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Abstract: Accurate assessment of prognosis is important for the management of heterogenous survival outcomes of 
cutaneous melanoma. It is of clinical interest to identify a single set of combinatorial markers that have prognostic 
value for both recurrence and death events. We enrolled in this study a total of 387 patients from TCGA-SKCM with 
complete information in failure time and event, clinicopathological variables, expressional and mutational profiles. 
We performed a composite endpoint-based competing risks analysis to determine the best model in predicting 
recurrence or death events. We further validated the model performance within pathologically-defined subgroups. 
The model combined clinicopathological variables and expression markers performed the best among all models in 
certain time periods. The features selected by this combinatorial model had reasonable prediction performance for 
both recurrence and death outcomes. The resultant prognostic risk score generated by the model provides a higher-
resolution risk stratification within pathologically-defined subgroups. Our study thus provided a new model that can 
handle both competing events and multiple endpoints. Adding gene-expression information into clinicopathological 
variables significantly improved the prognostic prediction for specific subgroups. 
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Introduction

Melanoma is an aggressive type of skin can- 
cer, with about 96,480 new cases and 7,230 
deaths reported in the USA in 2019 [1-6]. 
Melanoma has a high overall survival rate if 
successfully treated with surgery, but the sur-
vival rate drops significantly if metastasis 
occurs [7]. Cutaneous melanoma is a major 
subtype of melanoma characterized by rela- 
tively poor prognosis. Routine prognostic an- 
alysis of melanoma uses clinicopathological 
features including Breslow tumor thickness, 
age at diagnosis, ulceration, mitotic index and 
Clark level [8, 9]. The high-throughput screen-
ing technology actively developed in recent 
years has allowed a more thorough investiga-
tion of tumor heterogeneity and microenviron-
ment at the molecular level. Many studies thus 
have worked on finding omics-based prognos-
tic markers for cutaneous melanoma patients. 

For univariate signatures, NEK2 upregulation 
was identified as being correlated with poor 
recurrence-free survival (RFS) and overall sur-
vival (OS) under both univariate and multivari-
ate analyses [10]. The BRAF mutation was 
associated with a lower risk of recurrence for 
stage III melanoma patients treated by adju-
vant therapy of dabrafenib and trametinib [5]. 
These single-gene signatures showed an asso-
ciation in prognosis, but had not been specifi-
cally evaluated in the prediction of clinical 
outcomes. 

For multiplexed biomarkers, a 31-gene (28 
prognostic genes and 3 control genes) signa-
ture was identified based on microarray ex- 
pression data. The signature achieved an AUC 
of 0.91 in predicting the metastatic status on 
validation cohort [2]. Another gene expression 
signature based on RNA sequencing (RNA-seq) 
data from TGCA-SKCM (The Cancer Genome 
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Atlas-Skin Cutaneous Melanoma) dataset [11] 
was used to calculate sample-specific Leuko- 
cyte Infiltration Scores (LIS), which were found 
to be associated with survival in independent 
datasets [12]. There were also studies focused 
on developing prognostic models by combining 
multiple types of data. Jayawardana et al [13] 
developed models to classify 1-year and 4-year 
survival status based on clinicopathological, 
mutations, mRNA, microRNA, and protein in- 
formation as well as different combinations of 
each. They found that models based on the 
combination of clinicopathological variables 
and mRNA profiles performed the best under  
a cross-validation framework. Jiang et al [14] 
used sparse PCA and partial least squares 
methods to develop models using multi-dim- 
ensional omics data. Their methods adequate- 
ly considered all profile information and had 
achieved the highest C-index values of OS pre-
diction so far. Although these analyses provid-
ed effective prognostic signatures, few studies 
focused on developing a single combinatorial 
signature for both OS and RFS analysis. 

Our work presented a composite endpoint-ba- 
sed competing risks model based on clinico-
pathological variables and gene expression 
data. This model can not only correct the bias 

caused by competing risk events, but also se- 
lects a single set of features that are associat-
ed with both OS and RFS. We found that the 
model performed significantly better than mod-
els based only on clinicopathological variables 
or models with other types of data integration. 

