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mTOR activation facilitates locomotor recovery in  
rats with spinal cord injuries: a meta-analysis
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Abstract: mTOR activation is a therapeutic strategy for improving the functional outcomes in patients with spinal 
cord injuries (SCI). The effects of mTOR activation on motor recovery in rats with SCI were evaluated. Randomized 
controlled trials comparing mTOR activation and vehicle treatments published up to 20 May 2019 were searched 
in English databases (PubMed, Embase, and Web of Science). A quality assessment was performed using the 
CAMARADES checklist. Two investigators independently extracted the related data. The results were analyzed using 
STATA 12.0 and RevMan 5.3 software. Subgroup analyses were performed to assess the heterogeneity. A sensitiv-
ity analysis was performed to assess the robustness of our analysis. Nine studies examining 246 rats satisfied the 
inclusion criteria. According to the combined results, the total Basso Beattie Bresnahan (BBB) scores were signifi-
cantly higher in the mTOR activated groups compared with the SCI + saline groups. The heterogeneity of the total 
BBB scores was high after 1-6 weeks. A drug subgroup analysis suggested that the heterogeneity of the miRNA drug 
subgroup was lower than it was in the same group at 1 week (I2 = 84%), 2 weeks (I2 = 68%), 3 weeks (I2 = 13%), and 
4 weeks (I2 = 38%). Based on the sensitivity analysis, the results were stable. Regarding publication bias, the mTOR 
activation improved functional outcomes by 15% in the experimental SCI models, thus indicating it is a feasible 
strategy for the pharmacological augmentation of neurorehabilitation of SCI in humans. 
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Introduction

A spinal cord injury (SCI) is a devastating dis-
ease that causes paralysis in patients and 
imposes a significant economic and social bur-
den. The progression of SCI is complicated; the 
pathophysiology of SCI has two phases, includ-
ing primary injury and secondary injury. Primary 
mechanical injury is induced by a rapid direct 
compression or contusion of the spinal cord. 
The subsequent secondary pathophysiological 
changes, such as apoptosis, autophagy, isch-
emia, glial scarring, and oxidative stress, typi-
cally lead to permanent neurological impair-
ments [1].

The treatments for central nervous system inju-
ry primarily include promoting a microenviron-
ment that increases nerve regeneration and 
stem cell transplantation. The former is achi- 
eved primarily through the secretion of nutrient 
factors or a decrease in the expression of glial 
cell inhibitory molecules to build a suitable 

microenvironment for nerve regeneration [2]. 
The latter uses transplanted stem cells from 
different sources to replenish the damaged 
neurons [3]. Although these treatments exert 
some beneficial effects, the length of the regen-
erated axons is very limited, and the degree of 
recovery of nerve function is still not satisfac-
tory given that a simple improvement in the 
external environment of damaged neurons or 
supplementation of stem cells does not funda-
mentally enhance the regenerative ability of the 
central neurons [4]. Thus, the intrinsic regener-
ative capacity of the damaged neurons must be 
increased [5, 6]. The inherent poor regenerative 
ability of the adult central nervous system (CNS) 
neurons is considered the major obstacle in 
axon regeneration and the subsequent func-
tional recovery [6-11]. The expression of mTOR 
is downregulated following CNS development, 
so the regenerative capacity of the CNS axons 
is reduced. In addition, the mTOR levels in neu-
rons are further decreased after axon injury 
[12, 13]. After peripheral nervous system injury, 
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mTOR expression is upregulated and exhibits  
a strong regenerative capacity. mTOR is capa-
ble of upregulating p70s6k expression, pre-
venting cell apoptosis, and maintaining neural 
stem cells (Figure 1) [13-16]. Some studies [17-
19] found that the formation of new growth 
cones after an injury of the cultured neurons 
requires mTOR pathway activation. Numerous 
studies [5, 20-22] further report that PTEN 
knockout activates the mTOR signaling path-
way, significantly enhancing the neurons’ inter-
nal growth ability and increasing the regenera-
tion of the damaged optic ganglion cells and 
corticospinal bundle axons of the central ner-
vous system. Based on these results, mTOR 
activation enhances the regeneration of dam-
aged neurons; thus, the mTOR pathway may 
represent a critical target for axonal regenera-
tion in an injured spinal cord. However, mTOR 
inhibitors have also been shown to promote 
autophagic processes and inhibit the apoptosis 
of neurons after neural injury [23-27].

