Original Article Vitamin D receptor genetic polymorphisms and prostate cancer risk: a meta-analysis of 36 published studies

Ming Yin, Sheng Wei, Qingyi Wei

Departments of Epidemiology, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX77030, USA.

Received May 21, 2009; accepted June 10, 2009; available online June 15, 2009

Abstract: To update data on the role of vitamin D receptor (VDR) single nucleotide polymorphisms (SNPs) in susceptibility to prostate cancer, we performed a meta-analysis of 36 eligible publications on the association of *Taql, Apal, Bsml, Fokl* and *CDX2* SNPs of the *VDR* gene with prostate cancer risk. Our study suggested that the *Taql t* and *Bsml B* alleles were associated with reduced prostate cancer risk among all study populations. Stratified analysis by ethnicity revealed that the *Apal a* allele was associated with reduced prostate cancer risk only among Asian populations, whereas the *Fokl f* allele showed a trend of increased prostate cancer risk only among Caucasian populations in a dominant model, independent of tumor stage (local or advanced). These results suggest that *VDR* polymorphisms may be potential biomarkers for prostate cancer susceptibility.

Key words: Prostate cancer, Genetic polymorphism, Meta-analysis, Molecular Epidemiology

Introduction

Prostate cancer is the most common type of cancer among men in the United States, with an estimation of 186,320 new cases and 28,660 deaths in 2008 [1]. Although the etiology of prostate cancer is not well elucidated, both genetic and environmental factors are believed to play a role. Previous epidemiological studies suggested that low serum levels of vitamin D might be a risk factor for prostate cancer [2]. Laboratory investigations also demonstrated that the active form of vitamin D, 1, 25-dihydroxyvitamin D₃, could inhibit normal and malignant prostate epithelial cell proliferation in vitro [3, 4], whereas some ecological studies supported an inverse correlation between prostate cancer mortality and UV radiation exposure [5], an essential environmental factor for Vitamin D synthesis. Therefore, an adequate level of serum vitamin D may protect against prostate cancer in humans.

Vitamin D exerts its biological effects through binding to and thereby activating the

intracellular vitamin D receptor (VDR), a member of the steroid hormone receptor superfamily, which acts as a ligand-dependent transcriptional factor found in many types of tissues, including the prostate [6]. When the cell exposed to 1, 25-dihydroxyvitamin D₃, VDR is translocated to the nucleus and regulates expression of VDR-responsive genes, which further induce cell differentiation and suppress proliferation [7, 8]. Therefore, polymorphisms of the VDR gene, which potentially affect the receptor binding of 1, 25dihydroxyvitamin D3, may modify vitamin D biological activity and confer different susceptibility to prostate cancer.

The human *VDR* gene is located on chromosome 12q13.11 [9], consisting of 14 exons and spanning approximately 75 kb long [10]. It is highly polymorphic with at least 618 variants reported to date, most of which are either not detectable or at a low frequency in the general population, according to the dbSNP database (http://www.ncbi.nlm.nih.gov /projects/SNP/snp_ref.cgi?chooseRs=all&go= Go&locusId=7421, June 4th, 2009). Previous studies had primarily focused on four common variants that were hypothesized to influence the expression and/or function of the VDR protein, including three single nucleotide polymorphisms (SNPs) located in the intron 8 (Apal and Bsml) and exon 9 (Tagl), in addition to a mononucleotide repeat (polyA) in the 3'untranslated region (3'-UTR). There is a fifth polymorphism, known as Fokl (F/f). corresponding to a C>T substitution in exon 2 of the VDR gene [11]. The absence of the Fok I restriction site, designated F, is associated with a short VDR protein with a greater luciferase reporter gene activity, compared with the f allele [12]. A recently reported new functional SNP of G>A substitution in the promoter region of the VDR gene interacts with the caudal related homeodomain transcription factor (CDX2), and the common CDX2 G allele has 70% of the transcriptional activity, compared with the A allele [13].

