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Abstract: Objectives: Multiple sclerosis (MS) is a chronic inflammatory demyelinating iliness of the CNS that requires
novel therapeutic targets and safety evaluations. This study aims to identify novel therapeutic protein targets for
multiple sclerosis and evaluate possible side effects of druggable proteins. Methods: Causal links between MS risk
and plasma proteins were explored by conducting a comprehensive proteome-wide MR analysis. The proteomic
data were taken from the UK Biobank Pharma Proteomics Project (UKBPPP) and included 2,940 plasma proteins.
Genetic data for MS were obtained from the Finnish database and the International Multiple Sclerosis Genetics Con-
sortium (IMSGC). Colocalisation analysis was performed to identify shared causal variants between MS and plasma
proteins. A phenome-wide association study (PheWAS) using the Finnish database was conducted to evaluate the
potential side effects of the druggable proteins. Single-cell RNA sequencing (scRNA-seq) data from the GSE138266
dataset was also used to explore gene expression patterns across different cell types. Results: Six plasma proteins
were identified with significant genetic correlations to an increased risk of MS and it was found that five of them -
AIF1, AGER, TNFRSF14, CD58 and EVI5 - shared genetic variants with MS. This suggests their potential as direct
therapeutic targets. PheWAS indicated the ability for these proteins to have adverse effects on other phenotypes
(Pfdr < 0.05). ROC analysis of gene expression data from the GEO datasets (GSE131282, GSE21942) showed these
proteins to have high diagnostic value, with AGER, AIF1, EVI5 and TNFRSF14 all displaying AUC values that were
greater than 0.7. Single-cell RNA sequencing analysis revealed differential expressions of these key genes across
various immune cell types, thereby highlighting their involvement in MS immunoregulation. Conclusions: This study
explored the causal connections between MS and five plasma proteins, identifying possible treatment targets.

Keywords: Multiple sclerosis, plasma proteins, phenome-wide association study, Mendelian randomisation, single-
cell RNA sequencing

Introduction have the highest prevalence rates with res-
pective cases of 108 and 140 per 100,000
people, while sub-Saharan Africa and Asia have

respective rates of 2.1 and 2.2 per 100,000

Multiple sclerosis (MS) is a chronic autoim-
mune disorder of the CNS marked by axonal

loss, inflammation, and demyelination [1]. MS
often manifests in adults aged between 20 and
40 and women are 2-3 times more frequently
affected than men - this trend appears to be
increasing on a global scale [2, 3]. The global
median prevalence of the disorder is 33 per
100,000 individuals, but there are notable
regional variations. Europe and North America

people, which are the lowest [4].

The diagnosis of MS is currently based on the
2017 McDonald criteria, which emphasize dis-
semination in space and time of CNS lesions on
clinical and MRI evaluation, supplemented by
cerebrospinal fluid analysis when required [5].
Clinically, MS typically presents with optic neuri-

https://doi.org/10.62347/LLNA4571


http://www.ijcem.com
https://doi.org/10.62347/LLNA4571

Therapeutic targets for multiple sclerosis

tis, motor and sensory deficits, ataxia, fatigue,
and cognitive impairment, reflecting the multi-
focal nature of CNS demyelination [6, 71].

The pathophysiologic mechanisms of MS in-
volve a multifaceted interaction between ge-
netic, environmental and immunological fac-
tors [8]. The disruption of the blood-brain barri-
er (BBB) is central to MS pathology and this
enables the penetration of the CNS by im-
mune cells including T and B lymphocytes.
Inflammatory responses and demyelination are
then initiated by them [9, 10]. Microglia and
macrophages are resident immune cells in the
CNS and they are essential for lesion formation
and the neurodegeneration procedure as they
release pro-inflammatory cytokines, ROS and
glutamate. These are contributors to axonal
damage and neuronal death [11, 12].

Existing therapeutic options for MS focus most-
ly on immunomodulation and immunosuppres-
sion and they have served to improve disease
management through the reduction of the
severity and frequency of relapses and slowing
disease development [13]. Current disease-
modifying therapies (DMTs), including inter-
feron-B, glatiramer acetate, oral agents (e.g.,
fingolimod, dimethyl fumarate, teriflunomide),
and monoclonal antibodies (e.g., natalizumab,
ocrelizumab, alemtuzumab), can reduce re-
lapse rates and delay disability progression,
particularly in relapsing-remitting MS [3, 14,
15]. Nevertheless, their efficacy in progressive
MS remains limited, long-term use is associat-
ed with substantial adverse effects, and they
mainly target inflammatory processes without
adequately addressing neurodegeneration [16,
17]. As a result, MS remains incurable, and
prognosis varies considerably depending on
disease subtype and treatment response [18].