To date, quantitative data on the recovery of 
movement in rats with SCI following mTOR acti-
vation are not available. Therefore, studies on 
mTOR activation in rats with SCI were summa-
rized and analyzed, highlighting the potential 
clinical use of mTOR activation therapy for the 
treatment of SCI.

Methods

Search strategy 

Using prespecified inclusion and exclusion cri-
teria, all publications describing relevant exper-
iments/data were identified by searching three 
electronic databases (PubMed, EMBASE, and 
ISI Web of Science; May 20, 2019). The Medical 
Subject Heading (MeSH) terms “TOR Serine-
Threonine Kinases”, “spinal cord injury”, and all 
related free words were searched. Additionally, 
the entries “activate”, “activator”, “stimulate”, 
and “stimulator” were used. The search results 
were limited to indexed studies that described 
animal experiments and that were published in 
English.

Inclusion and exclusion criteria 

The retrieved publications were independently 
reviewed by two investigators. Those reporting 
experiments in which functional outcomes in a 
group of animals exposed to traumatic SCI and 
treated with mTOR activation were included.

Using the PICOS (Population, Intervention, 
Comparison, Outcomes, and Study design) 
method [28], the following inclusion criteria 
were established: i) randomized controlled ani-
mal trials, ii) lab rats with any type of acute SCI 
(compression, contusion, transection, and he- 
misection), iii) at least two different groups 
were investigated, including an mTOR activa-
tion group (mTOR activation following SCI) and 
an injury group (a control group that was not 
treated after SCI), and iv) the BBB score was 
used as the evaluation method.

The exclusion criteria included the following:  
i) studies of spinal cord ischemia-reperfusion 
injury models, ii) reviews, iii) studies with re- 
peating data, iv) studies lacking a control group, 
v) studies that did not provide the means and 
standard deviations of the BBB scores, and vi) 
non-English publications. 

Disagreements were resolved by achieving a 
consensus with a third author. Searches were 
limited to animal studies in which laboratory 
rats were used.

Data extraction 

The title, first author, publication year, country 
in which the study was performed, original 

Figure 1. Neuroprotective mechanism of activation 
of the PI3K/AKT/mTOR signaling pathway.



mTOR activation and spinal cord injury

2393	 Int J Clin Exp Med 2021;14(10):2391-2404

data, animal strain, animal age (as reported in 
the study), sex, number of animals in each 
group, method used to induce SCI, spinal cord 
injury level, administration time, and measured 
outcomes were extracted by two independent 
reviewers (Table 1). Disagreements between 
the reviewers were addressed by discussion. If 
the original data were incomplete, the corre-
sponding author was contacted to obtain ade-
quate data if possible.

For individual comparisons, the data were col-
lected to determine the mean outcome, the 
standard deviation, and the number of animals 
in each group. If any data were not presented in 
the text but only shown in graphs, the data 
were estimated using GetData Graph Digitizer 
version 2.24 (http://www.getdata-graph-digitiz-
er.com/download.php). Any disagreements be- 
tween the two reviewers were addressed by a 
third reviewer.

When relevant outcomes were reported with-
out clear data, the authors were contacted by 
email.

Evaluation of the publication quality 

The quality of each study was assessed using  
a checklist adapted from good laboratory  
practice guidelines for stroke [27] and the 
CAMARADES quality checklist [29, 30]. The 
checklist included the following: i) peer-re- 
viewed publications; ii) animal feeding state-
ments of temperature control, iii) randomiza-
tion to experimental groups, iv) allocation con-
cealment, v) blinded evaluation of outcomes, 
vi) avoidance of anesthetics known to possess 
significant intrinsic neuroprotective properties, 
vii) sample size calculation, viii) compliance 
with animal welfare regulations, and ix) reports 
of any potential conflicts of interest (Table 2).

Evaluation of the locomotor recovery 

Locomotor function was evaluated using an 
open-field test. The 21-point BBB score was 
adopted to evaluate the hindlimb locomotor 
function. Normal function was rated as 21 
points, and lower scores reflected impaired 
locomotor function [31-33].

Details of the subgroups

The subgroup analyses were based on the fol-
lowing items: i) different SCI models, namely, 

compression, contusion, or transection mod-
els, and ii) different therapeutic treatments, 
such as organic drugs, miRNAs, and physical 
therapy.

