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Abstract: With the prevalence of obesity and insulin resistance, nonalcoholic fatty liver disease (NAFLD) has be-
come one of the most common chronic liver diseases worldwide. As NAFLD can progress to non-alcoholic steatohep-
atitis (NASH), liver fibrosis and cirrhosis with higher frequency of hepatocellular carcinoma (HCC). Meanwhile, some 
studies have demonstrated that HCC may also develop in the context of NAFLD without association with advanced 
fibrosis and cirrhosis, just from simple steatosis. Growing evidence supports that NAFLD is associated with HCC. 
The mechanism of NAFLD-related HCC involves genetics, metabolic, immunologic, intestinal microbiota and so on. 
A better understanding of the pathogenesis is conducive to the prevention and individualized treatment of disease. 
This review summarizes the molecular mechanism of NAFLD-related HCC in recent couple of years.

Keywords: Non-alcoholic fatty liver disease, hepatocellular carcinoma, molecular mechanism

Introduction

Hepatocellular carcinoma (HCC) is the fifth 
most common cancer and the second leading 
cause of cancer-related death all over the world 
[1, 2]. HCC is identified as a typical inflamma-
tion-associated neoplasm, usually occurs in 
patients with potential chronic liver disease, 
including infection of hepatitis B virus (HBV) [3], 
hepatitis C virus (HCV) [4], and alcoholic liver 
disease [5]. In recent years, nonalcoholic fatty 
liver disease (NAFLD) becomes the most com-
mon chronic liver disease in developed coun-
tries and increases exponentially in develop- 
ing countries, and has become one of the lead-
ing causes of HCC [6, 7]. NAFLD comprises a 
wide histological spectrum, ranging from sim-
ple steatosis to liver injury and inflammation-
non-alcoholic steatohepatitis (NASH) [8]. NASH 
is more serious phase of NAFLD which is 
defined by the presence of lobular inflamma-
tion and hepatocyte ballooning histologically 
[9]. Several studies have demonstrated that 
NASH patients are more likely to develop 
advanced fibrosis and cirrhosis, and therefor at 
a higher risk of HCC [10-12]. However, in the 
absence of cirrhosis, NAFLD can also progress 

to HCC [13, 14]. The mechanism of NAFLD-
related HCC is still unclear. It may involve genet-
ic, immunologic, metabolic and gut microbiota 
pathways. This review attempts to summarize 
the pathogenesis of NAFLD-related HCC in 
recent couple of years (Figure 1).

Epidemiology

NAFLD is associated with obesity, insulin resis-
tance, diabetes, known as metabolic syndrome 
[15-17]. It is reported that NAFLD affects up to 
25% adult population in the worldwide [18], 
about 20% individuals with NAFLD develop 
NASH [19]. With the prevalence of obesity, 
NAFLD population will rapidly increase. A meta-
analysis shown that the prevalence of NAFLD is 
estimated at 33.5% in adult population by 2030 
[20]. Meanwhile, several studies have shown 
that the morbidity of NAFLD-related HCC is 
increasing exponentially [21-23]. In the first 
large population-based study on NAFLD-related 
liver cancer registered with the United States 
Surveillance, Epidemiology and Results (SEER), 
the proportion of NAFLD-related HCC increased 
by 9% annually between 2004 and 2009 [24]. 
Another study used data from the United States 
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Organ Sharing Network (UNO), the researchers 
noted that the number of NASH-related HCC 
increased nearly 4-fold from 2002 to 2012 
[25]. In the British, the proportion of NAFLD-
related HCC increased tenfold from 2000 to 
2010 [26]. In Japan, a multi-center retrospec-
tive study found that the proportion of patients 
with non-viral HCC increased from 10.0% to 
24.1% in 1991-2010 [27]. They attributed the 
findings to the growing obesity population and 
the rising morbidity of diabetes caused by 
dietary changes [27]. Accordingly, the number 
of NASH-related HCC patients receiving liver 
transplantation is also increasing [25].

Molecular mechanism of NAFLD-induced HCC

Genetic mechanism

With the development of genetic technology, 
researchers are allowed to obtain comprehen-
sive data on genetic changes associated with 
NAFLD-related HCC. The differential expression 
of some genes caused by gene mutation and 
epigenetic changes is closely related to NAFLD-
related HCC.

