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Abstract: Objectives: Multiple sclerosis (MS) is a chronic inflammatory demyelinating illness of the CNS that requires 
novel therapeutic targets and safety evaluations. This study aims to identify novel therapeutic protein targets for 
multiple sclerosis and evaluate possible side effects of druggable proteins. Methods: Causal links between MS risk 
and plasma proteins were explored by conducting a comprehensive proteome-wide MR analysis. The proteomic 
data were taken from the UK Biobank Pharma Proteomics Project (UKBPPP) and included 2,940 plasma proteins. 
Genetic data for MS were obtained from the Finnish database and the International Multiple Sclerosis Genetics Con-
sortium (IMSGC). Colocalisation analysis was performed to identify shared causal variants between MS and plasma 
proteins. A phenome-wide association study (PheWAS) using the Finnish database was conducted to evaluate the 
potential side effects of the druggable proteins. Single-cell RNA sequencing (scRNA-seq) data from the GSE138266 
dataset was also used to explore gene expression patterns across different cell types. Results: Six plasma proteins 
were identified with significant genetic correlations to an increased risk of MS and it was found that five of them - 
AIF1, AGER, TNFRSF14, CD58 and EVI5 - shared genetic variants with MS. This suggests their potential as direct 
therapeutic targets. PheWAS indicated the ability for these proteins to have adverse effects on other phenotypes 
(Pfdr < 0.05). ROC analysis of gene expression data from the GEO datasets (GSE131282, GSE21942) showed these 
proteins to have high diagnostic value, with AGER, AIF1, EVI5 and TNFRSF14 all displaying AUC values that were 
greater than 0.7. Single-cell RNA sequencing analysis revealed differential expressions of these key genes across 
various immune cell types, thereby highlighting their involvement in MS immunoregulation. Conclusions: This study 
explored the causal connections between MS and five plasma proteins, identifying possible treatment targets.

Keywords: Multiple sclerosis, plasma proteins, phenome-wide association study, Mendelian randomisation, single-
cell RNA sequencing

Introduction

Multiple sclerosis (MS) is a chronic autoim-
mune disorder of the CNS marked by axonal 
loss, inflammation, and demyelination [1]. MS 
often manifests in adults aged between 20 and 
40 and women are 2-3 times more frequently 
affected than men - this trend appears to be 
increasing on a global scale [2, 3]. The global 
median prevalence of the disorder is 33 per 
100,000 individuals, but there are notable 
regional variations. Europe and North America 

have the highest prevalence rates with res- 
pective cases of 108 and 140 per 100,000 
people, while sub-Saharan Africa and Asia have 
respective rates of 2.1 and 2.2 per 100,000 
people, which are the lowest [4].

The diagnosis of MS is currently based on the 
2017 McDonald criteria, which emphasize dis-
semination in space and time of CNS lesions on 
clinical and MRI evaluation, supplemented by 
cerebrospinal fluid analysis when required [5]. 
Clinically, MS typically presents with optic neuri-
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tis, motor and sensory deficits, ataxia, fatigue, 
and cognitive impairment, reflecting the multi-
focal nature of CNS demyelination [6, 7].

The pathophysiologic mechanisms of MS in- 
volve a multifaceted interaction between ge- 
netic, environmental and immunological fac-
tors [8]. The disruption of the blood-brain barri-
er (BBB) is central to MS pathology and this 
enables the penetration of the CNS by im- 
mune cells including T and B lymphocytes. 
Inflammatory responses and demyelination are 
then initiated by them [9, 10]. Microglia and 
macrophages are resident immune cells in the 
CNS and they are essential for lesion formation 
and the neurodegeneration procedure as they 
release pro-inflammatory cytokines, ROS and 
glutamate. These are contributors to axonal 
damage and neuronal death [11, 12].

Existing therapeutic options for MS focus most-
ly on immunomodulation and immunosuppres-
sion and they have served to improve disease 
management through the reduction of the 
severity and frequency of relapses and slowing 
disease development [13]. Current disease-
modifying therapies (DMTs), including inter- 
feron-β, glatiramer acetate, oral agents (e.g., 
fingolimod, dimethyl fumarate, teriflunomide), 
and monoclonal antibodies (e.g., natalizumab, 
ocrelizumab, alemtuzumab), can reduce re- 
lapse rates and delay disability progression, 
particularly in relapsing-remitting MS [3, 14, 
15]. Nevertheless, their efficacy in progressive 
MS remains limited, long-term use is associat-
ed with substantial adverse effects, and they 
mainly target inflammatory processes without 
adequately addressing neurodegeneration [16, 
17]. As a result, MS remains incurable, and 
prognosis varies considerably depending on 
disease subtype and treatment response [18].