Methods

Data sources

Our study was performed on the TCGA-SKCM 
dataset which contain 470 cutaneous melano-
ma patients. The study work flowchart was 
shown in Figure 1. We removed clinicopatho-
logical variables with a high proportion of miss-
ing values and filtered out extremely unbalan- 
ced categorical variables. This resulted in six 
clinicopathologica; variables for further analy-
sis: age at diagnosis, gender, tumor status, pri-
mary location, AJCC (the American Joint Com- 
mittee on Cancer) pathologic tumor stage and 
AJCC nodes pathologic stage. 

The sketch of the disease process after initial 
treatment was shown in Figure S1. The initial 
treatment date was also defined as the initial 
pathological diagnosis date for this dataset. In 
this data, one may progress to recurrence after 

Figure 1. Flowchart of analyses in this study.
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initial treatment (1 to 2) or die directly without 
experiencing recurrence (1 to 3), the latter of 
which would prevent one from having recur-
rence. Such a death was then the competing 
risks event for the recurrence event. Routine 
survival analysis could induce bias here be- 
cause the competing risks event should not  
be treated as the censoring event. We there-
fore analyzed recurrence-related survival by 
competing risks modeling. The failure time  
was the time interval from initial treatment to 
the corresponding failure event of interest. To 
include as much data as possible, we set the 
composite endpoint time as the time of recur-
rence if one has the record, or as the time  
of death if one has the record of recurrence  
but no detail recurrence time information. For 
those patients who had recurrence but didn’t 
have the time of recurrence or death, the  
composite endpoint time was set as the last 
follow-up time. This composite endpoint was 
the primary endpoint for the competing risks 
analysis.

Data preprocessing

We excluded 79 patients with missing data in 
any of the selected clinicopathological vari-
ables, endpoints or follow-up data. Four pati- 
ents were removed because they didn’t have 
gene expression or mutational profile data.  
This resulted in a total of 387 patients which 
were included in this study. 

For RNA expression data, the FPKM (fragments 
per kilobase of exon model per million reads 
mapped) value was used to represent gene 
expression level. We kept genes by the fol- 
lowing criteria: 1) mean of FPKM across all 
patients is greater than 1; 2) have non-zero 
expression in more than 60% patients (232 
patients); 3) standard deviation of log-trans-
formed FPKM across samples is greater than 
0.5. These resulted in a total of 5390 genes  
for further analysis. For mutational profiles, we 
selected 772 genes out of 17509 genes whi- 
ch have at least one somatic mutation. Each of 
the selected genes had at least one somatic 
mutation in more than 30 samples. We sum-
marized the number of these three types of 
data before and after feature preprocessing in 
Table S1.

The clinicopathological variables of the enroll- 
ed patients were summarized in Table S2, in 
which we also computed the p values of asso-

ciation analysis with recurrence or death sta-
tus. The methods we used for association an- 
alysis were as follows: 1) one-way ANOVA for 
continuous variables if following a normal dis- 
tribution; 2) Wilcox test for continuous vari- 
ables if not normally distributed; 3) chi-square 
test for discrete variables which contained a 
number of samples greater than 8 in all cate- 
gories; 4) fisher exact test for discrete vari- 
ables if there’s any category whose number of 
samples is smaller than 9.

Model development framework

For the gene expression-based and gene muta-
tion-based models, we first applied univariate 
Cox proportional hazard model to screen for 
potentially important features. The Wald’s  
test p value of model fitting coefficient was 
used to rank the importance of features, and 
only a certain number of features with the 
smallest p-values were selected. To select  
the optimal number of features, we applied a 
“nested-cross validation” approach. We first 
randomly split the 387 input patients into 3 
groups, two of which were used for inner 3-fold 
cross validation. In this inner cross validation, 
we aimed to select the best penalty para- 
meter inherent in the regularized survival 
model, while in the outer cross validation, we 
used the one-portion left-out data to validate 
the model performance given a specific num-
ber of input features. This procedure was re- 
peated 5 times to improve the randomness of 
data split. We used mean and standard devia-
tion of C-index to evaluate the accuracy of 
model validation. 