Statistical analysis 

Statistical analyses were performed using 
RevMan version 5.3 software (Cochrane Co- 
llaboration). Continuous variables are denoted 
as the weight mean difference (WMD) and the 
associated 95% confidence intervals (CI) of the 
WMD for the analysis of the effects. The hetero-
geneity between the results of the studies was 
analyzed using χ2 tests with a test level of α = 
0.1. Statistical heterogeneity was assessed 
using I2 and χ2 tests (for I2, 25%>I2≥0% indi-
cates no heterogeneity, and 50%>I2≥25% indi-
cates slight heterogeneity; for χ2, P>0.1 repre-
sents no heterogeneity), and a fixed-effects 
model was used to analyze the data. If signifi-
cant heterogeneity was observed among the 
results (for I2, 75%>I2≥50% represents moder-
ate heterogeneity and I2≥75% represents 
strong heterogeneity; for χ2, P<0.1 indicates 
heterogeneity) [34, 35], a random effects mo- 
del was adopted to analyze the data, and the 
subgroup and sensitivity analyses were per-
formed to analyze the heterogeneity.

The stability of the results was assessed by 
performing a sensitivity analysis using STATA 
version 12.0 software [36, 37].

Results

Selection of publications 

Of the initial 650 unique studies identified, 82 
were considered relevant, among which 9 stud-
ies reported sufficient data to be included in 
the quantitative meta-analysis. A detailed flow 
diagram of the publication selection process is 
illustrated in Figure 2.

Quality of the literature

The characteristics of the 9 studies [21, 38-45] 
included in the final analysis are listed in Table 
1. The year of publication ranged from 2013-
2019. Two hundred forty-six rats had a trau-
matic SCI, seven studies used the contusion 
model, one study analyzed the compression 
model [45], and one study used the hemisec-
tion model [43]. The spinal cords of rats in 8 of 
the studies were injured at the thoracic level, 
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Table 1. Studies included in the present meta-analysis

Author, year Country
Animal  
characteris-
tics

Number of 
animals in 
each group

Type of injury Anesthetic Activation  
group

SCI control 
group

Route of 
delivery

Methods for  
assessing outcomes

Time inter-
vals

Wang et al, 2018 China SD rats; female; 
age, 6-8 weeks; 
weight, 235-
275 g

8 Contusion at T10, a 
2-mm-diameter, 10-g 
impactor was dropped 
on the exposed spinal 
cord from a height of 
50 mm

Isoflurane SCI + β-elemene 
(80 μg/kg), and 
SCI + β-elemene 
(320 μg/kg)

Sham, 
Sham + 
β-elemene 
(320 μg/
kg), SCI + 
saline

Gelatin 
sponges until 
rats were 
sacrificed

BBB; TUNEL; Nissl 
staining; western blot-
ting for p-mTOR, p-AKT 
and PI3K; ELISA

1, 3, 5, 7, 14, 
21, and 28 
days

Yin et al, 2018 China SD rats; male; 
age, 8 weeks 
old; weight, 
200-220 g

7 Contusion at T10, a 
10-g rod was dropped 
at a vertical height of 
50 mm

Unknown SCI + LV-miR-29a Sham, SCI + 
saline, SCI + 
LV-eGFP

2.5 μl of 
lentivirus 
were injected 
into the 
lesion site for 
5 min

BBB; RT-qPCR; im-
munohistochemical 
staining for NF200; 
western blotting for 
PTEN, p-AKT and p-S6

4 h; 1, 3 
and 5 days, 
and weekly 
thereafter for 
8 weeks

Chen et al, 2018 China SD rats; 
unknown age 
or sex; weight, 
250-300 g

10 Contusion at T9-T11, a 
5 g balance weight was 
dropped from 50 mm

Chloral 
hydrate

SCI + diosgenin 
glucoside (100 
mg/kg)

Sham, SCI + 
saline

Gavage 
(once a day)

BBB; H&E and Nissl 
staining; transmission 
electron microscopy; 
immunofluorescence; 
RT-qPCR for LC3A/B, 
p-AKT, p-mTOR and 
p70S6K qPCR; TUNEL; 
western blotting for 
p-AKT and mTOR

1, 7, 14 and 
21 days

do Espirito Santo et al, 2018 Brazil Wistar rats; 
female; age, 
2.5 months old; 
weight, 185-
250 g

11 T8-T9, extradural 
compression injury (ECI) 
for 1 min (16) with an 
aneurysm clip (Brazil) 
calibrated to deliver 70 
g of closing force

