, 3, 7], and neoplasia [3, 8]. TSPs 
can be divided into two groups, subgroup A 
comprising TSP-1 and TSP-2 and subgroup B 
comprising TSP-3, TSP-4, and TSP-5. Compared 
with other family members, TSP-4 has some 
functions that are significantly different, even 
having functional antagonism with other family 
members. For example, TSP-4 can promote 
angiogenesis [3, 9-11], while TSP-1 and TSP-1 
have potent anti-angiogenic effects [12, 13]. 
TSP-4 plays a role in the functions of basement 
membranes in various tissues. In adults, TSP-4 
is detected in hearts [14-17], skeletal muscles 
[18, 19], and articular chondrocytes [20] and 

accumulates at the neuromuscular junction  
[1, 18]. Existing research indicates that TSP-4 
is a critical regulator of tissue growth and re- 
modeling.

Cardiac remodeling is a clinical manifestation 
of changes in related genomic expression that 
result in changes in molecular, cellular and 
interstitial changes and heart size, and is influ-
enced by factors such as cardiac load or injury, 
hemodynamic load, and neurohormone activa-
tion [15, 21, 22]. Cardiac remodeling is gener-
ally accepted as a determinant of the clinical 
course of heart failure (HF) [21]. Previous 
research has shown that TSP-4 plays a very 
important role in myocardial remodeling and 
the cardiovascular system, it is expressed by 
endothelial cells and smooth muscle cells of 
large blood vessels, and it is expressed abun-
dantly in capillaries [17, 23]. In addition, when 
there are cardiovascular diseases such as myo-
cardial infarction (MI), HF, hypertension, arterio-
sclerosis, coronary artery disease (CAD) and 
peripheral arterial disease (PAD), they is often 
accompanied by changes in TSP-4 expression.
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In this review, we sum up the common role of 
TSP-4, especially regarding cardiovascular di- 
sease.

Structure

In the TSP family, TSP-1 and TSP-2 of subgroup 
A are homotrimers, while TSP-3, TSP-4 and 
TSP-5 of subgroup B are homopentamers [24]. 
In electron microscopy, TSP-4 is seen as a large 
central particle and is composed of five sub-
units which are attached by globular domains 
close to the N-terminal [24, 25]. The subunits of 
TSP-4 are similar in appearance to the TSP-1 
subunits, but there is an obvious difference in 
that the TSP-4 subunits are smaller [26, 27].

TSPs have a complex multidomain structure, 
including the C-terminal domain, type III (Ca2+ 
binding) repeats, type II (EGF-like) repeats, the 
oligomerization domain, and the N-terminal 
domain (Figure 1A). Compared with TSP-1 and 
TSP-2, TSP-4 lacks type I (CD36 binding MMP 
inhibition) repeats and Von Willebrand factor 
type C domain and has an additional type II 
repeat [24, 28-30]. The signature domain of a 
TSP is its C-terminal domain, type III repeats 
and type II repeats, which are highly conserved 
among all TSPs [24, 28, 29, 31]. Calcium-
binding is associated with type III repeat regions 
and contributes to changes in major conforma-
tions and functions of TSP-4 [24, 29]. N-terminal 
is less conservative and regulates the structure 
and stability of the coiled-coil region and binds 
heparin, but it is absent in TSP-5 [32]. TSP-4 
can be enriched by heparin affinity chromatog-
raphy [33]. Moreover, TSPs are connected via 

lar matrix (ECM) in its predominantly enriched 
sites, including muscles and tendons. TSP-4 
may mediate the binding of the collagen fibril 
assembly to the cell surface [41]. Moreover, 
TSP-4 deficiency leads to changes in the com-
position and physiological function of these tis-
sues [42] and plays a critical role in cardiovas-
cular disease (Figure 2).

Previous studies have revealed that TSP-4 also 
plays an indispensable role in the migration, 
adhesion, remodeling, regeneration and inflam-
mation, proliferation, and promotion of nervous 
system development [1, 4, 5, 43].

Remodeling and regeneration

The TSP family underlies tissue remodeling and 
regeneration, whose secretion is often induced 
by stress [44]. As a member of the TSP family, 
the earliest and most reported function of 
TSP-4 is tissue remodeling and regeneration.