We compared the performance of different 
combinatorial modeling based on a random 
sample of 129 patient’s (1/3 of 387 patients) 
data. The remaining 258 patients were used  
for 3-fold cross-validation to determine the 
best model within each data type or data inte-
gration type. 

Survival modeling

For competing risks modeling, the cause- 
specific hazard was fitted to train a risk score. 
Then a Fine and Gray model was fitted by set-
ting this score as the single covariate. The 
cause-specific hazard model was combined 
with Lasso (Least absolute shrinkage and se- 
lection operator) method to deal with high-
dimensional data as previously described [15]. 
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Lasso is an approach to regularize model and 
select features concurrently. It constrains the 
regression coefficients by adding L1 norm  
term to cost function. For Cox PH model, the 
lasso form of optimal function is given as [16, 
17]:
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where the β is the regression coefficients, x  
is the covariates, D is the set of indices of 
observed events, Rr denotes the individuals  
set at risk at time tr-0 and λ is the coefficient 
controlling the penalty strength. In this study, 
the optimal λ was selected by a 3-fold cross 
validation. 

The Fine and Gray model [18] regresses direct-
ly on cumulative incidence function (CIF). The 
CIF, denoted as Ik(t) of cause k, can also be 
interpreted as the cumulative incidence proba-
bility Pr (T≤t, D = k). It was defined as:
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set decreases at each time point at which there 
is a failure of another cause. For 
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tion, individuals who fail from another cause 
remained in the risk set [18].

To reduce bias in data splitting, we repeated 
the model training and testing 10 times. The 
time-dependent AUC curves [19] were comput-
ed to evaluate the prediction performance. All 
analyses were performed by R software and 
packages including “survival”, “riskRegres-
sion”, “glmnet”, “caret” and “survminer”.

Results

Workflow and patient characteristics

The flowchart of model comparison analysis 
was shown in Figure 1. The model input data 
included clinicopathological variables, expres-
sional and mutational profiles. We developed 
prognostic models using these three types of 
data or their combinations. The prognostic 
model we developed here was a competing 
risks model, by which we predicted the risk of 
recurrence occurrence after initial treatment 
while competing with the risk of death without 
recurrence. 

A total of 387 patients with complete informa-
tion were enrolled in our study, in which 308 
patients (79.6%) developed recurrence. The 
composite endpoints consisted of 87 cases of 
recurrence, 118 deaths, and 103 last follow- 
up events. The median survival time of com- 
posite endpoints was 1244 days. The median 
survival time of those who died without ex- 
periencing recurrence (8 patients, 2.1% of 
cohort) was 662 days. The CIF curve of re- 
currence onset was shown in Figure 2. Most 
patients experienced composite events be- 
fore 6000 days, and the hazard of composite 
events was relatively high until about 2000 
days. We prepared 5 sets of features from sin-
gle type of data (STF) and 4 sets of integra- 
tive features (ITF) as the model input. The  
composition of each feature set used to devel-
op the competing risks model was shown in 
Table S3. The mean of median failure time of 
10 repetitions for the development and test- 
ing dataset were 907 days and 884 days, 
respectively.

Modeling with a single type of data

Overall, under the context of competing risks, 
the clinicopathological variables showed the 
best prediction performance. Its mean time-

Figure 2. The cumulative incidence function of com-
posite endpoints and death without recurrence.
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dependent AUC within 3000 days after initial 
treatment was 0.694 (sd = 0.023). The gene 
expression-based model showed a better prog-
nostic ability as compared to that of gene 
mutation with (mean time-dependent AUC = 
0.591 vs. 0.536) or without (mean time-depen-
dent AUC = 0.604 vs. 0.545) performing uni-
variate feature selection. 