Hundreds of NAFLD-HCC candidate oncogenes 
were identified by mutation of “Sleeping Be- 
auty” transposon in NAFLD-HCC mice model 
(PTEN-KO mice and HFD-fed mice) [28, 29]. 
Among them, 10 genes were identified as trunk 
drivers and Sav1 is the only gene identified as 
specific to NAFLD-HCC [30]. SAV1 is a vital 
component of hippo signal pathway and is 
involved in the regulation of organ size, Cell 
Fate, and Carcinogenesis [31-33]. In mammals, 
the Hippo signaling pathway consists of macro-
phage stimulating protein (MST), SAV, large 
tumor suppressor kinase (LATS) MOB1A and 
MOB1B, yes-associated protein (YAP), tran-
scription regulator (TAZ), and TEAD [34]. MST 
negatively regulate transcriptional co-activa-
tors YAP and TAZ, which co-regulate gene 
expression that controls proliferation and dif-
ferentiation [35]. Activation of YAP and TAZ is 
associated with liver development, regenera-
tion and tumorigenesis [36]. Kodama T et al. 
[30] reported that SAV1 attenuates liver injury 
and apoptosis by reducing hepatic lipid accu-
mulation. Furthermore, SAV1 can inhibit the 
activation of M1 macrophages and alleviate 
liver inflammation and fibrosis. Such pathologi-

Figure 1. Interaction influence diagrams of NASH associated HCC molecular mechanisms.
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cal injuries are important factors in NAFLD-HCC 
transformation. 

The mechanism is that SAV may affect the dif-
ferentiation of hepatic progenitor cells by inhib-
iting YAP activity [37]. Akashi M et al. found that 
junctional protein associated with coronary 
artery disease (JCAD), coronary artery disease-
associated gene product, was located at the 
cell-cell junction of endothelial cells [38]. 
Continuous studies have found that JCAD is 
closely related to apoptosis and proliferation, 
monocyte adhesion, migration and angiogene-
sis [39, 40]. Recent studies have found that 
JCAD mRNA is significantly increased in human 
and mouse NASH-HCC specimens. Overex- 
pression of JCAD in HCC cell lines induced hep-
atoma cell free fatty acid overload. Moreover, 
overexpression of JCAD not only promotes the 
proliferation of HCC cell lines in vitro, but also 
promotes the growth of subcutaneous xeno-
transplanted tumor in vivo [41]. The main rea-
son is that JCAD can bind to the kinase domain 
of LATS2 and inhibit the kinase activity of 
LATS2, which induces dephosphorylation and 
nuclear localization of YAP in the Hippo signal-
ing pathway that plays a key role in tumor 
growth [42, 43]. Endoplasmic reticulum (ER) 
stress can activate unfolded protein response 
(UPR) and has been involved in the develop-
ment of HCC [44]. Inositol-requiring enzyme 1 
(IRE1), PKR-like endoplasmic reticulum kinase 
(PERK), and activating transcription factor 6 
(ATF6) are three transmembrane signal trans-
ducers mediating UPR on endoplasmic reticu-
lum [45]. Continuous activation of these trans-
ducers is associated with increased tumo- 
rigenicity [46, 47]. Previous studies have con-
firmed that IRE1α is hyperactivated in obesity 
mice model and is closely associated with liver 
repair and regeneration [48]. Wu et al. found 
that the ablation of hepatocyte IRE1α not only 
significantly reduced the incidence of diethylni-
trosamine-induced HCC in IRE1α-KO mice fed a 
normal diet, but also prevented the HCC pro-
gression during high-fat diet [49]. IRE1α induc-
es the phosphorylation of STAT3 and promote 
the HCC development by interacting with STAT3 
in a positive feedback loop [50]. Pogribny IP et 
al. investigated hepatic transcriptomic and his-
tone modification profiles using Stelic Animal 
Model (STAM) mice, an animal model of NASH-
related liver carcinogenesis resembling disease 
development in humans [51]. Gene enrichment 