MR (Mendelian randomisation) analysis has
gained traction recently as a powerful method
for finding new therapeutic targets and re-
purposing existing drugs [19]. Specific single
nucleotide polymorphisms (SNPs) that are
located on chromosomes are instrumental in
protein expression control and have been iden-
tified by GWAS (genome-wide association stud-
ies). These SNPs correspond to protein expres-
sion levels and are known as pQTLs (protein
quantitative trait loci) [20]. MR leverages these
pQTLs as essential variables, allowing resear-
chers to examine the cause-and-effect links
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that exist between exposures and outcomes.
This is invaluable in terms of new drug target
and biomarker identification [21, 22].

MR provides a more reliable assessment of
causality than traditional observational studies
by mitigating the influence of confounding vari-
ables [23]. The integration of phenome-wide
association studies (PheWAS) also enables the
prediction of adverse reactions related to these
targets [24]. Plasma proteins that are essen-
tial for several processes such as transport,
signalling, repair, growth and immune respons-
es often become dysregulated in various dis-
eases, which makes them prime drug deve-
lopment candidates. While pursuing new MS
treatments, a thorough proteome-wide MR stu-
dy was conducted to identify promising thera-
peutic targets [25].

The approach began with a two-sample MR
study to evaluate a causative role played by
plasma proteins in MS. The credibility of the
results was then confirmed by colocalization
analyses. Finally, the potential adverse effects
of the known proteins that could be targeted
for MS treatment were assessed by utilising
PheWAS.

Methods

Approval of research ethics and study blue-
print

This study collected comprehensive GWAS su-
mmary statistics from original investigations,
all of which were conducted with the informed
consent of participants. Aggregated statistical
data were used, which negated the need for
any additional ethical approval.

Inclusion criteria were as follows: (1) plasma
protein pQTLs reaching genome-wide signifi-
cance (P <5 x 10%8); (2) cis-pQTLs located with-
in 1 Mb of the corresponding gene region; (3)
independent SNPs selected using LD clumping
(r*> < 0.001, 10,000 kb); (4) instrumental vari-
ables with F-statistics > 10 to minimize weak
instrument bias; (5) GWAS summary data for
multiple sclerosis obtained from large, well-cha-
racterized cohorts (FinnGen R10 and IMSGC).

Exclusion criteria included: (1) trans-pQTLs lo-
cated outside the +1 Mb window of the target
gene; (2) SNPs failing quality control (e.g., low
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imputation quality, ambiguous alleles); (3) plas-
ma proteins or phenotypes without valid in-
strumental variables; (4) duplicated samples
or datasets without clear case-control classifi-
cation.

Characterisation of plasma protein QTLs

pQTLs data was taken from the UK Biobank-
PPP and this included proteomic data from
54,219 individuals (https://www.synapse.org/
#ISynapse:syn51365303). Meticulous map-
ping was performed for 2,940 proteins [26].
pQTLs are typically situated near their respec-
tive genes, which are known as “cis-pQTLs”,
which suggests a regulatory effect via the proxi-
mate gene [27]. In contrast, “trans-pQTLs” are
located further away or on different chromo-
somes and are presumed to exert effects
through other genes. The distinction between
cis- and trans-pQTLs often hinges on set dis-
tance thresholds, which are commonly 500 kb
or 1,000 kb [28-30].

For this study, specific selection criteria for
pQTLs were applied as follows: (1) only cis-
pQTLs within +1 Mb of the gene region were
considered to ensure biological plausibility; (2)
SNPs were required to achieve genome-wide
significance (P < 5 x 10%); (3) independent va-
riants were selected using LD clumping with r?
< 0.001 and a genetic distance of 10,000 kb;
(4) instrumental variables with F-statistics > 10
were retained to minimize weak instrument
bias [19].

Genetic association data for multiple sclerosis

Genetic data for multiple sclerosis was taken
from the R10 release of the Finnish database
(https://r10.finngen.fi/). This dataset included
488 patients and 364,071 controls [31]. The
dataset of the IMSGC (International Multi-
ple Sclerosis Genetics Consortium) included
68,374 control participants and 47,429 MS
patients [32].

Conducting MR analysis

AS was used as the result and plasma pro-
teins as the exposure for a two-sample MR
analysis. The pQTLs were chosen based on
the previously specified criteria. R package
“TwoSampleMR” (version 0.6.0) was used for
analysis, the IVW method was applied for mul-
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tiple SNPs and the Wald ratio was used for sin-
gle SNP scenarios [19]. P-values were adjusted
for numerous tests using the false discovery
rate (FDR) approach - Pfdr < 0.05 denoted sta-
tistical significance.

Analysis of colocalisation

The aim of colocalization analysis is ascer-
taining shared genetic variants that influence
exposure and outcome, further corroborating
MR findings. For proteins that have positive MR
outcomes, SNPs within a +1 MB window of
the gene (cis-pQTLs) were scrutinised for their
colocalization with multiple sclerosis [33]. Five
hypotheses were tested in colocalization analy-
sis in order to determine whether SNPs are
related to the protein, the disease, both or nei-
ther. The focus of this study was on genes with
a combined posterior probability (PPH3+PPH4)
> 0.8 due to the limited power of colocalization
analyses [34].