We nest investigated whether adding univari-
ate feature selection step benefits prognostic 
prediction. For RNA expression-based model, 
the mean time-dependent AUC increased by 
0.013 with the extra feature selection step. 
The performance was significantly improved in 
the time interval before about 1000 days  
and after about 2300 days (mean time-depen-
dent AUC = 0.619 vs. 0.596, p value = 1.54e-
5), although such improvement was limited 
(Figure S2C). For the gene mutation-based 
model, the overall accuracy within 3000 days 
increased by 0.009 after the feature selec- 
tion, but the improvement became more obvi-
ous (mean time-dependent AUC = 0.557 vs. 
0.531, p value = 2.2e-16) after about 1200 
days (Figure S2C), suggesting the pre-selec- 
tion strategy helped increase the accuracy 
within specific time periods.

Modeling with integrated data

We evaluated the benefit of combinatorial mo- 
deling by combining clinicopathological vari-
ables, gene expressional or mutational profiles 

as model input. As shown in Figure 3A, models 
combining expressional features and clinico-
pathological covariates performed best across 
all time periods. The mean of its time-depen-
dent AUC curve within 3000 days was 0.719  
(sd = 0.030), which is significantly higher than 
that of the second best model based on a com-
bination of three types of data (mean time-
dependent AUC = 0.702, sd = 0.031, p value < 
0.001). 

We next compared the best integrative model 
to the clinicopathological variable-based model 
as described above. Their time-dependent AUC 
curves were shown in Figure 3B. There was a 
slight improvement of the models (increased 
2.6%) with the addition of gene expressional 
profiles to clinicopathological variables. Such 
improvement was much more obvious before 
1000 days (mean time-dependent AUC =  
0.750 vs. 0.692, p value = 3.49e-13). 

Validation with RFS and OS analysis

To further evaluate the results developed 
based on composite endpoints, we carried out 
OS and RFS analysis without considering  
competing risks. The OS analysis was based  
on the 387 patients described above and the 
RFS analysis was developed on 166 patients 
after removing 221 patients who were missing 
the data of time of recurrence. We used C-in- 
dex to evaluate the prediction performance. 
The boxplot summary of C-index was shown in 

Figure 3. Time-dependent AUC curve of integrative models (A) and comparison of clinicopathological variables-
based model and the best integrative model (B). Abbreviations: cln, models based on clinicopathological variables; 
expr_mut, models based on RNA expressional and gene mutational profiles; mut_cln, models based on clinico-
pathological variables and gene mutational profiles; expr_cln, models based on clinicopathological variables and 
RNA expressional profiles; expr_mut_cln, models based on the three types of data.
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Figure 4 and the mean of each box was sum-
marized in Table S3. For models based on sin-
gle types of data, the clinicopathological vari-
ables performed best in both OS (mean/sd 
C-index: 0.697/0.033) and RFS (mean/sd C- 
index: 0.629/0.041) analysis. For models ba- 
sed on integrated data, those combining RNA 
expression data and clinicopathological vari-
ables performed best in both OS (mean/sd 
C-index: 0.709/0.053) and RFS (mean/sd C- 
index: 0.631/0.052) analysis.

Integrative prognostic score and interaction 
analysis

To illustrate the potential usage of the integra-
tive model in clinical setting, we computed a 

prognostic score by summing over the product 
of features and their coefficients (Table S4) 
from the competing risk model developed 
above. By setting the median of the score as 
the threshold, the patients were categorized 
into higher and lower risk subgroups. The OS  
or RFS of these two subgroups were all signifi-
cantly different under Kaplan-Meier analysis 
(Figures 5A, S3A). To see whether the prognos-
tic score could provide higher-resolution risk 
stratifications, we performed Kaplan-Meier 
analysis within locoregional or metastatic sub-
group (Figure 5B, 5C). The score can further dif-
ferentiate higher risk from lower risk patients 
within each subgroup for either OS (Figure 5) or 
RFS (Figure S3). 