MR (Mendelian randomisation) analysis has 
gained traction recently as a powerful method 
for finding new therapeutic targets and re- 
purposing existing drugs [19]. Specific single 
nucleotide polymorphisms (SNPs) that are 
located on chromosomes are instrumental in 
protein expression control and have been iden-
tified by GWAS (genome-wide association stud-
ies). These SNPs correspond to protein expres-
sion levels and are known as pQTLs (protein 
quantitative trait loci) [20]. MR leverages these 
pQTLs as essential variables, allowing resear- 
chers to examine the cause-and-effect links 

that exist between exposures and outcomes. 
This is invaluable in terms of new drug target 
and biomarker identification [21, 22].

MR provides a more reliable assessment of 
causality than traditional observational studies 
by mitigating the influence of confounding vari-
ables [23]. The integration of phenome-wide 
association studies (PheWAS) also enables the 
prediction of adverse reactions related to these 
targets [24]. Plasma proteins that are essen- 
tial for several processes such as transport, 
signalling, repair, growth and immune respons-
es often become dysregulated in various dis-
eases, which makes them prime drug deve- 
lopment candidates. While pursuing new MS 
treatments, a thorough proteome-wide MR stu- 
dy was conducted to identify promising thera-
peutic targets [25].

The approach began with a two-sample MR 
study to evaluate a causative role played by 
plasma proteins in MS. The credibility of the 
results was then confirmed by colocalization 
analyses. Finally, the potential adverse effects 
of the known proteins that could be targeted  
for MS treatment were assessed by utilising 
PheWAS.

Methods

Approval of research ethics and study blue-
print

This study collected comprehensive GWAS su- 
mmary statistics from original investigations, 
all of which were conducted with the informed 
consent of participants. Aggregated statistical 
data were used, which negated the need for 
any additional ethical approval.

Inclusion criteria were as follows: (1) plasma 
protein pQTLs reaching genome-wide signifi-
cance (P < 5 × 10 -8); (2) cis-pQTLs located with-
in ±1 Mb of the corresponding gene region; (3) 
independent SNPs selected using LD clumping 
(r2 < 0.001, 10,000 kb); (4) instrumental vari-
ables with F-statistics > 10 to minimize weak 
instrument bias; (5) GWAS summary data for 
multiple sclerosis obtained from large, well-cha- 
racterized cohorts (FinnGen R10 and IMSGC).

Exclusion criteria included: (1) trans-pQTLs lo- 
cated outside the ±1 Mb window of the target 
gene; (2) SNPs failing quality control (e.g., low 
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imputation quality, ambiguous alleles); (3) plas-
ma proteins or phenotypes without valid in- 
strumental variables; (4) duplicated samples  
or datasets without clear case-control classifi- 
cation.

Characterisation of plasma protein QTLs

pQTLs data was taken from the UK Biobank-
PPP and this included proteomic data from 
54,219 individuals (https://www.synapse.org/ 
#!Synapse:syn51365303). Meticulous map-
ping was performed for 2,940 proteins [26]. 
pQTLs are typically situated near their respec-
tive genes, which are known as “cis-pQTLs”, 
which suggests a regulatory effect via the proxi-
mate gene [27]. In contrast, “trans-pQTLs” are 
located further away or on different chromo-
somes and are presumed to exert effects 
through other genes. The distinction between 
cis- and trans-pQTLs often hinges on set dis-
tance thresholds, which are commonly 500 kb 
or 1,000 kb [28-30].

For this study, specific selection criteria for 
pQTLs were applied as follows: (1) only cis-
pQTLs within ±1 Mb of the gene region were 
considered to ensure biological plausibility; (2) 
SNPs were required to achieve genome-wide 
significance (P < 5 × 10 -8); (3) independent va- 
riants were selected using LD clumping with r2 
< 0.001 and a genetic distance of 10,000 kb; 
(4) instrumental variables with F-statistics > 10 
were retained to minimize weak instrument 
bias [19].

Genetic association data for multiple sclerosis

Genetic data for multiple sclerosis was taken 
from the R10 release of the Finnish database 
(https://r10.finngen.fi/). This dataset included 
488 patients and 364,071 controls [31]. The 
dataset of the IMSGC (International Multi- 
ple Sclerosis Genetics Consortium) included 
68,374 control participants and 47,429 MS 
patients [32].

Conducting MR analysis

AS was used as the result and plasma pro- 
teins as the exposure for a two-sample MR 
analysis. The pQTLs were chosen based on  
the previously specified criteria. R package 
“TwoSampleMR” (version 0.6.0) was used for 
analysis, the IVW method was applied for mul-

tiple SNPs and the Wald ratio was used for sin-
gle SNP scenarios [19]. P-values were adjusted 
for numerous tests using the false discovery 
rate (FDR) approach - Pfdr < 0.05 denoted sta-
tistical significance.