analysis shows that many pathways have 
changed significantly in STAM model [52]. The 
most significant changes in NASH-fibrotic and 
HCC stages are inhibition of apoptosis and acti-
vation of hepatic stellate cells [51]. Further 
mechanism studies showed that these chang-
es were caused by gene-specific deacetylation 
of histone H4 lysine 16 (H4K16) [53]. Fraga MF 
et al. found that the loss of histone H4K16 is a 
common epigenetic feature of human cancer 
[54]. In NASH-HCC, NUPR1 promotes the con-
tinuous deacetylation of H4K16 by inhibiting 
the activity of lysine acetyltransferase KAT8, 
which eventually leads to HCC [51]. Aberrant 
activation of the Hedgehog (Hh) pathway is 
associated with malignant tumors, such as 
medulloblastoma and basal cell carcinoma, 
and can mediate fibrotic response to chronic 
liver injury [55-57]. Indian Hedgehog (Ihh) was 
up-regulated in NAFLD-HCC and correlated with 
the volume and number of tumors [58]. Ihh reg-
ulates the transdifferentiation of quiescent 
hepatic stellate cells into proliferative myofibro-
blasts and the proliferation of EpCAM+ ductal 
cells to promote fibrosis [59, 60]. More impor-
tantly, Ihh can up-regulate the expression of 
Wnt protein in HSCs and promote the progres-
sion of poorly differentiated HCC [61].

Metabolic pathways

Abnormal energy metabolism is considered to 
be a key factor in the natural course of NAFLD/
NASH-induced HCC. Like other cancers, chang-
es in cell metabolism promote malignant trans-
formation of hepatocytes. O-GlcNAc transfer-
ase (OGT) is a glycosyltransferase that catalyz-
es the post-translational modification of a sin-
gle N-acetylglucosamine from UDP-GlcNAc to a 
serine or threonine residue in nuclear, mito-
chondrial and cytoplasmic proteins via a beta-
linked N-acetylglucosamine (O-GlcNAc) [62]. It 
was also found that OGT was overexpressed in 
several cancers and involved in the metabolic 
changes of cancer cells [63, 64]. Recent stud-
ies have found that OGT is up-regulated in 
human NAFLD-HCC patients and HCC cell lines 
and promotes invasion and migration of NAFLD-
HCC cell lines [65]. Further studies showed that 
OGT could induce elevation of palmitic acid in 
NAFLD-HCC cell lines, and palmitic acid could 
facilitate the proliferation of NAFLD-HCC cell 
lines [65]. The specific mechanism is that OGT 
can activate endoplasmic reticulum (ER) stress 
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and trigger the progress of NAFLD-HCC by 
phosphorylating JNK and NF-κB subunits [66, 
67]. Squalene epoxidase (SQLE) is the second 
key regulatory enzyme in cholesterol biosynthe-
sis [68], and involved in NAFLD-HCC progres-
sion [69]. SQLE implements its carcinogenic 
role through its metabolites-cholesterol ester 
and nicotinamide adenine dinucleotide phos-
phate (NADP+) [70]. SQLE overexpressed pro-
motes accumulation of liver free cholesterol 
and cholesteryl ester, which is lipotoxic and can 
lead to NASH [71], which is highly susceptible 
to HCC [11]. Increased NADP+/NADPH ratios 
triggered a series of events, including oxida- 
tive stress-induced DNA methyltransferase 3a 
(DNMT3A) expression [72], DNMT3A-mediated 
epigenetic silencing of phosphatase and te- 
nsin homolog (PTEN) and activation of Akt-
mTOR (rapamycin mammalian target) [73, 74]. 
Acylcarnitines is a compound of acyl-coenzyme 
A and carnitine catalyzed by carnitine palmitoyl-
transferase (CPT) located on mitochondrial 
membrane. Acylcarnitine metabolism is a key 
factor in regulating the balance of intracellular 
glucose and lipid metabolism and involved  
in many metabolic diseases [75]. Fujiwara N et 
al. reported that acylcarnitine species accu- 
mulated in NASH-driven HCC due to the down-
regulation of CPT2 and its transcriptional regu-
lators peroxisome proliferator-activated recep-
tor α (PPARα) [76]. On the one hand, decreased 
expression of CPT2 alleviates lipotoxicity by 
restraining Src-mediated JNK activation, on  
the other hand, oleoylcarnitine accumulation 
induced by CPT2 down-regulation can activate 
STAT3 and its downstream signaling molecules 
and induce self-renewal of HCC cells [76]. Sun 
H et al. demonstrated that androgen receptor 
(AR)-driven oncogene, cell cycle-related kinase 
(CCRK), cooperates with obesity-induced proin-
flammatory signaling to promote NASH-related 
hepatocarcinogenesis [77]. CCRK, as a mem-
ber of cell cycle-dependent kinase, has been 
confirmed as a direct AR-regulated oncogene  
in hepatocellular carcinogenesis by activating 
GSK3β/β-catenin and AKT/EZH2 signaling pa- 
thways [78, 79]. In mice, CCRK liver specific 
ablation not only eliminates obesity-related 
lipid accumulation, glucose intolerance and 
insulin resistance, but also eliminates the 
development of HCC. Mechanistically, CCRK 
accelerates feedforward loop by inducing co-
occupancy and transcriptional up-regulation of 
STAT3-AR promoter, which activates mTORC1/ 