The upregulation of TSP-4 expression often 
occurs during tissue damage, regeneration, 
and remodeling [45, 46]. TSP-4 can alter the 
composition of the matrix proteins and, as 
such, TSP-4 is involved in the remodeling pro-
cess [47, 48]. In cardiac cell stroma, TSP-4 
binds and regulates structural ECM proteins 
during tissue damage [49], a process that pro-
motes adaptive ECM remodeling. Moreover, 
cardiomyocytes regulate cardiac fibrosis by tr- 
anscriptionally controlling TSP-4, which in turn 
regulates the activation of cardiac fibroblasts 
[50]. Also, TSP-4 can stimulate collagen gene 
expression and myofibroblast transformation 

Figure 1. Structural diagrams 
of thrombospondin-4 (TSP-4). 
A: Domain structure of a TSP-4 
monomer; B: Pentamer diagram 
of TSP-4. OM = oligomerization 
domain, also known as coiled-
coil domain; T2R = type II re-
peats domain, also known as 
EGF-like repeats; T3R = type II 
repeats domain, also known as 
Ca2+ binding domain.

disulfide bridges into homotri-
mers, homopentamers, and he- 
terooligomers [34] (Figure 1B). 
In cardiovascular diseases, the 
most known single nucleotide 
polymorphism (SNP) in TSP-4 
is A387P [35-40], and it is un- 
derstood that the SNP substi-
tution exists in the third type III 
repeat, and the mutant may 
increase calcium binding [38].

Function

As an intercellular protein, mo- 
st of the functions of TSP-4 
play a role in the intercellular 
substance. TSP-4 regulates the 
composition of the extracellu-
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through the Toll-like receptor four signaling 
pathway, thereby promoting skin fibrosis [51]. 
TSP plays a role in limb regeneration in vivo 
[52]. Moreover, the overexpression of TSP-4 
activates non-hepatocytes around the portal 
area of the damaged liver to promote liver re- 
generation [53].

Proliferation

As with tissue remodeling and tissue regenera-
tion, proliferation is one of the main functions 
of TSP-4, especially in the cardiovascular sys-
tem. The expression of TSP-4 by vascular cells 
regulates the proliferation of endothelial cells 
and smooth muscle cells, thereby affecting the 
vessel wall [23]. Recombinant TSP-4 binds to 
integrin α2 and gabapentin receptor α2δ1 to 
accelerate the proliferation of vascular smooth 
muscle cells [54] and microvascular endotheli-
al cells [9], and the proliferation of endothelial 
cells isolated from TSP-4 knockout (KO) mice  
is significantly slowed down [10]. The SNP of 
TSP-4 significantly alters its ability to support 
endothelial cell proliferation [55]. Moreover, 
the C-terminal peptide of TSP-4 (C21) can stim-
ulate erythroid cell proliferation [56]. C21 stim-

gabapentin receptor α2δ1 [9]. TSP-4 with an 
SNP mutation also has a significant change in 
its capacity to support endothelial cell adhe-
sion [55]. It has also been reported that the 
migration and invasion of prostate cancer cells 
are inhibited by silencing lncRNA TSP-4 [63].

Angiogenesis

Angiogenesis is an important process for grow- 
th and development as well as wound healing 
and granulation tissue formation. At the same 
time, it is also a basic step in the transition of a 
tumor from a benign state to a malignant state.

TSP-4 affects a variety of endothelial cell-asso-
ciated responses, including the transformati- 
on into enhanced angiogenesis [9]. For exam-
ple, TSP-4 upregulates the effect of TGF-β1 on 
angiogenesis [10]. Moreover, TSP-4 enhances 
the angiogenesis-promoting function of endo-
thelial cells, thereby promoting neovasculariza-
tion [64]. It has been reported that the knock-
down and KO of TSP-4 inhibit hepatocellular 
carcinoma-induced angiogenesis [11] and that 
TSP-4 KO mice exhibit reduced angiogenesis 
[65].