Analysis of colocalisation

The aim of colocalization analysis is ascer- 
taining shared genetic variants that influence 
exposure and outcome, further corroborating 
MR findings. For proteins that have positive MR 
outcomes, SNPs within a ±1 MB window of  
the gene (cis-pQTLs) were scrutinised for their 
colocalization with multiple sclerosis [33]. Five 
hypotheses were tested in colocalization analy-
sis in order to determine whether SNPs are 
related to the protein, the disease, both or nei-
ther. The focus of this study was on genes with 
a combined posterior probability (PPH3+PPH4) 
≥ 0.8 due to the limited power of colocalization 
analyses [34].

Phenome-wide association analysis

PheWAS is the inverse of GWAS and is used to 
discern links between phenotypes or SNPs and 
a broad spectrum of phenotypic traits [13]. This 
methodology is particularly useful for identify-
ing drug target side effects [22]. The focus of 
this study was on plasma proteins with positive 
MR outcomes as the exposure and the same 
criteria were maintained for instrumental vari-
ables. The outcome used phenotypic data  
from the Finnish database R10 version, which 
included 2,272 phenotypes across 46 catego-
ries, to conduct a comprehensive phenome-
wide MR analysis. A Pfdr < 0.05 was an indica-
tor of statistical significance.

GEO data download

The datasets (GSE131282, GSE21942) were 
acquired from the NCBI website. GSE131282 
had 184 grey matter, which included 42 heal- 
thy controls and 142 MS patients [35]. The 
GSE21942 dataset consisted of 12 patients 
with peripheral blood samples and 15 healthy 
controls [36].

Receiver Operating Characteristic (ROC) analy-
sis

The “pROC” package was used to assess the 
diagnostic values and learn the possible clini-
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cal relevance of important genes. The area 
under the ROC curve (AUC) is an essential part 
of this analysis and this was calculated meticu-
lously. The training dataset was GSE131282 
and the testing dataset was GSE21942. AUC 
values of greater than 0.7 represented high 
diagnostic significance.

Quality control of single-cell datasets

All multiple sclerosis (“Multiple Sclerosis, mul-
tiple sclerosis, multiple sclerosis, multiple scle-
rosis, single-cell (scRNA-seq) dataset GSE- 
138266. MS”) from the expression of the 
matrix was imported by using the “Create- 
SeuratObject” function of R package Seurat 
(Version 4.3.0) to create the Seurat object of 
the samples. Parameters were set to genes 
that were expressed in at least 3 cells and at 
least 200 genes expressed in each cell. Use 
the nCount RNA (Unique Molecular Identifier, 
UMI) is more than 500, greater than 200 nFea-
ture RNA, Log10 (genes per UMI) is greater 
than 0.8, mitochondrial Genes accounted for 
(mitoRatio) is less than 0.05 for the filter, 
removing low quality of the cell. After quality 
control was performed, the cells were statisti-
cally analysed to calculate changes in the num-
ber of cells both before and after filtration. The 
sequencing depth of the scRNA-seq dataset 
GSE138266 was normalised by the “Normali- 
zeData” function. The normalisation method 
was “LogNormalize”. The “vst” method of the 
“FindVariableFeatures” function was used to 
identify the hypervariable genes in the dataset. 
The “ScaleData” function of the data was then 
used to zoom in and rule out the influence of 
sequencing depth.

Double cells are due to the experiment, in the 
unicellular microfluidic process such as a drop-
let containing two or more cells, and in the 
same cell in the subsequent analysis of droplet 
Cell with the same Barcode, which can be con-
sidered as a pseudo cell. The main characteris-
tic of these pseudo-cells is that the number of 
UMI and genes that is detected is often two or 
more times more than that of normal cells. 
They also may carry classic marker genes of dif-
ferent cell types, thereby hindering cell type 
identification. The “scDblFinder” function of R 
package (Version 1.12.0) was used to evaluate 
each cell score of the double cells and identify 

whether for the cells and will double filtering 
cells.

Principal component analysis (PCA) was used 
to find the significant principal component (PC) 
and the “Elbowplot” function was used to visu-
alise the standard deviation distribution. 40 
PCs were chosen for Uniform Manifold Appro- 
ximation and Projection (UMAP) analysis for 
dimension reduction. The “FindNeighbors” fun- 
ction was used for creating the k-nearest neigh-
bours of the Euclidean distance in the base 
PCA space with 40 principal component (PC) 
dimension parameters.

Cell clustering and cell type annotation

R package Seurat (Version 4.3.0) was used to 
import the Seurat objects of the data quality 
and standardised single-cell Rna-Seq (scRNA-
seq) dataset GSE138266. For possible batch 
effect between samples, using R package har-
mony (Version while) “RunHarmony” function in 
data integration and effect to batch process-
ing, and under the resolution of 0.8 cells can be 
divided into different clustering.

By ScType algorithm, using specific marker 
genes from single-cell transcriptome data auto-
matic cell type identification. Data sets of sin-
gle-celled (scRNA - seq) cell type annotation, 
identification of cell types. The stacked bar 
chart was used to display the cell proportion of 
each cell type in all the samples and the rela-
tionship between cell type and clustering was 
then analysed.