Ketamine 
and xylazine 

SCI + locomotor 
treadmill training 

Sham, SCI + 
saline

Treadmill 
training. On 
the 1st day 
of training, 
rats walked 
for 10 min, 
progressing 
to 30 min 
by the end 
of week 11, 
which was 
continued 
until the 
last day of 
training

BBB; ELISA; western 
blotting for mTOR and 
p-p70S6K

4, 7, 14, 21 
and 28 days

Lim et al, 2017 Korea SD rats; male; 
age, 7 weeks; 
weight, 250 g 

3 Between T8 and T10, 
a 10 g impact rod was 
dropped from a height 
of 25 mm

Ketamine 
and Rom-
pun 

SCI + M2SP Sham, SCI + 
saline

IV 5 × 105 
cells/500 μl 
PBS 1 day 
after SCI

BBB, Immunofluores-
cence staining, western 
blotting for p-Akt, 
p-mTOR

1-6 weeks
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Zhu et al, 2017 China SD rats; female; 
age unknown; 
weight, 200-
250 g

5 Contusion at T9-T10, 
a 10-g weight was 
dropped from 25 mm

Chloral 
hydrate

SCI + agomiR-494 Sham, SCI Intrathecally, 
1 ml/h, 20 
nmol/ml for 
14 d

BBB; assessment 
of lesion volume; 
cresyl violet staining; 
TUNEL staining; miRNA 
microarray analysis; 
qPCR; western blotting 
for p-mTOR, p-AKT 
and PTEN, luciferase 
reporter assay

1, 3, 7, 14, 
21 and 28 
days

Liu et al, 2015 England SD rats; female; 
age unknown; 
weight, 250-
300 g

5 Hemisection at C4-C5 Isoflurane SCI + docosa-
hexaenoic acid 
(250 nmol/kg)

Sham, SCI 
+ 0.2% 
ethanol in 
saline

IV, twice daily 
for 3 days

BBB; open-field loco-
motion; staircase test; 
grid exploration test; 
anterograde tracing; 
in situ hybridization; 
immunohistochemistry; 
western blot analysis 
for PTEN and p-AKT

Every 2 days 
for 22 days

Yang et al, 2013 China SD rats; female; 
age, 11 weeks 
old; weight 
unknown

6 Contusion at T9-T10, a 
10-g rod was dropped 
from a height of 25 mm 

Chloral 
hydrate

SCI + Myelotomy Sham, SCI Myelotomy BBB; qPCR for 
mTORC1; western blot-
ting for LC3

7 and 14 
days

Sun et al, 2013 China SD rat, Female, 
200-250 g

8 Contusion at T8-T10 (4 
g × 12.5 cm)

Pentobar-
bital

SCI + ATP (40 mg/
kg), SCI + ATP (40 
mg/kg) + rapamy-
cin (3 mg/kg)

Sham SCI + 
saline

IV for 7 days BBB; immunohisto-
chemical staining; 
western blotting for 
p-Akt/Akt, p-mTOR/
mTOR, and p-STAT3/
STAT3

1-4 weeks

SD, Sprague-Dawley; SCI, spinal cord injury; IV, intravenous injection; BBB, Basso Beattie Bresnahan; CQ, chloroquine phosphate; M2SP, substance-P-induced macrophages; RT-qPCR, reverse transcription-quantitative PCR; H&E, hematoxylin 
and eosin; p-, phospho; LV, lentiviral; miR, microRNA; eGFP, enhanced GFP.

Table 2. Analysis of bias

Author, year Country
Statement  

describing control  
of temperature

Randomized 
treatment  

group

Blinded to 
allocation

Blinded  
assessment

Use of anesthetics with 
known marked intrinsic 

neuroprotective properties

Sample  
size  

calculation

Compliance with 
animal welfare 

regulations

Declaration of any 
potential conflicts 

of interest
Score

Wang et al, 2018 China + + + + - - Unknown No conflict 7

Yin et al, 2018 China + + + + - - + No conflict 8

Chen et al, 2018 China + + + + - - + No conflict 8

do Espirito Santo et al, 2018 Brazil + + + + - - + No conflict 8

Lim et al, 2017 Korea - + + + - - + No conflict 7

Zhu et al, 2017 China + + + + - - + No conflict 8

Liu et al, 2015 England Unknown + + + - - Unknown Unknown 5

Yang et al, 2013 China + + + + - - + No conflict 8

Sun et al, 2013 China + + + + - - Ethical None declared 8
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and the injury was performed at the cervical 
segment in one study. The results of the quality 
assessment are presented in Table 2.