4E-BP1/S6K/SREBP1 cascade through GSK3β 
phosphorylation. In addition, CCRK induces 
mTORC1-dependent G-csf expression to en- 
hance the recruitment and tumorigenicity of 
polymorphonuclear bone marrow-derived sup-
pressor cells [77]. These findings reveal the 
dual role of inflammation-CCRK in promoting 
metabolism and immunosuppressive repro-
gramming through mTORC1 activation, thus 
establishing a tumorigenic microenvironment 
for the development of NASH-HCC.

Immunologic pathways

Shalapour S et al. reported that the accumula-
tion of liver resident IgA+ cell in human and 
mice with NASH-induced HCC. These inflamma-
tion-induced IgA+ cells expressed programmed 
death ligand 1 (PD-L1) and interleukin-10 [80]. 
Further studies demonstrated that these IgA+ 
cells had immunosuppressive effect and could 
directly inhibit liver cytotoxic CD8+ T lympho-
cytes [81]. CD8+ T lymphocytes deficiency can 
accelerate HCC development [82]. Neutrophil 
extracellular traps (NETs) are large reticular 
structures consisting of decondensed chroma-
tin, neutrophil-derived nuclear, cytoplasmatic 
and granular proteins, which can capture and 
kill pathogens [83]. NETs are considered to be 
a significant apparatus of innate immune sys-
tem against pathogens, but also related to 
autoimmunity, chronic inflammation and can-
cer pathophysiology [84]. Tsung A et al. report-
ed that NETs formation increases in NASH-
related HCC. Inhibiting the NETs formation 
through deoxyribonuclease (DNase), the subse-
quent inflammation pattern of the liver was 
changed, resulting in a decrease in the number 
and volume of tumors [85]. In viral hepatitis 
models, activated platelets contribute to hepat-
ic injury mediated by cytotoxic T lymphocyte 
(CTL) [86]. In addition, blocking platelet activa-
tion and aggregation eliminates the influx of 
hepatic T cells and subsequent liver injury and 
tumorigenesis, without affecting the function of 
peripheral T cells in viral hepatitis [86]. Heiken- 
walder M et al. reported that the number of 
platelets and platelet aggregates in the liver of 
mice fed with high fat diet and NAFLD/NASH 
patients increased significantly [87]. Aspirin-
clopidogrel (Asp-Clo) therapy can inhibit the 
infiltration of immune cells in the liver and fur-
ther inhibit NASH and NASH-induced HCC [88]. 
Kupffer cells, a special macrophage of the liver, 
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play a key role in platelet aggregation in the 
liver [89]. Kupffer cells can “dock” with GPIbα, 
a glycoprotein on the surface of platelet mem-
brane [90]. When GPIbα was blocked, liver 
inflammation was improved. It is inferred that 
blocking GPIbα can reduce NASH-reduced HCC 
[87]. Previous studies have confirmed that pro-
tein tyrosine phosphatase (PTP) is extensively 
oxidized and inactivated in obese mice with 
NAFLD [89]. T cell protein tyrosine phospha-
tase (TCPTP) plays a key role in the immune 
system and is considered as a negative regula-
tor of inflammation [91]. TCPTP is a negative 
regulator of STAT family proteins, the oxidation 
of TCPTP promotes the phosphorylation of sig-
nal transducer and activator of transcription 
(STAT) family proteins, including STAT-1, STAT-3, 
and STAT-5 [92, 93]. Gurzov et al. found that 
TCPTP oxidized significantly in the liver of 
NAFLD patients and obese mice [89]. Further 
study demonstrated that TCPTP inactive results 
the recruitment of immune cells (especially 
CD4+ and CD8+ T cell) in the liver and promotes 
the expression of fibrosis genes (encoding 
a-smooth muscle actin (ACTA2) and transform-
ing growth factor β (TGFβ) [94]. These patho-
logical changes contribute progression from 
NAFL to NASH and eventually lead to liver fibro-
sis and even cirrhosis. This fibrosis/cirrhosis 
liver may contain HCC progenitor cells, which 
can suffer malignant transformation and prog-
ress to HCC.