Expression of key genes in each cell type

The expression differences of five key genes 
(AIF1, AGER, TNFRSF14, CD58 and EVI5) in 
various cell types in the single-cell Rna-Seq 
dataset GSE138266 were explored. The Fea- 
turePlot function Feature the Plot was used for 
mapping, and violin plots were used to show 
Key Genes’ (Key Genes) expression level in dif-
ferent cell types.

Observation indicators and evaluation meth-
ods

The observation indicators of this study and 
their evaluation methods were as follows: (1) 
Proteome-wide MR analysis - the primary indi-
cator was the causal association between plas-
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Figure 1. Flowchart of the study design.

ma protein levels and MS risk, assessed using 
a two-sample MR framework. The IVW method 
was applied when multiple SNPs were avail-
able, and the Wald ratio was used for single 
SNPs. (2) Colocalization analysis - shared caus-
al variants between plasma proteins and MS 
were evaluated using Bayesian colocalization, 
with PPH3+PPH4 ≥ 0.8 considered as strong 
evidence. (3) Phenome-wide association study 
(PheWAS) - associations of identified proteins 
with 2,272 phenotypes from the FinnGen data-
base were examined, with statistical signifi-
cance defined as Pfdr < 0.05 after FDR correc-
tion. (4) Validation in GEO datasets - ROC curve 
analysis (using the “pROC” package) was per-
formed to evaluate the diagnostic performan- 
ce of key genes in MS. The AUC value was  
used as the primary diagnostic indicator, with 
GSE131282 as the training set and GSE21942 
as the testing set. (5) Single-cell RNA sequenc-
ing analysis - the observation indicators includ-
ed cell-type-specific expression patterns of the 
five key genes (AIF1, AGER, TNFRSF14, CD58, 
and EVI5). These were evaluated through clus-
tering, cell type annotation, and visualizations 

including FeaturePlot, violin plots, and bubble 
charts.

Results

The schematic plot of the project is shown in 
Figure 1.

Plasma proteins related to multiple sclerosis

After the stringent instrumental variables 
screening criteria of the study were applied, 
1,280 plasma proteins were subsequently 
included in the MR analysis of the Finnish da- 
tabase. Eight plasma proteins (Supplementary 
Table 1) were found to have causal relation-
ships with MS in the MR analysis based on 
Wald or IVW ratio outcomes (Pfdr < 0.05) in the 
subset of 1,280 plasma proteins. 36 plasma 
proteins related to multiple sclerosis were 
found in the IMSGC database by MR analysis 
based on Wald or IVW ratio outcomes (Pfdr < 
0.05) (Supplementary Table 2). The results 
from the Finnish database and the IMSGC da- 
taset were intersected for determining proteins 
that were linked to multiple sclerosis in both 

https://e-century.us/files/ijcem/18/11/ijcem0167342suppltab1.xlsx
https://e-century.us/files/ijcem/18/11/ijcem0167342suppltab1.xlsx
https://e-century.us/files/ijcem/18/11/ijcem0167342suppltab2.xlsx
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Figure 2. Volcano plot of MR results: Causal relationship between plasma proteins and multiple sclerosis (A) Finn-
gen database, (B) IMSGC database. (C) Venn diagram: Intersection of plasma proteins in two datasets. IMSGC: 
International Multiple Sclerosis Genetics Consortium.

datasets. Five plasma proteins are shown in 
the Venn diagram: AIF1 (allograft inflammatory 
factor 1), AGER (advanced glycosylation end 
product-specific receptor), TNFRSF14 (tumour 
necrosis factor receptor superfamily member 
14), CD58 (CD58 molecule) and EVI5 (ecotropic 
viral integration site 5). The following are the 
odds ratios and 95% confidence intervals for 
these plasma proteins in the Finnish data- 
base: AGER 2.84 (95% CI: 1.91-4.23), AIF1 
3.03 (95% CI: 1.81-5.05), CD58 2.00 (95% CI: 
1.51-2.66), EVI5 0.30 (95% CI: 0.19-0.46) and 
TNFRSF14 0.40 (95% CI: 0.25-0.66). The fol-
lowing are the odds ratios and 95% confidence 
intervals for the plasma proteins in the IMSGC 

database: AGER 4.19 (95% CI: 2.14-8.20), AIF1 
10.72 (95% CI: 8.00-14.37), CD58 2.27 (95% 
CI: 1.73-2.97), EVI5 0.38 (95% CI: 0.30-0.49) 
and TNFRSF14 0.43 (95% CI: 0.32-0.57). More 
information is shown in Figures 2 and 3.