Figure 4. Boxplots of C-index for OS and RFS analysis. A. Shows the model performance based on single type data 
for OS; B. Represents integrate clinicopathological models for OS; C. For single type data for RFS; D. For integrative 
models for RFS. 
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We then further evaluated the level of impor-
tance of incorporating gene expression into 
prognostic analysis within pathologically-de- 
fined subgroups. We performed OS or RFS 
model training and testing using data from 
each subgroup. The mean and standard devia-

for the locoregional group as compared to 
those based on all patients in RFS analysis, or 
to the model simply based on clinicopathologi-
cal variables for the locoregional group. We 
also performed predictions on subgroups strat-
ified by AJCC tumor pathologic stage (“Stage 

Figure 5. OS survival probability of subgroups 
stratified by the prognostic score. A. Represents 
Kaplan-Meier curve of all patients; B. Repre-
sents patients with metastatic tumor; C. Repre-
sents patients with regional tumor. 

Table 1. Summary of prediction accuracy (mean C-index/standard 
deviation) on subgroups stratified by tumor metastatic status

Feature set
OS RFS

Locoregional Metastatic Locoregional Metastatic
ori.expr 0.521/0.070 0.586/0.053 0.522/0.122 0.463/0.091
sel.expr 0.561/0.102 0.599/0.040 0.658/0.103 0.492/0.079
ori.mut 0.481/0.064 0.499/0.036 0.513/0.058 0.523/0.064
sel.mut 0.484/0.065 0.525/0.032 0.568/0.058 0.543/0.062
Cln 0.551/0.076 0.719/0.054 0.612/0.057 0.666/0.079
expr_cln 0.564/0.084 0.725/0.038 0.680/0.091 0.589/0.129
mut_cln 0.449/0.055 0.701/0.051 0.610/0.082 0.614/0.086
expr_mut 0.530/0.078 0.589/0.050 0.619/0.081 0.552/0.085
expr_mut_cln 0.526/0.082 0.712/0.048 0.631/0.087 0.567/0.076

tion of C-index of each type  
of model was summarized in 
Table 1. Compared to the 
results based on all patients, 
the prediction accuracy of 
models combining clinico-
pathological variables and 
gene expression varied gre- 
atly between locoregional 
and metastatic group (me- 
an C-index of locoregional/
metastatic groups = 0.564/ 
0.725 for OS, 0.680/0.589 
for RFS). Of note, such model 
has significantly improved 
prediction accuracy (4.9%) 
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0~II” vs. “Stage III, IV”). As shown in Table S5, 
the prediction accuracy of models based on 
clinicopathological variables and gene expres-
sion was also different across subgroups  
(mean C-index of “Stage 0~II”/“Stage III, IV” 
groups = 0.683/0.645 for OS, 0.594/0.600 for 
RFS). 

Discussion

In this study, we extensively compared pro- 
gnostic models of cutaneous melanoma from 
the perspective of input data types (clinico-
pathological, expressional and mutational pro-
files), endpoints (composite, recurrence or 
death), statistical methods (competing risk 
modeling or typical high-dimensional survival 
modeling) and evaluation criteria (time-depen-
dent AUC or C-index). We found that combining 
clinicopathological variables and gene expres-
sion achieves the best overall prediction per- 
formance. We also showed that this combina- 
torial model can provide higher-resolution risk 
stratifications within non-metastatic or meta-
static patients. 

This risk stratification was particularly effective 
among locoregional patients, where the gene 
expression data added significantly more ben-
efit in predicting recurrence (mean C-index = 
0.680) as compared to that of clinicopatholo- 
gical variables-based model (mean C-index = 
0.612) or other types of combinatorial models 
(best mean C-index = 0.631). 