The association between *VDR* genetic polymorphisms and prostate cancer risk has been extensively studied but reported with mixed results [14, 15]. Two published metaanalyses failed to conclude any positive associations [16, 17]. Ever since, new studies have provided additional data on the association between *VDR* polymorphisms and prostate cancer risk. Therefore, we used the most updated data and performed a quantitative analysis to revisit the association between *VDR* variants (i.e., *Taql, Bsml, Apal, Fokl* and *CDX2*) and prostate cancer risk.

Materials and methods

Identification and Eligibility of Relevant Studies

We searched for relevant papers published before December 2008 by using the electronic MEDLINE database with the following terms "prostate cancer", "vitamin D", "VDR", "polymorphism" AND "variant". References of retrieved articles were also screened for any missing original study not shown in the search. We included all non-familial case-control and cohort studies that examined the associations between VDR polymorphisms and prostate cancer risk with genotyping data for at least one of the five variants, Tagl, Bsml, Apal, Fokl and CDX2. Studies using men with benign prostatic hyperplasia (BPH) were included, whereas studies based on family or pedigree were excluded for considerations of diseasespecificity and genetic linkage.

Data Extraction

We extracted the following information from each manuscript: author, year of publication, country of origin, selection and characteristics of cancer cases and controls, demographics, ethnicity, histological types and genotyping information. For studies including subjects of different ethnicities, data were extracted separately and categorized as Asians, Caucasians (European descendents), Africans and Indians. However, if the authors did not provide specific ethnicity information or we could not separate them according to the genotypes, the term "mixed" was used.

Meta-analysis

We performed a meta-analysis to estimate risks (odds ratios, ORs) of prostate cancer associated with different VDR polymorphisms. In addition to comparison among all subjects, the studies were also categorized by the ethnicity and tumor stage (local or advanced) for subgroup analyses. We assumed study subjects to be Caucasians, if Caucasians comprised of > 90% of the subjects without other detailed ethnicity information. We investigated the between-study heterogeneity by using the Cochran's Q test, and the heterogeneity was considered significant, if P < 0.05 [18]. Values from single studies were combined using models of both random effects (DerSimonian Laird) and fixed effects (Mantel-Haenszel) [19]. We also did cumulative meta-analysis to evaluate whether the summary OR for the allele contrasts was changed over time as more data accumulated [20]. Inverted funnel plots and the Egger's test were used to examine the influence of publication bias (linear regression analysis) [21]. All P values were two-sided with a significance level of P < 0.05, and all analyses were done in Statistical Analysis System software (v.8.0; SAS Institute, Cary, NC) and Review Manager (v.5.0; Oxford, England).

For quality control, one person (first author) did a thorough search for eligible articles, collected the actual articles, and abstracted the data, and the second person (second author) checked for completion of inclusion of the published articles and accuracy of the data pool used for analysis.

Results

Meta-analyses Database

We identified a total 36 eligible studies and established a database according to the extracted information from each article (Table 1). There were 23 case-control studies of Tagl polymorphism, 6 studies of Apal, 14 studies of Bsml. 16 studies of Fokl and 4 studies of CDX2. We compared the data pool of current analysis with those of two previous metaanalyses [16, 17] and found a little difference. The study by Luscombe et al. was excluded from the current analysis, because it did not contain normal controls [22], whereas the study by Suzuki et al. was excluded because it was family-based [23]. We also examined the data quality of published results and excluded the data of the Bsml polymorphism in the article by Chaimuangraj et al. [24], because the description of genotype frequencies of this polymorphism was not consistent. Therefore, the final data pool of the Bsml polymorphism included 13 studies.

There was a considerable diversity of study designs in these reports, including 21 hospitalbased case-control studies, 5 cohort-nested studies, 1 study established on pathology database and 10 population/communitybased studies. Most of the prostate cancer patients were diagnosed by a histological examination from biopsy or prostatectomy, whereas the others were confirmed by self report or review of medical records, except for the study by Furuya et al., which did not clarify the diagnostic criteria [25]. All controls did not have a clinical diagnosis of prostate cancer at study entry, but BPH commonly existed. All studies also had different screening examinations. such as digital rectal examination, prostate-specific antigen (PSA), and needle biopsy, to rule out prostate cancer. Most studies indicated that the frequency distributions of genotypes in the controls were consistent with the Hardy-Weinberg equilibrium (HWE), whereas deviations from HWE were also observed in two studies of Taql [26, 27], one of Apal [28], and five of Bsml [24, 28-31].