Sensitivity analysis for plasma proteins related 
to MS

Gene colocalization analysis was performed for 
these five plasma proteins within a range of ±1 
MB upstream and downstream of their respec-
tive genes as a means of investigating poten- 
tial connections with MS. From the findings, it 
was suggested that a causative mutation in 
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Figure 3. Forest plot of the MR results: Effects of 5 plasma proteins on multiple sclerosis (A) Finngen database, (B) 
IMSGC database. CI: confidence interval; OR: odds ratio; IMSGC: International Multiple Sclerosis Genetics Consor-
tium.

this region (PPH3+PPH4 > 0.8) could be shared 
by all potential plasma proteins. Comprehensive 
details are presented in Supplementary Table 
3. This implies that all five plasma proteins may 
be useful therapeutic targets for MS.

Phenome-wide association analysis for 5 
plasma proteins related to MS

A phenome-wide association analysis was con-
ducted and 2,408 phenotypes were screened 
across 45 categories from the Finnish data-
base (version R10) to assess the potential  
positive or negative impacts of the five plasma 
proteins that were linked to MS on other pheno-
types. Noteworthy causal relationships were 
observed between AGER and 53 phenotypes 
(Pfdr < 0.05), AIF1 and 120 phenotypes (Pfdr < 
0.05), CD58 and 2 phenotypes (Pfdr < 0.05), 
EVI5 and 7 phenotypes (Pfdr < 0.05) and 
TNFRSF14 and 19 phenotypes (Pfdr < 0.05). 
More details are provided in Figure 4. These 
phenotypes may have harmful consequences 
on the target protein or they could serve as 
therapeutic targets.

Validate the role of plasma proteins in MS

The GEO dataset was used for validating the 
role of these protein-coding genes in MS. The 
GSE131282 dataset was used as the training 
dataset and these results were obtained from 
ROC analysis: AGER (AUC = 0.812), AIF1 (AUC = 
0.626), CD58 (AUC = 0.723), EVI5 (AUC =  
0.765) and TNFRSF14 (AUC = 0.777). The 
GSE21942 dataset was used as a test dataset 
for the validation of the diagnostic value of 
these five plasma proteins and the following 
results were yielded: AGER (AUC = 0.879), AIF1 
(AUC = 0.795), CD58 (AUC = 0.438), EVI5 (AUC 
= 0.769) and TNFRSF14 (AUC = 0.717) (Figure 
5).

Quality control of single-cell datasets

The data quality had to be integrated and con-
trolled in order to guarantee that the following 
analysis was founded on the best quality data. 
The expression matrices of all multiple sclero-
sis (MS) samples in the single-cell (scRNA-seq) 
dataset GSE138266 were imported and then 
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Figure 4. Manhattan plot of result of PheWAS analysis of associations between 5 plasma proteins and other disease 
outcomes.

created as Seurat objects using the “Create- 
SeuratObject” function of R package Seurat. 
The parameter was set to at least three cells in 
each cell of the expression of genes and at 
least 200 gene expressions.

Using nCount RNA (UMI) is greater than 500, 
greater than 200 nFeature RNA, Log10 (Genes 
per UMI) is greater than 0.8, (mitoRatio) is less 
than 0.05 of mitochondrial Genes accounted 
for the filter, removing low quality of the cell. 
Map nCount RNA (UMI) violin shows a single 
cell detected the number of RNA sequencing 
Reads (Supplementary Figure 1A), which is 
used to measure RNA expression level in every 
cell. The higher the cell number of Reads, the 
higher the RNA expression level in that cell.  
The nFeature RNA violin plot shows the num- 
ber of unique genes found in a single cell 

(Supplementary Figure 1B) and the diversity of 
genes expressed in each single-cell sample. 
The more unique genes detected in a cell, the 
richer the RNA sequencing data for that cell 
was. The Log10 (genes per UMI) violin diagram 
shows each UMI detected gene (Supplemen- 
tary Figure 1C). UMI is used for distinguishing 
the same sequence in the RNA sequencing of 
identifier, Log10 (Genes per UMI) value is higher, 
on behalf of the detected under the same num-
ber of UMI gene number, the more reflect the 
diversity of gene expression in cells. Map (mito-
Ratio) of mitochondrial genes accounted the 
violin show mitochondrial genes accounted  
for (Supplementary Figure 1D), mitochondrial 
genes can affect the accuracy of the data in the 
cells. The density diagram shows the distribu-
tion of the above data (Supplementary Figure 
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2A-D). Through double filtering, data integration 
and quality control, 19545 cells were selected

Through the “NormalizeData” function of sin-
gle-cell (scRNA - seq) data set GSE138266 
sequencing depth for standardization, stan-
dardization of methods for “LogNormalize”, The 
“vst” method of the “FindVariableFeatures” 
function was employed for identifying the 
hypervariable genes in the dataset. Principal 
component analysis (PCA) found important PCs 
and 40 of them were then chosen for UMAP 
analysis for dimensionality reduction. The 
“FindNeighbors” function was used to create 
the k-nearest neighbours of the Euclidean dis-
tance in the base PCA space with 40 principal 
component (PC) dimension parameters.