We noted that the best competing risks model 
developed in this study (Table S4) did not 
include any one of genes in a commercially 
used prognostic marker, DecisionDx-Melano- 
ma [2] (31-GEP). One possible reason could be 
the different platforms used for gene expres-
sion measurements. The 31-GEP was devel-
oped using microarray data while the TCGA 
data we used in the study employed RNA se- 
quencing technology. The two platforms sh- 
owed certain discrepancy in previous studies 
[20, 21]. Another possible reason could be the 
different statistical learning methods used for 
the high-dimensional variable selection. It is 
still unknown about the exact advantage of 
31-GEP over combinatorial or integrative mod-
els in prognostic prediction. Our finding is con-
sistent with a previous study [13] which used 
different cohort and methods for model devel-
opment. We all concluded that the high-throu- 
ghput “omics” profiling alone does not show a 

clear superiority in prognosis over commonly 
used clinicopathological variables, but combin-
ing gene expression data and clinicopathologi-
cal variables can improve the performance. 

Our study has limitations. First, the data we 
used has many missing values in recurrence 
time. The failure time of composite endpoint  
we defined here, which was mixed with recur-
rence and death events, is not clinically mean-
ingful, but the best combination we identified 
based on this setting showed consistency 
among RFS or OS analyses. The risk score we 
developed from the composite endpoint-based 
competing risk model using training dataset 
can significantly stratify risk groups in both  
OS and RFS analyses (Figures 5, S3). Second, 
the dataset has a very small proportion (2.1%) 
of competing risks cases, that is, patients who 
died without experiencing recurrence. This 
could make our application of competing risks 
survival modeling unnecessary, but when the 
sample size becomes larger, or if the study of 
late-stage patients is the focus, we would ex- 
pect that the modeling strategy in this study 
can still be applicable. Third, all the analyses in 
this study were developed on a single cohort 
dataset. Further validation on a larger cohort of 
data still needs to be performed. 

In summary, we developed a combinatorial 
model and demonstrated its prediction ability 
over multiple combinatorial methods. The mo- 
del includes expression for only 10 genes, and 
can be used for assessing both OS and RFS.
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Figure S1. Sketch of disease process for patients after initial treatment. The censoring event occurred if one patient 
lost follow-up without experiencing recurrence or death.

Table S1. Number of types of data before and after feature preprocessing
Number (patients, features)

Before feature preprocessing After feature preprocessing
Clinicopathological variables 470, 70 387, 6
RNA-seq expression 468, 60483 387, 5390
Gene mutation 467, 17509 387, 772

Table S2. Summary and association analysis of clinicopathological variables of 387 patients in TCGA-
SKCM

clinicopathological variables Summary
P-Value

RFS status OS status
Age at diagnosis 57.78/387 (15.45) 0.001 0.876
Male gender 241/387 (62.2%) 0.336 0.268
Height cm at diagnosis 170.31/208 (9.42) 0.043 0.029
Weight kg at diagnosis 81.61/211 (19.50) 0.023 0.345
Race White 368/380 (96.8%) 0.278 0.999
History other malignancy 16/387 (4.1%) 0.211 0.999
History neoadjuvant treatment 21/387 (5.3%) 0.272 0.064
With tumor 208/387 (53.7%) 0.044 0.074
Primary location 387 < 0.001 0.787
    Regional Lymph Node 186/387 (48.0%)
    Primary Tumor 87/387 (22.4%)
    Regional Cutaneous or Subcutaneous Tissue 62/387 (16.0%)
    Distant Metastasis 52/387 (13.4%)
Breslow thickness at diagnosis 5.62/312 (8.92) < 0.001 0.956
Clark level at diagnosis (I, II, III)¶ 86/280 (43.65%) 0.493 0.644
Primary melanoma tumor ulceration 143/271 (52.76%) < 0.001 0.999
Primary melanoma mitotic rate 6.37/159 (6.74) 0.359 0.039
AJCC pathologic tumor stage (III, IV)† 175/387 (45.2%) 0.115 0.734
AJCC nodes pathologic stage (N0, NX)§ 229/387 (59.2%) 0.083 0.999
Pharmaceutical adjuvant 79/357 (22.1%) 0.523 0.382
Radiation treatment adjuvant 73/361 (20.1%) 0.048 0.999
¶The Clark level at diagnosis included 5 categories: I, II, III, IV, V. We separated I, II, III into one group, IV and V into the other 
group. †The AJCC pathologic tumor stage included stage 0, I, IA, IB, I/II NOS, II, IIA, IIB, IIC, III, IIIA, IIIB, IIIC, IV. We merged stage 
0~II (include sub-stages) as one group, stage III and IV as the other group. §The AJCC nodes pathologic stage included N0, X, 
1, 1a, 1b, 2, 2a, 2b, 2c, 3. We combined N0 and NX to a group, other categories to the other group.
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Figure S2. The prediction performance of models based on single type of data. A. Shows the models based on 
clinicopathological variables, RNA expression or gene mutation without performing feature selection; B. Represents 
those after feature selection; C. Compares the RNA expressional and gene mutational profiles before and after 
feature selection. Abbreviations: cln, clinicopathological variables-based model; ori.mut, models based on gene 
mutational profiles before feature selection; ori.expr, models based on RNA expressional profiles before feature 
selection; sel.mut, models based on gene mutational profiles after feature selection; sel.expr, models based on RNA 
expressional profiles after feature selection.