Phenome-wide association analysis

PheWAS is the inverse of GWAS and is used to
discern links between phenotypes or SNPs and
a broad spectrum of phenotypic traits [13]. This
methodology is particularly useful for identify-
ing drug target side effects [22]. The focus of
this study was on plasma proteins with positive
MR outcomes as the exposure and the same
criteria were maintained for instrumental vari-
ables. The outcome used phenotypic data
from the Finnish database R10 version, which
included 2,272 phenotypes across 46 catego-
ries, to conduct a comprehensive phenome-
wide MR analysis. A Pfdr < 0.05 was an indica-
tor of statistical significance.

GEO data download

The datasets (GSE131282, GSE21942) were
acquired from the NCBI website. GSE131282
had 184 grey matter, which included 42 heal-
thy controls and 142 MS patients [35]. The
GSE21942 dataset consisted of 12 patients
with peripheral blood samples and 15 healthy
controls [36].

Receiver Operating Characteristic (ROC) analy-
sis

The “pROC” package was used to assess the
diagnostic values and learn the possible clini-
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cal relevance of important genes. The area
under the ROC curve (AUC) is an essential part
of this analysis and this was calculated meticu-
lously. The training dataset was GSE131282
and the testing dataset was GSE21942. AUC
values of greater than 0.7 represented high
diagnostic significance.

Quality control of single-cell datasets

All multiple sclerosis (“Multiple Sclerosis, mul-
tiple sclerosis, multiple sclerosis, multiple scle-
rosis, single-cell (scRNA-seq) dataset GSE-
138266. MS”) from the expression of the
matrix was imported by using the “Create-
SeuratObject” function of R package Seurat
(Version 4.3.0) to create the Seurat object of
the samples. Parameters were set to genes
that were expressed in at least 3 cells and at
least 200 genes expressed in each cell. Use
the nCount RNA (Unique Molecular ldentifier,
UMI) is more than 500, greater than 200 nFea-
ture RNA, Logl0 (genes per UMI) is greater
than 0.8, mitochondrial Genes accounted for
(mitoRatio) is less than 0.05 for the filter,
removing low quality of the cell. After quality
control was performed, the cells were statisti-
cally analysed to calculate changes in the num-
ber of cells both before and after filtration. The
sequencing depth of the scRNA-seq dataset
GSE138266 was normalised by the “Normali-
zeData” function. The normalisation method
was “LogNormalize”. The “vst” method of the
“FindVariableFeatures” function was used to
identify the hypervariable genes in the dataset.
The “ScaleData” function of the data was then
used to zoom in and rule out the influence of
sequencing depth.

Double cells are due to the experiment, in the
unicellular microfluidic process such as a drop-
let containing two or more cells, and in the
same cell in the subsequent analysis of droplet
Cell with the same Barcode, which can be con-
sidered as a pseudo cell. The main characteris-
tic of these pseudo-cells is that the number of
UMI and genes that is detected is often two or
more times more than that of normal cells.
They also may carry classic marker genes of dif-
ferent cell types, thereby hindering cell type
identification. The “scDblFinder” function of R
package (Version 1.12.0) was used to evaluate
each cell score of the double cells and identify
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whether for the cells and will double filtering
cells.

Principal component analysis (PCA) was used
to find the significant principal component (PC)
and the “Elbowplot” function was used to visu-
alise the standard deviation distribution. 40
PCs were chosen for Uniform Manifold Appro-
ximation and Projection (UMAP) analysis for
dimension reduction. The “FindNeighbors” fun-
ction was used for creating the k-nearest neigh-
bours of the Euclidean distance in the base
PCA space with 40 principal component (PC)
dimension parameters.

Cell clustering and cell type annotation

R package Seurat (Version 4.3.0) was used to
import the Seurat objects of the data quality
and standardised single-cell Rna-Seq (scRNA-
seq) dataset GSE138266. For possible batch
effect between samples, using R package har-
mony (Version while) “RunHarmony” function in
data integration and effect to batch process-
ing, and under the resolution of 0.8 cells can be
divided into different clustering.

By ScType algorithm, using specific marker
genes from single-cell transcriptome data auto-
matic cell type identification. Data sets of sin-
gle-celled (scRNA - seq) cell type annotation,
identification of cell types. The stacked bar
chart was used to display the cell proportion of
each cell type in all the samples and the rela-
tionship between cell type and clustering was
then analysed.

Expression of key genes in each cell type

The expression differences of five key genes
(AIF1, AGER, TNFRSF14, CD58 and EVI5) in
various cell types in the single-cell Rna-Seq
dataset GSE138266 were explored. The Fea-
turePlot function Feature the Plot was used for
mapping, and violin plots were used to show
Key Genes’ (Key Genes) expression level in dif-
ferent cell types.