Cell clustering and cell type annotation

The “RunHarmony” function in R package har-
mony single-celled (scRNA - seq) GSE138266 
was used for data integration and data sets to 
processing of the batch effect, and for each 
sample ‘ clustering mapping (Supplementary 
Figure 3A). Then, under the resolution of 0.8, 
cells could be divided into different clustering. 
Each sample cell’s clustering was mapped out 
(Supplementary Figure 3B). The results show 
that 19,545 cells were divided into 22 clusters 
under the resolution of 0.8 and they were iden-

tified as being a total of 15 cell types by the 
ScType algorithm (Supplementary Figure 3C). 
These cell types were classic mononuclear 
cells (classical monocytes), initial CD4 + T cells 
(naive CD4 + T cells), initial B cells (Naive B 
cells), effect of CD4 + T cells (effector CD4 + T 
cells), plasma cells, dendritic cells (plasmacy-
toid dendritic cells), platelets, natural killer 
cells, effect of CD8 + T cells (effector CD8 + T 
cells), initial CD8 + T cells (naive CD8 + T cells), 
atypical mononuclear cells (non-classical mo- 
nocytes), CD8 + sample of NKT cells (CD8 + 
NKT-like cells), myeloid dendritic cells, plasma 
B cells, and progenitor cells. The 15 cell  
types are presented in the stacked bar chart 
(Supplementary Figure 3D).

Key gene expression of various cell types

“FeaturePlot” function was used to verify five 
Key Genes (AIF1, AGER, TNFRSF14, CD58, 
EVI5) of GSE138266 single-celled data sets 
with 15 kinds of cell types in the expression 
Feature Plot (Figure 6). Then, the bubble chart 
was made to show the Key Genes expression in 
the 15 types of cells (Figure 7).

Discussion

This study used Mendelian randomisation an- 
alysis as a means of identifying significant 

Figure 5. ROC validation of the diagnostic effects in multiple sclerosis dataset. A. Training dataset: GSE131282. B. 
Testing dataset: GSE21942.
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Figure 6. Feature plot of Key 
Genes expression in different cell 
types: Expression of Key Genes 
AIF1 (A), AGER (B), TNFRSF14 
(C), CD58 (D), EVI5 (E) in 15 
cell types in scRNA-seq dataset 
GSE138266 Feature Plot. UMAP: 
Uniform Manifold Approximation 
and Projection.

Figure 7. Bubble plot of expression of Key Genes in 15 cell types in scRNA-
seq dataset GSE138266. The abscissa represents the Key Genes, the ordi-
nate represents the cell type, the bubble size represents the percentage of 
expression, and the bubble color represents the average expression level.

associations between five key plasma proteins 
(AGER, AIF1, CD58, EVI5 and TNFRSF14) and 
MS. Strong causal relationships were found 
between these proteins and MS in two inde-
pendent datasets, the Finnish and IMSGC data-
bases. Their therapeutic target potential was 

further substantiated by sensi-
tivity analyses and colocali- 
zation studies. These findings 
provide new perspective on  
the molecular processes un- 
derlying MS and imply that 
these plasma proteins may be- 
come therapeutic targets or 
novel biomarkers for the dis-
ease. The robust statistical  
significance of these findings 
highlights their clinical rele-
vance while also paving the 
way for future research and 
therapeutic development.

Our findings can be compared 
with those of a recent MR 
study that identified potential 
drug targets for MS using plas-
ma and CSF proteins (FCRL3, 
TYMP, AHSG, MMEL1, SLAMF7, 
and CD5L) [37]. In that re- 
port, several proteins such as 

FCRL3, TYMP, and SLAMF7 demonstrated pro-
tective associations with MS, while MMEL1 
increased MS risk. In contrast, our study high-
lighted different targets (AGER, AIF1, CD58, 
EVI5, and TNFRSF14), that were consistently 
supported across both the Finnish and IMSGC 
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cohorts. The differences may arise from dis-
tinct proteomic datasets, the inclusion of 
scRNA-seq data in our study, and variations in 
analytical design. Importantly, the convergence 
of findings from both studies underscores that 
multiple immune-related proteins may play 
causal roles in MS pathogenesis, suggesting 
that complementary therapeutic strategies 
could be explored.

Furthermore, while the previous study incorpo-
rated CSF proteins, our study focused on plas-
ma proteins combined with single-cell tran-
scriptomic validation, thereby providing addi- 
tional insight into the cell-type-specific expres-
sion patterns of candidate targets. This inte- 
grative approach highlights not only their genet-
ic associations but also their functional rele-
vance in immune regulation at the cellular level, 
which may enhance the translational potential 
of our findings.