Overall analysis of the effects of mTOR activa-
tion 

The results of a meta-analysis of the 9 included 
studies showed higher BBB scores 1-6 weeks 
after mTOR activation compared with the con-
trol group, and high heterogeneity was obser- 
ved (Table 3). Significant heterogeneity (I2 = 
45-96%) among the 9 studies was observed 
when evaluating the mean BBB scores of the 
rats with SCI and mTOR activation following 
SCI. According to the results of the meta-analy-
sis of these data, the average BBB score of the 
rats with SCI was significantly lower than the 
average BBB score of the rats with mTOR acti-
vation (Table 3). Together, these results indi-
cate that mTOR activation provides a protective 
effect.

BBB scores of the subgroups of the different 
injury models

Due to the high degree of heterogeneity, a sub-
group analysis was performed. The results of 
the subgroup analyses of the injury models 
suggested that the improvement in BBB scor- 
es did not differ among the contusion, com-
pression, or hemisection models. As shown in 
Figure 3, significantly higher BBB scores were 
recorded for the contusion injury subgroup of 
the mTOR activation group than for the  
SCI (contusion) + saline group at 1 week (WMD 

compression injury subgroup, higher BBB 
scores were recorded for the mTOR activation 
groups at 1 week (WMD = 0.32, 95% CI 0.01-
0.63, P = 0.04) and 2 weeks (WMD = 0.05, 95% 
CI 0.59-0.69, P = 0.88) compared with the SCI 
(compression) + saline groups. In the hemisec-
tion injury subgroup, higher BBB scores were 
recorded for the mTOR activation group at 1 
week (WMD = 1.96, 95% CI 1.23-2.69, 
P<0.001), 2 weeks (WMD = 1.99, 95% CI 1.15-
2.83, P<0.001), and 3 weeks (WMD = 1.89, 
95% CI: 1.36-2.42, P<0.001) than for the SCI 
(hemisection) + saline group.

BBB scores of the subgroups of rats adminis-
tered different therapeutic drugs

The BBB scores were assessed at weeks 1-4 
after the mTOR activation. Based on the use of 
different drugs, the comparisons were split into 
organic drugs, miRNAs and physical therapy 
groups. As shown in Figure 4, the BBB scores of 
the organic drug group were significantly higher 
at 1 week (WMD = 2.15, 95% CI 1.26-3.04, 
P<0.001), 2 weeks (WMD = 3.18, 95% CI 2.14-
4.21, P<0.001), 3 weeks (WMD = 3.17, 95% CI 
1.73-4.60, P<0.001), and 4 weeks (WMD = 
2.84, 95% CI 1.16-4.52, P<0.001) after acute 
SCI than those of the SCI groups. The heteroge-
neity in the organic drug group was high at 1 
week (I2 = 94%), 2 weeks (I2 = 89%), 3 weeks (I2 
= 95%), and 4 weeks (I2 = 93%). In the miRNA 
subgroup, the BBB scores of the mTOR activa-
tion groups were higher at 2 weeks (WMD = 
4.06, 95% CI 2.15-5.96, P<0.001), 3 weeks 
(WMD = 4.78, 95% CI 3.71-5.85, P<0.001), and 

Figure 2. Preferred report-
ing items for systematic 
reviews and the meta-anal-
ysis flow diagram used in 
the present meta-analysis.