Observation indicators and evaluation meth-
ods

The observation indicators of this study and
their evaluation methods were as follows: (1)
Proteome-wide MR analysis - the primary indi-
cator was the causal association between plas-
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Exposure: UK Biobank Pharma Proteomics Project database

Outcome:Finnish database

3 proteins

Outcome: IMSGC database

31 proteins

AGER, AIF1, CD58, EVIS, TNFRSF14

Colocaliztion Analysis Phewas Analysis

Figure 1. Flowchart of the study design.

ma protein levels and MS risk, assessed using
a two-sample MR framework. The IVW method
was applied when multiple SNPs were avail-
able, and the Wald ratio was used for single
SNPs. (2) Colocalization analysis - shared caus-
al variants between plasma proteins and MS
were evaluated using Bayesian colocalization,
with PPH3+PPH4 > 0.8 considered as strong
evidence. (3) Phenome-wide association study
(PheWAS) - associations of identified proteins
with 2,272 phenotypes from the FinnGen data-
base were examined, with statistical signifi-
cance defined as Pfdr < 0.05 after FDR correc-
tion. (4) Validation in GEO datasets - ROC curve
analysis (using the “pROC” package) was per-
formed to evaluate the diagnostic performan-
ce of key genes in MS. The AUC value was
used as the primary diagnostic indicator, with
GSE131282 as the training set and GSE21942
as the testing set. (5) Single-cell RNA sequenc-
ing analysis - the observation indicators includ-
ed cell-type-specific expression patterns of the
five key genes (AIF1, AGER, TNFRSF14, CD58,
and EVI5). These were evaluated through clus-
tering, cell type annotation, and visualizations
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|

ROC Analysis

Single cell Analysis

including FeaturePlot, violin plots, and bubble
charts.

Results

The schematic plot of the project is shown in
Figure 1.

Plasma proteins related to multiple sclerosis

After the stringent instrumental variables
screening criteria of the study were applied,
1,280 plasma proteins were subsequently
included in the MR analysis of the Finnish da-
tabase. Eight plasma proteins (Supplementary
Table 1) were found to have causal relation-
ships with MS in the MR analysis based on
Wald or IVW ratio outcomes (Pfdr < 0.05) in the
subset of 1,280 plasma proteins. 36 plasma
proteins related to multiple sclerosis were
found in the IMSGC database by MR analysis
based on Wald or IVW ratio outcomes (Pfdr <
0.05) (Supplementary Table 2). The results
from the Finnish database and the IMSGC da-
taset were intersected for determining proteins
that were linked to multiple sclerosis in both
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Figure 2. Volcano plot of MR results: Causal relationship between plasma proteins and multiple sclerosis (A) Finn-
gen database, (B) IMSGC database. (C) Venn diagram: Intersection of plasma proteins in two datasets. IMSGC:

International Multiple Sclerosis Genetics Consortium.

datasets. Five plasma proteins are shown in
the Venn diagram: AIF1 (allograft inflammatory
factor 1), AGER (advanced glycosylation end
product-specific receptor), TNFRSF14 (tumour
necrosis factor receptor superfamily member
14), CD58 (CD58 molecule) and EVI5 (ecotropic
viral integration site 5). The following are the
odds ratios and 95% confidence intervals for
these plasma proteins in the Finnish data-
base: AGER 2.84 (95% Cl: 1.91-4.23), AIF1
3.03 (95% Cl: 1.81-5.05), CD58 2.00 (95% Cl:
1.51-2.66), EVI5 0.30 (95% CI: 0.19-0.46) and
TNFRSF14 0.40 (95% Cl: 0.25-0.66). The fol-
lowing are the odds ratios and 95% confidence
intervals for the plasma proteins in the IMSGC
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database: AGER 4.19 (95% CI: 2.14-8.20), AIF1
10.72 (95% Cl: 8.00-14.37), CD58 2.27 (95%
Cl: 1.73-2.97), EVI5 0.38 (95% Cl: 0.30-0.49)
and TNFRSF14 0.43 (95% CI: 0.32-0.57). More
information is shown in Figures 2 and 3.

Sensitivity analysis for plasma proteins related
to MS

Gene colocalization analysis was performed for
these five plasma proteins within a range of +1
MB upstream and downstream of their respec-
tive genes as a means of investigating poten-
tial connections with MS. From the findings, it
was suggested that a causative mutation in
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AExposure No.of SNP  Method Finngen OR(95% CI) P_fdr
AGER 2 VW | b2 84 (191 t04.23) 0.000
AIF1 1 Wald ratio I > 303 (1.81t05.05) 0.005
CDs8 3 IVW : i 2.00(1.51t02.66) 0.001
EVI5 1 Wald ratio = ! 0.30(0.19t0 0.46) 0.000
TNFRSF14 1 Wald ratio = " 0.40(0.25t0 0.66) 0.036

01 2 3 4

BExposure No.of SNP  Method IMSGC OR(95% CI) P _fdr
AGER 2 IVW | Pty 419(2.14 to 8.20) 0.006
AIF1 1 Wald ratio : b 10.72 (8.00 to 14.37) 0.000
CD58 3 IVW | 227(173t0297)  0.000
EVI5 1 Wald ratio # 0.38(0.30t00.49)  0.000
TNFRSF14 1 Wald ratio # 043(032t00.57)  0.000

0246281012

Figure 3. Forest plot of the MR results: Effects of 5 plasma proteins on multiple sclerosis (A) Finngen database, (B)
IMSGC database. Cl: confidence interval; OR: odds ratio; IMSGC: International Multiple Sclerosis Genetics Consor-

tium.

this region (PPH3+PPH4 > 0.8) could be shared
by all potential plasma proteins. Comprehensive
details are presented in Supplementary Table
3. This implies that all five plasma proteins may
be useful therapeutic targets for MS.