AGER is a multi-ligand receptor that has been 
implicated in a variety of pathologic conditions 
by the role it plays in mediating inflammatory 
responses [38, 39]. In the context of MS, AGER 
binds to AGEs (advanced glycation end prod-
ucts), which triggers a cascade of pro-inflam-
matory signals that activate NF-κB and produce 
ROS and cytokines [40, 41]. This process con-
tributes to the chronic inflammation and neuro-
nal damage characteristic of MS, thereby pro-
moting the autoimmune destruction of myelin 
sheaths in the CNS [42, 43]. The significant 
association between AGER and MS suggests 
its use as a diagnostic biomarker, which could 
enable the early detection and better monitor-
ing of the disease. Elevated levels of AGER or 
its ligands could be indicators of heightened 
disease activity, which may guide therapeutic 
intervention.

AIF1 is a 17-kDa protein predominantly ex- 
pressed in microglia and macrophages that is 
upregulated in a variety of inflammatory condi-
tions. In functional terms, AIF1 enhances the 
activation, proliferation and migration of mac-
rophages and T cells, thereby contributing to a 
pro-inflammatory environment. In EAE (experi-
mental autoimmune encephalomyelitis), which 
is a mouse model for MS, AIF1-deficient mice 
exhibit reduced disease severity, marked by 
lower CNS leukocyte infiltration, demyelination 
and pro-inflammatory cytokine production [44, 

45]. This suggests that AIF1 promotes en- 
cephalitogenic CD4 T cell activation and ex- 
pansion, facilitating their infiltration into the 
CNS and exacerbating inflammation. In clinical 
terms, targeting AIF1 could provide a therapeu-
tic avenue for MS. The inflammatory response 
could be reduced, T-cell proliferation could be 
limited and microglial activation could be 
decreased by inhibiting AIF1 expression or 
function [46]. This may lead to the development 
of diagnostic markers or treatment strategies 
that modulate AIF1 activity, improving MS 
patient outcomes.

The cell adhesion molecule CD58, which is 
more commonly referred to as lymphocyte 
function-associated antigen 3 (LFA-3), is mostly 
expressed in B cells and antigen-presenting 
cells (APCs). Its main function is to bind to CD2 
on T cells, which strengthens the adhesion 
between T cells and APCs and enhances T cell 
activation [47]. The CD58 gene is associated 
with protective and risk alleles with MS. Higher 
CD58 expression is linked to the protective 
allele and this increases the regulatory T cell 
(Treg) function that is essential for the mainte-
nance of immunological tolerance and reducing 
autoimmune responses [48]. Conversely, the 
risk allele causes decreased CD58 expression, 
thereby impairing Treg function and contribut-
ing to the autoimmune attack on myelin sheaths 
in the CNS [49].

EVI5 is a protein involved in the regulation of 
cell cycle progression and mitosis that par- 
ticularly influences the transition from the G2 
phase to mitosis [50]. Recent studies have 
highlighted its role in immune cell function, 
specifically in T cell activation and proliferation 
[51, 52]. Genetic variations in EVI5 have been 
linked to a growing autoimmune disease risk, 
suggesting that it plays a significant role in the 
immune response [53]. EVI5 influences the 
pathogenesis of MS by modulating T cell func-
tion and cytokine production, contributing to 
the autoimmune attack on myelin sheaths in 
the CNS [54]. This results in the inflammation 
and neurodegeneration characteristic of MS. 
Investigations have suggested that there is a 
link between polymorphisms in the EVI5 gene 
and higher MS susceptibility, thereby reinforc-
ing its possible use as a biomarker for the diag-
nosis and monitoring of the disorder [55, 56].



Therapeutic targets for multiple sclerosis

283	 Int J Clin Exp Med 2025;18(11):272-286

The TNFRSF14 protein is also referred to as 
herpes virus entry mediator (HVEM) and this  
is essential for immune response modulation. 
TNFRSF14 interacts with a variety of ligands, 
which include LIGHT and BTLA, to balance sti- 
mulatory and inhibitory signals in T cells [57]. 
This is essential for the prevention of excessive 
immune responses and the maintenance of 
immune homeostasis [58]. With MS, the role of 
TNFRSF14 involves influencing T-cell activation 
and cytokine production, which is a contributor 
to the inflammatory environment that is often 
seen in the disease [59]. Investigations have 
found a link between TNFRSF14 polymorph- 
isms and MS risk, particularly in people with 
active human herpesvirus 6 (HHV-6) replica- 
tion [60, 61], which suggests involvement of 
TNFRSF14 in the viral mechanisms that exacer-
bate MS. It is an additional candidate disease 
activity and progression biomarker.

Single-cell RNA sequencing and the GEO data-
set were used for the further validation of the 
results of this study. All hub genes coding these 
plasma proteins were found to have a good 
diagnostic effect in the training dataset and all 
genes in the test dataset also showed high 
diagnostic effects, except CD58.