Figure 2. The role of thrombospondin-4 (TSP-4) in cardiovascular diseases. 
The green arrow defines the promoting effect, the red arrow defines the sup-
pression effect, and the black straight line defines the unknown.

ulates thymidine erythrocytes 
and promotes the cell culture 
of cord blood erythrocytes and 
bovine skin fibroblasts [57].

Migration and adhesion

Many studies have shown that 
TSP-4 is involved in cell adhe-
sion and migration [58-60]. 
TSP-4 is essential for cell ad- 
hesion and cell migration in 
neurons and vascular smooth 
muscle cells [61]. TSP-4 regu-
lates adhesion molecules and 
axonal growth promoting mol-
ecules in ECM [2]. Previous 
studies have revealed that 
fusion proteins containing C21 
support myoblast adhesion 
[43]. It was found that TSP-4 
regulates the adhesion of mac-
rophages to vascular smooth 
muscle cells [62] and the 
migration of vascular smooth 
muscle cells [54] by directly 
interacting with macrophages 
or by binding to integrin α2 and 
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Inflammation

Inflammation is a complex biological response 
that protects the body from harmful stimuli. 
TSP-4 is important for the regulation of vascu-
lar inflammation [66].

The expression of TSP-4 is significantly upre- 
gulated in inflammation [45]. Thbs4 encodes  
a glycoprotein involved in the inflammatory 
response [67]. TSP-4 is involved in the inflam-
matory response to neuropathic pain [68]. Cells 
with the TSP-4 A387P mutation release excess 
H2O2 and interleukin-8 [69]. Moreover, TSP-4 
inhibition significantly reduces the number of 
macrophages in the lesion, inhibits endothelial 
cell activation, and reduces other markers of 
vascular wall inflammation [62].

Stabilization

TSP-4 has also been found to be stabilizing in 
muscle cells. TSP-4 has a protective effect on 
the heart and skeletal muscle. TSP-4 activates 
the adaptive endoplasmic reticulum (ER) stress 
response, induces ER expansion, and enhanc-
es muscle membrane stability [70]. In myofi-
bers, TSP-4 selectively enhances partial vesicle 
trafficking to increase integrin and dystroglycan 
attachment complexes [31] to stabilize muscle 
fiber membranes [71]. Moreover, TSP-4 has 
been shown to maintain the stability of carti-
lage ECM by responding to substrate stiffness 
and mechanical changes in tendons and mus-
cle tissue [72].

Adipogenesis

Adipogenesis is the process of cell differentia-
tion by which pre-adipocytes become adipo-
cytes. TSP-4 is a putative exercise-induced and 
obesity-associated myokine in mice [73]. The 
upregulation of TSP-4 in human pre-adipocytes 
is compared to mature adipocytes [74]. The- 
refore, TSP-4 may be involved in early adipo-
genesis events. Moreover, TSP-4 mediates the 
interaction between muscle fibers, fat cells, 
and ECM, so it promotes the spread of fat cells 
in muscle tissue [19].

Nervous system

The increased expression of TSPs during hu- 
man brain evolution leads to changes in synap-
tic organization and plasticity, and contributes 
to human unique cognitive abilities and our 

special susceptibility to neurodegenerative dis-
eases [7, 75].

TSP-4 accumulates in neuromuscular junctions 
and specific synaptic-rich structures in adults 
[1]. TSP-4 binds to the specific cell integrin 
receptors of ECM and activates intracellular 
signal transduction pathways leading to synap-
togenesis [76]. In addition to synaptogenesis, 
TSP-4 increases dendritic dendrites and synap-
tic transmission to enhance synaptic connec-
tions [77], and TSP-4 is related to synaptic rear-
rangement and plasticity [78]. TSP-4 secreted 
by astrocytes promotes neuronal migration into 
the olfactory bulb [79]. When the TSP-4 of NG2 
cells is overexpressed, it can promote the spon-
taneous neuronal differentiation of NG2 cells 
[80]. 