Phenome-wide association analysis for 5
plasma proteins related to MS

A phenome-wide association analysis was con-
ducted and 2,408 phenotypes were screened
across 45 categories from the Finnish data-
base (version R10) to assess the potential
positive or negative impacts of the five plasma
proteins that were linked to MS on other pheno-
types. Noteworthy causal relationships were
observed between AGER and 53 phenotypes
(Pfdr < 0.05), AIF1 and 120 phenotypes (Pfdr <
0.05), CD58 and 2 phenotypes (Pfdr < 0.05),
EVI5 and 7 phenotypes (Pfdr < 0.05) and
TNFRSF14 and 19 phenotypes (Pfdr < 0.05).
More details are provided in Figure 4. These
phenotypes may have harmful consequences
on the target protein or they could serve as
therapeutic targets.
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Validate the role of plasma proteins in MS

The GEO dataset was used for validating the
role of these protein-coding genes in MS. The
GSE131282 dataset was used as the training
dataset and these results were obtained from
ROC analysis: AGER (AUC = 0.812), AIF1 (AUC =
0.626), CD58 (AUC = 0.723), EVI5 (AUC =
0.765) and TNFRSF14 (AUC 0.777). The
GSE21942 dataset was used as a test dataset
for the validation of the diagnostic value of
these five plasma proteins and the following
results were yielded: AGER (AUC = 0.879), AIF1
(AUC = 0.795), CD58 (AUC = 0.438), EVI5 (AUC
= 0.769) and TNFRSF14 (AUC = 0.717) (Figure
5).

Quality control of single-cell datasets

The data quality had to be integrated and con-
trolled in order to guarantee that the following
analysis was founded on the best quality data.
The expression matrices of all multiple sclero-
sis (MS) samples in the single-cell (scRNA-seq)
dataset GSE138266 were imported and then
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Figure 4. Manhattan plot of result of PheWAS analysis of associations between 5 plasma proteins and other disease

outcomes.

created as Seurat objects using the “Create-
SeuratObject” function of R package Seurat.
The parameter was set to at least three cells in
each cell of the expression of genes and at
least 200 gene expressions.

Using nCount RNA (UMI) is greater than 500,
greater than 200 nFeature RNA, Log,, (Genes
per UMI) is greater than 0.8, (mitoRatio) is less
than 0.05 of mitochondrial Genes accounted
for the filter, removing low quality of the cell.
Map nCount RNA (UMI) violin shows a single
cell detected the number of RNA sequencing
Reads (Supplementary Figure 1A), which is
used to measure RNA expression level in every
cell. The higher the cell number of Reads, the
higher the RNA expression level in that cell.
The nFeature RNA violin plot shows the num-
ber of unique genes found in a single cell
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(Supplementary Figure 1B) and the diversity of
genes expressed in each single-cell sample.

The more unique genes detected in a cell, the
richer the RNA sequencing data for that cell
was. The Log,  (genes per UMI) violin diagram
shows each UMI detected gene (Supplemen-
tary Figure 1C). UMI is used for distinguishing
the same sequence in the RNA sequencing of
identifier, Log, , (Genes per UMI) value is higher,
on behalf of the detected under the same num-
ber of UMI gene number, the more reflect the
diversity of gene expression in cells. Map (mito-
Ratio) of mitochondrial genes accounted the
violin show mitochondrial genes accounted
for (Supplementary Figure 1D), mitochondrial
genes can affect the accuracy of the data in the
cells. The density diagram shows the distribu-

tion of the above data (Supplementary Figure
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Figure 5. ROC validation of the diagnostic effects in multiple sclerosis dataset. A. Training dataset: GSE131282. B.
Testing dataset: GSE21942.

2A-D). Through double filtering, data integration tified as being a total of 15 cell types by the
and quality control, 19545 cells were selected ScType algorithm (Supplementary Figure 3C).