The key strengths of the study included using 
MR design to minimise bias from reverse cau-
sality and potential confounders. It also includ-
ed cis-pQTLs that are able to increase the 
strength of the evidence (cis-pQTL > trans-pQTL 
> eQTL) and gene colocalization analyses to 
enhance statistical efficiency and result validi-
ty. This investigation used scRNA-seq data for 
the analysis of the expression of five key genes 
(AIF1, AGER, TNFRSF14, CD58 and EVI5) across 
various cell types. The results found signifi- 
cant expression differences of these genes in 
distinct cell types, particularly within immune 
cells. This suggested that they play crucial roles 
in MS immunoregulation. Complete phenotypic 
association analysis enabled a thorough inves-
tigation of the side effects of potential thera-
peutics. It is hoped that other researchers will 
use the PheWAS technique for examining the 
adverse effects of pharmacologic targets to 
expand the body of knowledge in the field.

However, this study has some shortcomings. 
Firstly, the fact that all GWAS participants were 
European may have impacted the generalisabil-
ity of its findings. Secondly, despite the fact 

that the UKB-PPP data included 2,940 plasma 
proteins, the MR study only included 1,280 
plasma proteins due to the instrumental vari-
able limitations. Thirdly, the investigation was 
confined to cases where the combined posteri-
or association probability (PPH3+PPH4) was 
greater than or equal to 0.8 due to colocaliza-
tion analyses having less power. Fourthly, real-
istic settings may make it impossible to supple-
ment animal and cell experiments, so these 
trials perhaps should be included in further 
studies in this field. Finally, this study used a 
multiple regression analysis (MR) method to 
search for causal connections between MS and 
plasma proteins but did not use a genetics-led 
drug target prioritisation method (priority index, 
PI) to prioritise less-explored targets.

Conclusion

This study has examined the causal link 
between five plasma proteins (AIF1, AGER, 
TNFRSF14, CD58 and EVI5) and MS to identify 
new targets for MS therapy. It is hoped that 
future research can examine these drug tar-
gets, their potential therapeutic strategies,  
and the ways in which they might affect MS 
treatment.
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Supplementary Table 3. Colocalization results for the five MS-associated plasma proteins within ±1 
Mb of their corresponding genes (PPH3+PPH4 > 0.8)
EVI5 coloc_res$summary
    nsnps 8076
    PP.H0.abf 8.62E-62
    PP.H1.abf 6.99E-05
    PP.H2.abf 1.04E-58
    PP.H3.abf 0.083890148
    PP.H4.abf 0.916039909
CD58 coloc_res$summary
    nsnps 7552
    PP.H0.abf 1.47E-110
    PP.H1.abf 2.91E-03
    PP.H2.abf 6.94E-110
    PP.H3.abf 0.012765808
    PP.H4.abf 0.984325889
AIF1 coloc_res$summary
    nsnps 19823
    PP.H0.abf 9.15E-175
    PP.H1.abf 1.35E-135
    PP.H2.abf 6.79E-40
    PP.H3.abf 1
    PP.H4.abf 9.65895E-39
TNFRSF14 coloc_res$summary
    nsnps 9065
    PP.H0.abf 7.87E-49
    PP.H1.abf 6.97E-02
    PP.H2.abf 6.63E-48
    PP.H3.abf 0.58662422
    PP.H4.abf 0.343703657
AGER coloc_res$summary
    nsnps 25637
    PP.H0.abf 3.94E-231
    PP.H1.abf 6.15E-136
    PP.H2.abf 6.41E-96
    PP.H3.abf 1
    PP.H4.abf 1.67E-87
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Supplementary Figure 1. Violin plot of single-cell data quality control. (A-D) Single-celled (scRNA - seq) data sets 
GSE138266 nCount RNA (UMI) (A), nFeature RNA (B), Log10 (Genes per UMI) (C), Mitochondrial genes accounted 
for (mitoRatio) (D) the data of quality control chart on the violin. Red samples are multiple sclerosis (MS) samples. 
MS, and Multiple Sclerosis; UMI: Unique Molecular Identifier.
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Supplementary Figure 2. Density plot of single-cell data quality control. (A-D) Single-celled (scRNA - seq) data sets 
GSE138266 nCount RNA (UMI) (A), nFeature RNA (B), Log10 (Genes per UMI) (C), Data distribution density plot of 
mitochondrial gene proportion (mitoRatio) (D). Red samples are multiple sclerosis (MS) samples. MS, and Multiple 
Sclerosis; UMI: Unique Molecular Identifier.
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Supplementary Figure 3. Single-cell cluster and cell type annotation: A. Single-celled (scRNA - seq) data set 
GSE138266 cells express situation UMAP graph in different samples. Different colors represent different samples. 
B. UMAP map of cell expression in different cell clusters. Different colors indicate different clusters. C. Cell expres-
sion in different cell types of the UMAP figure. Different colors indicate different cell types. D. Single-celled (scRNA 
- seq) data set GSE138266 cell percentage histogram in different samples. MS: Multiple Sclerosis; UMAP: Uniform 
Manifold Approximation and the Projection.