After a cortical injury, TSP-4 activates the sub-
ependymal ventricular zone (SVZ) notch to acti-
vate downstream signals, thereby promoting 
glial cell production [81]. The increased expres-
sion of TSP-4 in the spinal cord after spinal 
cord injury [82] and small joint injury [83] induc-
es excitatory synapse development and pro-
motes the transduction of articular stress in 
joints [84] and may lead to excessive spinal 
excitability in the development and mainte-
nance of persistent neuropathic pain. Infraor- 
bital nerve injury leads to the upregulation of 
TSP-4 in the trigeminal spinal complex, result-
ing in orofacial neuropathic pain [85]. After 
peripheral nerve injury, the expression of TSP-4 
is increased in sensory neurons [86], and the 
appearance of hypersensitivity is promoted by 
the α2δ1 calcium subunit [87].

Signal pathway

ER stress response

The ER stress response is the most widely stud-
ied and reported TSP-4 signaling pathway. TSPs 
play a prominent role in the process of tissue 
remodeling of the disease, enhancing the ER 
function and ER protection by regulating the 
mechanism of action by activating transcription 
factor 6α (Atf6α) [88]. TSP-4 mediates patho-
logical protection by up-regulating the Atf6α 
pathway, which is at least partially effective 
[49]. The transport of TSP-4 through the secre-
tory pathway can increase cardiac and muscle 
fiber membrane stability [70]. The type III re- 
peat and C-terminal domains of the wild-type 
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and calcium-binding mutant TSP-4 interact 
with Atf6α and then induce adaptive ER stress, 
which can cause intracellular vesicle expan-
sion [44, 89].

TGF-β

In cardiomyocytes, the study revealed that lev-
els of TSP-4 increased after stimulation with 
the TGF-β1 ligand [6]. One study outlined a new 
pathway by which TGF-β1 regulates angiogene-
sis. TSP-4 levels are up-regulated by SMAD3 
from the TGF-β1 signal in microvascular endo-
thelial cells [10].

PI3K-Akt 

Thbs4 is one of the leading genes that can 
enrich the PI3K-Akt pathway, and TSP-4 is also 
a product of activated fibroblasts, while TSP-4 
can stimulate fibroblasts via the PI3K-Akt path-
way in turn [51]. In the progression of gastric 
cancer, TSP-4 is down-regulated by fibroblast 
growth factor receptor two via the PI3K-Akt 
pathway [90].

ERK-MAPK

When TSP-4 is overexpressed, the ERK/MAPK 
signaling pathway is inhibited, which promotes 
the differentiation of polydendrocytes, while 
the level of neuronal markers in polydendro-
cytes increases significantly. This suggests 
that TSP-4 plays a role in the cell fate determi-
nation of polydendrocytes via the ERK-MAPK 
signaling pathway [80].

Cardiovascular diseases

TSPs and their SNPs play an important role in 
cardiovascular pathology [66]. Interestingly, 
the A387P SNP of TSP-4 promotes Ca2+ bind-
ing, but the N700S SNP of TSP-1 leads to 
decreased Ca2+ binding production [38]. Both 
TSP mutations, although different in mecha-
nism, cause cardiovascular disease.

Myocardial infarction

Studies have shown that TSP-4 activates ER 
stress and selectively inhibits TGF-β in myo-
cytes, which is a protective mode for cardiomy-
opathy and reduces early mortality after MI [6]. 
It was initially reported that elevated levels of 
TSP-4 mRNA in rats after MI [91] and the 
A387P variant of TSP-4 show a strong associa-

tion of MI [92]. Later, some studies found that 
the A387P variant of TSP-4 is a determining 
factor in the development of MI at any age [36, 
93]. There are also some research results that 
are different. A study shows that the TSP-4 
A387P polymorphism is only associated with 
MI in females, especially female homozygous 
status [35], while another study has limited the 
homozygosity of the TSP-4 A387P variant to 
older women [39]. Moreover, the TSP-4 A387P 
SNP was also confirmed to be significantly 
associated with myocardial infarction in men 
[94]. For studies in specific countries, two stud-
ies suggest that the TSP-4 A387P polymor-
phism is a significant and independent risk fac-
tor for MI in Americans [95] and Egyptians [96]. 
Another study adds that existing evidence sug-
gests that TSP-4 polymorphisms other than 
A387P in the study are not associated with MI 
[40]. There was an opposite finding that showed 
no significant association between the TSP-4 
A387P polymorphism and MI in the population 
they studied [37].