These cell types were classic mononuclear
Through the “NormalizeData” function of sin- cells (classical monocytes), initial CD4 + T cells
gle-cell (scRNA - seq) data set GSE138266 (naive CD4 + T cells), initial B cells (Naive B
sequencing depth for standardization, stan- cells), effect of CD4 + T cells (effector CD4 + T
dardization of methods for “LogNormalize”, The cells), plasma cells, dendritic cells (plasmacy-
“vst” method of the “FindVariableFeatures” toid dendritic cells), platelets, natural Killer
function was employed for identifying the cells, effect of CD8 + T cells (effector CD8 + T
hypervariable genes in the dataset. Principal cells), initial CD8 + T cells (naive CD8 + T cells),
component analysis (PCA) found important PCs atypical mononuclear cells (non-classical mo-
and 40 of them were then chosen for UMAP nocytes), CD8 + sample of NKT cells (CD8 +
analysis for dimensionality reduction. The NKT-like cells), myeloid dendritic cells, plasma
“FindNeighbors” function was used to create B cells, and progenitor cells. The 15 cell
the k-nearest neighbours of the Euclidean dis- types are presented in the stacked bar chart
tance in the base PCA space with 40 principal (Supplementary Figure 3D).

component (PC) dimension parameters.
Key gene expression of various cell types
Cell clustering and cell type annotation

“FeaturePlot” function was used to verify five

The “RunHarmony” function in R package har- Key Genes (AIF1, AGER, TNFRSF14, CD58,
mony single-celled (scRNA - seq) GSE138266 EVI5) of GSE138266 single-celled data sets
was used for data integration and data sets to with 15 kinds of cell types in the expression
processing of the batch effect, and for each Feature Plot (Figure 6). Then, the bubble chart
sample * clustering mapping (Supplementary was made to show the Key Genes expression in
Figure 3A). Then, under the resolution of 0.8, the 15 types of cells (Figure 7).

cells could be divided into different clustering.

Each sample cell’s clustering was mapped out Discussion

(Supplementary Figure 3B). The results show

that 19,545 cells were divided into 22 clusters This study used Mendelian randomisation an-
under the resolution of 0.8 and they were iden- alysis as a means of identifying significant

280 Int J Clin Exp Med 2025;18(11):272-286



Therapeutic targets for multiple sclerosis

A AF1 B AGER C  TNFRSF14
15 15 15
10 10 10
4 10.0 ot 4
Qs 4 I3 N 5 75 o5 !3
" - 2 g 50 = d 2
=1 1 =} 2 1
0 0 0 25 0 0
-1 0.0
-5 =5 -5
-10 -10 -10
-10 0 -10 -10
UMAP1 UMAP1 UMAP1
D cpss E Evs
15 15
Figure 6. Feature plot of Key
e ° Genes expression in different cell
5 2 B o 100 types: Expression of Key Genes
g 6 g :5 AIF1 (A), AGER (B), TNFRSF14
3 4 : 3 . i (C), CD58 (D), EVI5 (E) in 15
0 00 cell types in scRNA-seq dataset
. 5 GSE138266 Feature Plot. UMAP:
Uniform Manifold Approximation
-10 ~10 and Projection.
-10 o] -10
UMAP1 UMAP1
Progen further substantiated by sensi-
rogenitor cells . .
Plasma B calls t|V|Fy analxses and cplopall—
NOTEIN | zation studies. These findings
Non-classial monocytes ° | | Percent Expressed provide new perspective on

CD8+ NKT-like cells
Effector CD8+ T cells

Naive CD8+ T cells
Platelets

Plasmacytoid Dendritic cells
Natural killer cells

Naive B cells

Effector CD4+ T cells
Memory CD4+ T cells °
Classical Monocytes

Naive CD4+ T cells

AIF1
AGER
TNFRSF14
CDs8

Figure 7. Bubble plot of expression of Key Genes in 15 cell types in scCRNA-
seq dataset GSE138266. The abscissa represents the Key Genes, the ordi-
nate represents the cell type, the bubble size represents the percentage of
expression, and the bubble color represents the average expression level.

associations between five key plasma proteins
(AGER, AIF1, CD58, EVI5 and TNFRSF14) and
MS. Strong causal relationships were found
between these proteins and MS in two inde-
pendent datasets, the Finnish and IMSGC data-
bases. Their therapeutic target potential was
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EVI5

o0 the molecular processes un-

® 25
® 5 derlying MS and imply that
: 0 these plasma proteins may be-

come therapeutic targets or
novel biomarkers for the dis-
ease. The robust statistical
significance of these findings
highlights their clinical rele-
vance while also paving the
way for future research and
therapeutic development.

Average Expression

Our findings can be compared
with those of a recent MR
study that identified potential
drug targets for MS using plas-
ma and CSF proteins (FCRL3,
TYMP, AHSG, MMEL1, SLAMF7,
and CD5L) [37]. In that re-
port, several proteins such as
FCRL3, TYMP, and SLAMF7 demonstrated pro-
tective associations with MS, while MMEL1
increased MS risk. In contrast, our study high-
lighted different targets (AGER, AIF1, CD5S,
EVI5, and TNFRSF14), that were consistently
supported across both the Finnish and IMSGC
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cohorts. The differences may arise from dis-
tinct proteomic datasets, the inclusion of
scRNA-seq data in our study, and variations in
analytical design. Importantly, the convergence
of findings from both studies underscores that
multiple immune-related proteins may play
causal roles in MS pathogenesis, suggesting
that complementary therapeutic strategies
could be explored.