= 1.82, 95% CI 1.13-2.50, 
P<0.001), 2 weeks (WMD = 
3.41, 95% CI 2.54-4.28, P< 
0.001), 3 weeks (WMD = 3.51, 
95% CI 2.19-4.84, P<0.001), 4 
weeks (WMD = 3.27, 95% CI 
1.64-4.89, P<0.001), 5 weeks 
(WMD = 2.89, 95% CI 1.72-
4.06, P<0.001), and 6 weeks 
(WMD = 2.98, 95% CI 1.75-
4.21; P<0.001) after acute 
SCI. The heterogeneity in con-
tusion injury was high at 1 
week (I2 = 93%), 2 weeks (= 
89%), 3 weeks (I2 = 92%), 4 
weeks (I2 = 94%), 5 weeks (I2 = 
60%), and 6 weeks (I2 =  
45%) after acute SCI. In the 
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4 weeks (WMD = 4.71, 95% CI 3.37-6.04, 
P<0.001) than those of the SCI + saline groups, 
but they did not differ significantly from the 
BBB scores of the SCI group after 1 week (WMD 
= 1.50; 95% CI, 0.13-3.13; P = 0.07). The het-
erogeneity of the miRNA subgroup was high at 
1 week (I2 = 82%) and moderate at 2 weeks (I2 
= 68%); no heterogeneity was observed at 3 
weeks (I2 = 13%), and slight heterogeneity was 
observed at 4 weeks (I2 = 38%). In the physical 
therapy subgroup, higher BBB scores were 
recorded for the mTOR activation group than 
for the SCI + saline group at 1 week (WMD = 
0.67, 95% CI 0.01-1.36, P = 0.06) and 2 weeks 
(WMD = 1.19, 95% CI 1.01-3.40, P = 0.29). The 
heterogeneity in the physical therapy group 
was high at 1 week (I2 = 90%) and 2 weeks (I2 = 
97%).

Sensitivity analysis 

A sensitivity analysis was performed by exclud-
ing the studies separately and analyzing the 
effects of the exclusion of each study on the 
results to assess the robustness of the WMD 
estimates of the BBB scores. As shown in 
Figure 5, the results of the WMD estimates 
were relatively reliable and credible given that 
no point estimate of the omitted individual 
study exceeded the 95% CI with the exception 
of the study by do Espirito Santo [45] at 2 and 
3 weeks.

Discussion

To date, no RCT (randomized controlled trial) 
experimental studies on mTOR activation in the 
treatment of human spinal cord injury have 
been performed, and the majority of existing 
studies have focused on rehabilitation, stem 
cell therapy, or drug therapy [46-49]. Addi- 
tionally, preclinical evidence examining the 
value of mTOR activation in SCI models is not 

available. Thus, in the present meta-analysis, 
studies examining rats with SCI were systemati-
cally reviewed. This information may help guide 
the clinical development of therapeutic strate-
gies targeting this pathway. To the best of our 
knowledge, the present meta-analysis of loco-
motor recovery following mTOR activation is the 
first such meta-analysis in this field.

The repair of SCI is difficult due to the compli-
cated underlying mechanisms, which are not 
completely understood. From the perspective 
of development, neural axons exhibit a pro-
nounced ability to grow during the process of 
neural development. Following the completion 
of development, axons reach their target areas 
and form synapses, and neurons change from 
a growth state to a signal conduction state,  
during which their ability to regenerate is ei- 
ther lost or significantly reduced [20, 50, 51]. 
Additionally, during this process, mTOR expres-
sion is downregulated [52]. The mTOR signaling 
pathway is vital for the growth, proliferation and 
differentiation of neurons [20, 53]. The results 
of the present meta-analyses are consistent 
with other studies not included in the meta-
analysis, suggesting that mTOR activation may 
enhance motor function in a rat model of SCI 
[54-59].

Nine randomized controlled studies were in- 
cluded in the present meta-analysis, which col-
lectively contained data from 246 rats. The 
sham group was adopted as the common con-
trol group to eliminate inconsistencies in the 
study. According to the results of the meta-
analysis, the BBB score of the rats was signifi-
cantly higher 1-6 weeks after mTOR activation, 
suggesting that mTOR activation facilitated the 
recovery of the motor function of the spinal 
cord in impaired rats. According to the analysis 
conducted in the present study, mTOR activa-
tion significantly promoted motor recovery in 

Table 3. Summary of the overall analyses of the effects of mTOR activation

Time (weeks)
Weighted mean difference in BBB score

Effect model
Heterogeneity

95% confidence interval of the WMD P-value I2 P-value
1 1.65 (1.04-2.27) <0.001 Random 94% <0.001
2 2.87 (1.89-3.84) <0.001 Random 94% <0.001
3 2.80 (1.44-4.15) <0.001 Random 96% <0.001
4 2.91 (1.40-4.42) <0.001 Random 95% <0.001
5 2.89 (1.72-4.06) 0.12 Fixed 60% <0.001
6 2.98 (1.75-4.21) 0.18 Fixed 45% <0.001
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Figure 3. Forest plot of the differences in the BBB scores of different injury subgroups in the mTOR activation and control groups at different time points after the 
mTOR activation. A-F. Scores recorded at 1-6 weeks, respectively, after the mTOR activation. 
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Figure 4. Forest plot of the differences in the BBB scores of different therapeutic drug subgroups in the mTOR activation and control groups at different time points 
after the mTOR activation. A-D. Scores recorded at 1-4 weeks after the mTOR activation, respectively. 
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rats with SCI based on the BBB scores. Possible 
explanations for this finding are that the mTOR 
signaling pathway may regulate downstream 
protein translation processes, control autopha-
gy of damaged CNS neurons, or improve the 
survival of neurons after injury [60].