Ventricular hypertrophy and heart failure

TSP-4 is associated with myocardial remodel-
ing after hypertensive heart disease [97], which 
may lead to ventricular hypertrophy. Moreover, 
pathological ventricular hypertrophy often 
leads to ventricular dilatation, making the heart 
unable to effectively pump blood, leading to HF. 
Moreover, TSP-4 plays a vital role in regulating 
the remodeling of HF [22]. Animal experiments 
have revealed that Thbs4(-/-) has significant defi-
ciencies in adapting to chronic stress overload 
[98]. Also, the overexpression of TSP-4 was 
also found in rats with monocrotaline-induced 
pulmonary hypertension [99], end-stage dilat-
ed cardiomyopathy [14], and volume overload 
HF caused by aorta-tubular heart [100].

Hypertension

Long-term hypertension is one of the key risk 
factors for CAD, HF, and other cardiovascular 
diseases. In hypertension, TSP-4 regulates the 
progression of cardiac hypertrophy, affects aor-
tic aneurysm formation, and alters endotheli-
um-dependent resistance to arterial relaxation 
[17]. Moreover, TSP-4 was identified as having 
a critical role in causing cardiac hypertrophy 
and aortic dissection in Ang II-induced hyper-
tension [48]. TSP-4 is significantly increased in 
the small mesenteric arteries of hypertension 
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[15, 101]. Mice with specific destruction of 
TSP-4 in the heart significantly reduced the 
adaptation to pressure overload [49].

Coronary artery disease

CAD is caused by a decrease in myocardial 
blood flow due to various factors. Initially, a 
study found a significant association between 
CAD and the A387P SNP of TSP-4 in the US 
population [102]. Subsequently, more research 
confirmed this finding and showed that the 
A387P SNP of TSP-4 is associated with an 
increased risk of CAD in the US population [95, 
103, 104]. In contrast, there was no significant 
relationship between the A387P mutations in 
TSP-4 and CAD in the target population in one 
study [37].

Peripheral artery disease

Atherosclerosis usually does not have any 
symptoms at first, but in severe cases, it can 
cause CAD, stroke, peripheral arterial disease, 
and kidney problems. TSP-4 is enriched in ath-
erosclerotic lesions and areas prone to patho-
genesis [105], and TSP-4 is also involved in the 
development of atherosclerosis [106]. As men-
tioned earlier, TSP-4 affects the recruitment of 
macrophages by affecting endothelial cells 
[62]. The A387P SNP of TSP-4 has a significant 
effect on the structure, and inhibits the adhe-
sion and proliferation of endothelial cells [23]. 
The mutation is consistent with the phenotype 
that induces atherosclerosis and thrombosis 
[55], which may be responsible for atherosc- 
lerosis. Curcumin has anti-atherosclerotic ef- 
fects, and one of its possible mechanisms is to 
prevent an oxidized low-density lipoprotein-
induced decrease in TSP-4 expression [107]. 
Conversely, in one study, a decrease in TSP-4 
levels was observed in atherosclerotic lesions 
[108].

One study found a significant increase in aneu-
rysm formation rates in Thbs4-/- mice treated 
with ANG II, which was not observed in hyper-
tensive WT mice or untreated Thbs4-/- mice 
[17]. It is speculated that TSP-4 has no obvious 
effect under physiological conditions, but it pro-
vides a major protective effect under pathologi-
cal load conditions to prevent aortic aneurysms 
caused by hypertension [48]. Aortic aneurysms 
show significant differences in the etiology 
based on the location of the human abdominal 
aortic aneurysm, which exhibits a strong posi-

tive correlation with male gender [17, 65]. The 
protective effect of TSP-4 on aortic aneurysms 
needs to be further examined to determine the 
role of aneurysm location, age, gender and the 
effects of diabetes.

A recent study has found that TSP-4 levels are 
positively correlated with the severity of PAD 
and show an unknown correlation with diabe-
tes [109], which may lead to arteriosclerosis. At 
present, related research on PAD other than 
atherosclerosis is still relatively lacking.