Furthermore, while the previous study incorpo-
rated CSF proteins, our study focused on plas-
ma proteins combined with single-cell tran-
scriptomic validation, thereby providing addi-
tional insight into the cell-type-specific expres-
sion patterns of candidate targets. This inte-
grative approach highlights not only their genet-
ic associations but also their functional rele-
vance in immune regulation at the cellular level,
which may enhance the translational potential
of our findings.

AGER is a multi-ligand receptor that has been
implicated in a variety of pathologic conditions
by the role it plays in mediating inflammatory
responses [38, 39]. In the context of MS, AGER
binds to AGEs (advanced glycation end prod-
ucts), which triggers a cascade of pro-inflam-
matory signals that activate NF-kB and produce
ROS and cytokines [40, 41]. This process con-
tributes to the chronic inflammation and neuro-
nal damage characteristic of MS, thereby pro-
moting the autoimmune destruction of myelin
sheaths in the CNS [42, 43]. The significant
association between AGER and MS suggests
its use as a diagnostic biomarker, which could
enable the early detection and better monitor-
ing of the disease. Elevated levels of AGER or
its ligands could be indicators of heightened
disease activity, which may guide therapeutic
intervention.

AIF1 is a 17-kDa protein predominantly ex-
pressed in microglia and macrophages that is
upregulated in a variety of inflammatory condi-
tions. In functional terms, AIF1 enhances the
activation, proliferation and migration of mac-
rophages and T cells, thereby contributing to a
pro-inflammatory environment. In EAE (experi-
mental autoimmune encephalomyelitis), which
is @ mouse model for MS, AlF1-deficient mice
exhibit reduced disease severity, marked by
lower CNS leukocyte infiltration, demyelination
and pro-inflammatory cytokine production [44,
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45]. This suggests that AIF1 promotes en-
cephalitogenic CD4 T cell activation and ex-
pansion, facilitating their infiltration into the
CNS and exacerbating inflammation. In clinical
terms, targeting AIF1 could provide a therapeu-
tic avenue for MS. The inflammatory response
could be reduced, T-cell proliferation could be
limited and microglial activation could be
decreased by inhibiting AIF1 expression or
function [46]. This may lead to the development
of diagnostic markers or treatment strategies
that modulate AIF1 activity, improving MS
patient outcomes.

The cell adhesion molecule CD58, which is
more commonly referred to as lymphocyte
function-associated antigen 3 (LFA-3), is mostly
expressed in B cells and antigen-presenting
cells (APCs). Its main function is to bind to CD2
on T cells, which strengthens the adhesion
between T cells and APCs and enhances T cell
activation [47]. The CD58 gene is associated
with protective and risk alleles with MS. Higher
CD58 expression is linked to the protective
allele and this increases the regulatory T cell
(Treg) function that is essential for the mainte-
nance of immunological tolerance and reducing
autoimmune responses [48]. Conversely, the
risk allele causes decreased CD58 expression,
thereby impairing Treg function and contribut-
ing to the autoimmune attack on myelin sheaths
in the CNS [49].

EVI5 is a protein involved in the regulation of
cell cycle progression and mitosis that par-
ticularly influences the transition from the G2
phase to mitosis [50]. Recent studies have
highlighted its role in immune cell function,
specifically in T cell activation and proliferation
[51, 52]. Genetic variations in EVI5 have been
linked to a growing autoimmune disease risk,
suggesting that it plays a significant role in the
immune response [53]. EVI5 influences the
pathogenesis of MS by modulating T cell func-
tion and cytokine production, contributing to
the autoimmune attack on myelin sheaths in
the CNS [54]. This results in the inflammation
and neurodegeneration characteristic of MS.
Investigations have suggested that there is a
link between polymorphisms in the EVI5 gene
and higher MS susceptibility, thereby reinforc-
ing its possible use as a biomarker for the diag-
nosis and monitoring of the disorder [55, 56].
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The TNFRSF14 protein is also referred to as
herpes virus entry mediator (HVEM) and this
is essential for immune response modulation.
TNFRSF14 interacts with a variety of ligands,
which include LIGHT and BTLA, to balance sti-
mulatory and inhibitory signals in T cells [57].
This is essential for the prevention of excessive
immune responses and the maintenance of
immune homeostasis [58]. With MS, the role of
TNFRSF14 involves influencing T-cell activation
and cytokine production, which is a contributor
to the inflammatory environment that is often
seen in the disease [59]. Investigations have
found a link between TNFRSF14 polymorph-
isms and MS risk, particularly in people with
active human herpesvirus 6 (HHV-6) replica-
tion [60, 61], which suggests involvement of
TNFRSF14 in the viral mechanisms that exacer-
bate MS. It is an additional candidate disease
activity and progression biomarker.

Single-cell RNA sequencing and the GEO data-
set were used for the further validation of the
results of this study. All hub genes coding these
plasma proteins were found to have a good
diagnostic effect in the training dataset and all
genes in the test dataset also showed high
diagnostic effects, except CD58.