Gut microbiota

Intestinal barrier consists of intact epithelial 
lining, mucus layer, Paneth and goblet cells, 
mucosa-associated lymphoid tissue and a 
number of secreted factors, and is a highly 
dynamic system. It is well known that gut micro-
biota plays a critical role in health maintenance 

and disease progression [95]. Liver is directly 
exposed to intestinal microbial components 
and metabolites through portal vein (the gut-
liver axis), which are known closely related to 
HCC [96]. Analysis of the gut microbial profil- 
es of DMBA-treated mice show that HFD-fed 
mice exhibited a prominent increase in Gram-
positive gut microbiota in their feces [97]. lipo-
teichoic acid (LTA), a major cell wall component 
in Gram-positive gut microbial component, 
translocates to the liver to form a carcinogenic 
microenvironment and promote obesity-in- 
duced HCC. LTA cooperates with the gut micro-
bial metabolite deoxycholic acid (DCA) to 
enhance the senescence hepatic stellate cells 
(HSC) and increase the expression of senes-
cence-associated secretory phenotype (SASP) 
and cyclooxygenase-2 (COX-2) through Toll-like 
receptor 2 (TLR2). COX-2 induces the elevation 
of prostaglandin E2 (PGE2), which binds to 
PTEP4 receptor to inhibit the anti-tumor immu-
nity and promote the development of obesity-
associated HCC [98].

Conclusion

NAFLD is common global epidemic and is as- 
sociated with a variety of health-related compli-
cations, one of which is elevated frequency of 
cancer. Increasing evidence suggests that 
NAFLD, especially NASH, contributes to the 
HCC development in recent years (Table 1). 
Although the new cellular and molecular mech-
anisms leading to NAFLD-related HCC have 
been revealed in recent studies. No effective 
target has yet been found to control the transi-
tion from NAFLD to HCC. More importantly, we 
should pay more attention to whether there are 
“multiple types” of NAFLD, one or several of 
which are more likely to be converted to HCC 
and whether there are sensitive and specific 

Table 1. Application of gene knockout mouse model in NASH associated HCC
Authors Model Comments/Outcomes
Kodama T et al., 2018 Liver specific PTEN-KO ↑ Lipid accumulation, apoptosis, fibrogenesis and hepatocarcinogenesis vs WT mice

Wu Y et al., 2018 liver-specific IRE1α KO ↓ Hepatocyte proliferation, ↑ Hepatic apoptosis, TNF and IL-6 vs WT mice

Chong YC et al., 2019 liver-specific IHH-KO ↓ Stellate cells activation, Epcam+ ductal cells proliferation and fibrosis vs WT mice

Sun H et al., 2018 liver-specific CCRK-KO ↑ Lipid accumulation, glucose intolerance and insulin resistance vs WT mice

Tsung A et al., 2018 Whole body PAD4 KO ↓ Neutrophil extracellular traps formation, liver inflammation, tumor growth vs WT mice

Weber A et al., 2019 Whole body GPIbα KO ↓ Platelet cargo, platelet adhesion and platelet activation vs WT mice

Tiganis T et al., 2018 liver-specific PTPN2-KO ↑ T cell recruitment, fibrosis and tumor formation vs WT mice

Loo TM et al., 2017 Whole body TLR2 KO ↓ Secretory phenotype of hepatic stellate cells and tumor formation vs WT mice
↑ Increased; ↓ decreased; KO knockout; PTEN phosphatase and tensin homolog; IRE1α inositol-requiring enzyme 1; IHH Indian hedgehog; CCRK cell cycle-related kinase; 
PAD4 peptidyl arginine deaminase type 4; GPIbα platelet membrane glycoprotein 1b-α; PTPN2 ; TLR2 toll-like receptor 2.
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biomarker to predict the transition. In addition, 
we also need to pay attention to the disease 
course and treatment response of “different 
types” of NAFLD-related HCC. Resolving these 
problems will not only reduce the incidence of 
NAFLD-related HCC, but also help clinicians to 
personalize the treatment of NAFLD-related 
HCC patient.
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