Clinical value

Biomarker

Different levels of TSP-4 expression in tissues 
can be used to distinguish between different 
cell sources. TSP-4 is one of the specific mark-
ers used to identify articular cartilage [20] and 
to distinguish between proper tendon progeni-
tor cells and peritenon progenitors [110]. In 
mice, SVZ astrocytes express high levels of 
TSP-4 as opposed to cortical astrocytes ex- 
pressing low levels of TSP-4 [81]. Furthermore, 
the differential regulation of TSP-4 has poten-
tial value as an in vitro biomarker for inducing 
signal transduction [111].

TSP-4 can be used for the identification and 
diagnosis of specific pathological conditions 
and diseases. TSP-4 is a known CAD marker 
[112] and a cardiac overload-specific endothe-
lial-specific marker [15]. TSP-4 may be a new 
marker for atherosclerosis, especially in the 
subgroup of diabetic patients [109]. Another 
study found that TSP-4 expression was in- 
creased in osteoarthritis and correlated with 
the severity of osteoarthritis [46], suggesting 
that TSP-4 can be used as a biomarker for 
osteoarthritis. Currently, the detection of IgG 
isotype autoantibodies against TSP-4 can be 
used to support the diagnosis of osteoarthritis 
[113]. Also, TSP-4 was identified as a potential 
biomarker for locoism [114] and myopathy 
associated with S-adenosyl homocysteine hy- 
drolase deficiency [115]. Similarly, TSP-4 and 
its degree of methylation can serve as impor-
tant tumor markers.

Assessment

TSP-4-labeled innervated tendon, together with 
laminin labeled with the basement membrane, 
can assess the size and distribution of muscle 
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fibers [18]. The level of TSP-4 expression can 
be used to assess the mean of the phenotypic 
state of the meniscus cells [116]. The overex-
pression and polymorphism of TSP-4 are asso-
ciated with vascular invasion in advanced can-
cer and can be used to assess the risk and 
prognosis of hepatic cancer [11] and gastric 
cancer [117].

Therapy

In addition to its use in diagnostics, TSP-4 can 
also be used as a therapeutic target for some 
diseases.

As an ECM scaffold at the tendon junction, 
TSP-4 may be used for tendon strengthening 
and repair [118, 119]. By targeting KLF6 to pro-
mote endothelial cell angiogenesis, TSP-4 con-
tributes to the treatment of tendon lesions 
[120]. Also, TSP-4 has been identified as a 
potential therapeutic target for muscular dys-
trophy [71]. TSP-4 plays an important role in the 
progression of hepatic cancer [121], and tar-
geting TSP-4 is a promising therapeutic strate-
gy for the treatment of advanced hepatic can-
cer [11]. In a rat model, TSP-4 in bone marrow 
stromal cells promotes endothelial cell prolifer-
ation and migration as well as tube formation, 
and post-stroke injection can promote the 
recovery of neural function [64].

Understanding the timing and role of TSP-4 
overexpression in persistent neuropathic pain 
after an injury is critical for designing TSP-4-
based therapies [83]. Controlling the interac-
tion between TSP4-mediated intracellular cal-
cium signaling in peripheral sensory neurons 
[122] and blocking the EGF-like domain of TSP4 
and Caαδ [32] may be targeted for the develop-
ment of analgesic drugs for neuropathic pain.

Conclusion

According to this review, it is easy to find that 
the research on TSP-4 is still insufficient com-
pared to the well-studied TSP-1 and TSP-2, 
especially in terms of specific molecular mech-
anisms associated with ligands and signaling 
pathways. In the cardiovascular system, TSP-4 
inhibits MI, HF, hypertension, and promotes 
PAD, while its A387P mutation increases the 
risk of MI, CAD, and PAD. Moreover, the impact 
of TSP-4 on key etiological mechanisms such 
as inflammation and vascular remodeling in 
major aneurysms requires further investiga-

tion. Through further research on TSP-4, TSP-4 
may become an effective therapeutic target for 
the aforementioned cardiovascular diseases.
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