The key strengths of the study included using
MR design to minimise bias from reverse cau-
sality and potential confounders. It also includ-
ed cis-pQTLs that are able to increase the
strength of the evidence (cis-pQTL > trans-pQTL
> eQTL) and gene colocalization analyses to
enhance statistical efficiency and result validi-
ty. This investigation used scRNA-seq data for
the analysis of the expression of five key genes
(AIF1, AGER, TNFRSF14, CD58 and EVI5) across
various cell types. The results found signifi-
cant expression differences of these genes in
distinct cell types, particularly within immune
cells. This suggested that they play crucial roles
in MS immunoregulation. Complete phenotypic
association analysis enabled a thorough inves-
tigation of the side effects of potential thera-
peutics. It is hoped that other researchers will
use the PheWAS technique for examining the
adverse effects of pharmacologic targets to
expand the body of knowledge in the field.

However, this study has some shortcomings.
Firstly, the fact that all GWAS participants were
European may have impacted the generalisabil-
ity of its findings. Secondly, despite the fact
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that the UKB-PPP data included 2,940 plasma
proteins, the MR study only included 1,280
plasma proteins due to the instrumental vari-
able limitations. Thirdly, the investigation was
confined to cases where the combined posteri-
or association probability (PPH3+PPH4) was
greater than or equal to 0.8 due to colocaliza-
tion analyses having less power. Fourthly, real-
istic settings may make it impossible to supple-
ment animal and cell experiments, so these
trials perhaps should be included in further
studies in this field. Finally, this study used a
multiple regression analysis (MR) method to
search for causal connections between MS and
plasma proteins but did not use a genetics-led
drug target prioritisation method (priority index,
Pl) to prioritise less-explored targets.

Conclusion

This study has examined the causal link
between five plasma proteins (AIF1, AGER,
TNFRSF14, CD58 and EVI5) and MS to identify
new targets for MS therapy. It is hoped that
future research can examine these drug tar-
gets, their potential therapeutic strategies,
and the ways in which they might affect MS
treatment.
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Supplementary Table 3. Colocalization results for the five MS-associated plasma proteins within +1
Mb of their corresponding genes (PPH3+PPH4 > 0.8)

EVI5S coloc_res$summary
nsnps 8076
PP.HO.abf 8.62E-62
PP.H1.abf 6.99E-05
PP.H2.abf 1.04E-58
PP.H3.abf 0.083890148
PP.H4.abf 0.916039909

CD58 coloc_res$summary
nsnps 7552
PP.HO.abf 1.47E-110
PP.H1.abf 2.91E-03
PP.H2.abf 6.94E-110
PP.H3.abf 0.012765808
PP.H4.abf 0.984325889

AIF1 coloc_res$summary
nsnps 19823
PP.HO.abf 9.15E-175
PP.H1.abf 1.35E-135
PP.H2.abf 6.79E-40
PP.H3.abf 1
PP.H4.abf 9.65895E-39

TNFRSF14 coloc_res$summary
nsnps 9065
PP.HO.abf 7.87E-49
PP.H1.abf 6.97E-02
PP.H2.abf 6.63E-48
PP.H3.abf 0.58662422
PP.H4.abf 0.343703657

AGER coloc_res$summary
nsnps 25637
PP.HO.abf 3.94E-231
PP.H1.abf 6.15E-136
PP.H2.abf 6.41E-96
PP.H3.abf 1
PP.H4 .abf 1.67E-87
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Supplementary Figure 1. Violin plot of single-cell data quality control. (A-D) Single-celled (scRNA - seq) data sets
GSE138266 nCount RNA (UMI) (A), nFeature RNA (B), Log10 (Genes per UMI) (C), Mitochondrial genes accounted
for (mitoRatio) (D) the data of quality control chart on the violin. Red samples are multiple sclerosis (MS) samples.
MS, and Multiple Sclerosis; UMI: Unique Molecular Identifier.
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Supplementary Figure 2. Density plot of single-cell data quality control. (A-D) Single-celled (scRNA - seq) data sets
GSE138266 nCount RNA (UMI) (A), nFeature RNA (B), Log10 (Genes per UMI) (C), Data distribution density plot of
mitochondrial gene proportion (mitoRatio) (D). Red samples are multiple sclerosis (MS) samples. MS, and Multiple
Sclerosis; UMI: Unique Molecular Identifier.
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Supplementary Figure 3. Single-cell cluster and cell type annotation: A. Single-celled (scRNA - seq) data set
GSE138266 cells express situation UMAP graph in different samples. Different colors represent different samples.
B. UMAP map of cell expression in different cell clusters. Different colors indicate different clusters. C. Cell expres-
sion in different cell types of the UMAP figure. Different colors indicate different cell types. D. Single-celled (scRNA
- seq) data set GSE138266 cell percentage histogram in different samples. MS: Multiple Sclerosis; UMAP: Uniform
Manifold Approximation and the Projection.