The heterogeneity among the included stu- 
dies was relatively large. Although the literature 
evaluation indices were strictly unified and the 
double-blind method was adopted in the inclu-

sion of data, the BBB scores exhibit individual 
subjectivity due to differences in the species, 
sizes, sexes, and ages of the rats in each arti-
cle, as well as the differences in the modes, 
degrees, and locations of the SCI, which may 
cause heterogeneity in the results. Furthermore, 
different factors (such as different activa- 
tion drugs, treatment durations, and injection 
modes) are used in different research experi-
ments, likely adding to the heterogeneity. Ac- 
cordingly, a subgroup analysis was performed 

Figure 5. Sensitivity analysis of the BBB scorse of the mTOR activation and control groups at (A) 1, (B) 2, (C) 3, (D) 
4, (E) 5, and (F) 6 weeks after the spinal cord injury. The total WMD was estimated again after sequentially omitting 
one study (the “named study” on the left side of the graph); the diamond in each horizontal line represents the total 
WMD. The middle vertical line represents the total WMD. The left vertical line represents the lower limit of the 95% 
confidence interval of the total WMD; the right line represents the upper limit of the 95% confidence interval of the 
total WMD. CI, confidence interval. BBB, Basso Beattie Bresnahan.
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to study and explain heterogeneity, and the 
results suggested that the heterogeneity of the 
injury model and the drug type subgroup analy-
sis remained high, suggesting that the results 
were stable.

According to the results of the sensitivity analy-
sis, the BBB scores of the combined WMD were 
not significantly affected by any study after 1-6 
weeks of mTOR activation. The results of the 
STATA sensitivity analysis showed that hind leg 
training in one study may have been a source of 
heterogeneity in weeks 2 and 3 [45]; however, 
the exclusion of this article did not significantly 
reduce the heterogeneity. Thus, the results 
were reliable despite their high heterogeneity. 
The results should be carefully analyzed, and 
prospective studies with larger sample sizes 
are required to determine the value of mTOR in 
SCI. As fewer than 10 articles were included in 
the meta-analysis, we did not assess publica-
tion bias.

The present study has some limitations. This 
meta-analysis is based on animal studies, so 
the results may not translate to humans and 
may exhibit a high degree of heterogeneity [61]. 
The number of articles is limited, and the sam-
ple sizes are small, which may affect the inter-
pretation of the results. Thus, subsequent rel-
evant studies are required to verify the conclu-
sions drawn here. Additionally, although the 
BBB score is a suitable and simple method for 
assessing the effect of treatments on neuro-
logical recovery following SCI in rat models and 
is widely used in the majority of publications, it 
is based on a subjective observation and may 
result in bias. Thus, the use of the BBB score 
alone is recommended when the intervention 
group is not considered in the study. The study 
designs and the drugs used differed, which 
may have resulted in the high degree of hetero-
geneity, and all the included studies were pub-
lished in English. As a result, some relevant 
studies published in other languages may have 
been excluded.

To date, sample size calculations have rarely 
been conducted in existing studies, and no spe-
cific measures for random allocation have been 
reported, to the best of our knowledge. In exist-
ing preclinical systematic reviews, this issue 
was not properly assessed because only pub-
lished results were involved, thereby increasing 
the size of the effect (the so-called file drawer 
problem) [62].

However, despite these limitations, the results 
of the present analysis may have significant 
implications for both clinical and translational 
studies. Based on the results, the activation of 
the mTOR signaling pathway is associated with 
an improved prognosis.

In conclusion, mTOR activation may facilitate 
locomotor recovery in rat models of SCI. Due to 
the small sample size, the safety and efficacy of 
mTOR activation should be further assessed in 
studies with larger sample sizes in multi-center 
randomized controlled clinical trials. 

Furthermore, subsequent studies are required 
to verify the accuracy of the conclusions  
drawn before studies involving humans are 
performed.
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