Table S3. Summary of the names and prediction accuracy of RFS and OS

Feature class Detail set
C-index (mean/std.)
OS RFS

STF (Single-type features) Clinical variables (cln) 0.697/0.033 0.629/0.041
RNA expression before feature preprocessing (ori.expr) 0.620/0.067 0.549/0.070
Gene mutation before feature preprocessing (ori.mut) 0.526/0.030 0.498/0.070
RNA expression after feature selection (sel.expr) 0.639/0.033 0.578/0.071
Gene mutation after feature selection (sel.mut) 0.543/0.051 0.528/0.051

ITF (Integrate-type features) sel.expr and cln (expr_cln) 0.709/0.053 0.631/0.052
sel.mut and cln (mut_cln) 0.666/0.039 0.593/0.062
sel.expr and sel.mut (expr_mut) 0.618/0.042 0.549/0.041
sel.expr, sel.mut and cln (expr_mut_cln) 0.694/0.042 0.595/0.069

Table S4. The features selected by the com-
peting risks model and their coefficients
Feature name coefficient
SLC5A3 -0.1136
MRPS6 -0.0176
HOXC10 -0.11377
NXT2 -0.05
UBE2L6 -0.11651
TRAF1 -0.12959
CSGALNACT1 -0.02233
FMNL2 -0.04611
IFITM3 -0.02595
KIT 0.028093
age at diagnosis 0.057223
primary location (distant metastasis) -0.21144
AJCC pathologic tumor stage 0.622113
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Figure S3. RFS survival probability of subgroups 
stratified by the prognostic score. A. Represents 
Kaplan-Meier of all patients; B. Represents patients 
with regional tumor; C. Represents patients with met-
astatic tumor.

Table S5. Summary of prediction accuracy (mean C-index/standard 
deviation) on subgroups stratified by AJCC tumor pathologic stage

Feature set
OS RFS

Stage 0~II Stage III, IV Stage 0~II Stage III, IV
ori.expr 0.591/0.047 0.607/0.032 0.613/0.108 0.516/0.071
sel.expr 0.601/0.037 0.616/0.039 0.625/0.083 0.601/0.074
ori.mut 0.549/0.045 0.497/0.037 0.532/0.024 0.521/0.021
sel.mut 0.547/0.037 0.478/0.036 0.498/0.065 0.547/0.053
cln 0.713/0.056 0.617/0.053 0.587/0.086 0.447/0.061
expr_cln 0.683/0.060 0.645/0.049 0.594/0.070 0.600/0.072
mut_cln 0.681/0.064 0.535/0.050 0.521/0.078 0.543/0.055
expr_mut 0.583/0.058 0.589/0.046 0.548/0.105 0.565/0.068
expr_mut_cln 0.663/0.060 0.609/0.056 0.543/0.115 0.537/0.052