Quantitative Synthesis

Taql. The eligible studies included 4,054 cases and 5,069 controls. There were significant differences in the *t* allele frequencies among three major ethnicities [Caucasians, 39.5%; 95% confidence interval (Cl), 37.0-41.9;

Africans, 36.0%; 95% Cl. 24.1-47.9; Asians, 12.9%; 95% CI, 8.3-17.5; *P* < 0.001; Figure 1]. Comparison within groups revealed that the difference existed between Caucasians and Asians, Africans and Asians, but not Caucasians and Africans. In the model of random effects, individuals carrying the t allele did not have an altered cancer risk. compared with individuals with the T/T genotype, in homozygote, dominant or recessive models (Figure 2 and Table 2). This null association was also observed in subgroups stratified by ethnicity (Table 3). In the model of fixed effects, individuals with the *t* allele appeared to have a lower prostate cancer risk in the overall population in both the homozygote (t/t)versus T/T: OR, 0.87; 95% CI 0.75-1.00; P = 0.366 for heterogeneity, $I^2 = 7\%$) and dominant (t/t + T/t versus T/T: OR, 0.91; 95% CI 0.83-1.00; P=0.039 for heterogeneity, I² = 37%) models (Table 2). To investigate if the influence of VDR polymorphisms on prostate cancer risk was tumor-stage dependent, we stratified prostate cancer patients into two groups of either a local or an advanced disease. Our analysis failed to reveal any association between Tagl polymorphism and risk of advanced prostate cancer (Table 4), which was consistent with two current individual studies with tumor stage of prostate cancer [26, 28].

Apal. The eligible studies included 1,053 cases and 1,266 control subjects. There were significant differences in the a allele frequencies among three major ethnicities [Caucasians, 41.6%; 95% Cl, 33.3-50.0; Africans, 37.1%; 95% CI, 32.5-41.7; Asians, 66.2%; 95% CI, 62.8-69.6; P < 0.001; Figure **1**]. Similarly, comparison within groups showed differences in the *a* allele frequencies between Caucasians and Asians. Africans and Asians. but not Caucasians and Africans. There was no evidence that the Apal polymorphism modified prostate cancer risk among the overall population, because individuals carrying the a allele did not have an altered cancer risk, compared with individuals with the A/A genotype, in homozygote, dominant or recessive models (Figure 2 and Table 2). However, subgroup analysis by ethnicity showed that the a allele was associated with a reduced prostate cancer risk in Asian populations in the homozygote (a/a versus A/A: OR, 0.69; 95% CI 0.47-0.99 by random effects; P = 0.647 for heterogeneity, $I^2 = 0\%$) and dominant (a/a + A/a versus A/A: OR,

0.61; 95% CI 0.43-0.87 by random effects; P = 0.574 for heterogeneity, $I^2 = 0\%$ models. In terms of tumor stage, there was only one study available, which reported a null association of the *A* allele with risks of local or advanced prostate cancer [28].

Bsml. The eligible studies included 5.378 cases and 6,103 control subjects. There were no differences in the B allele frequencies among three major ethnicities (P = 0.290). However, the *B* allele frequency of the Asian subjects by Nam et al. [30] was significantly different from those of the other four Asian populations. After deletion of the study by Nam et al., there were significant differences in the B allele frequencies among three major ethnicities [Caucasians, 43.3%; 95% Cl, 38.8-47.7; Africans, 43.3%; 95% CI, 0-86.8; Asians, 10.2%; 95% CI, 0-22.6; *P* < 0.001; Figure 1]. Comparison within groups showed differences of B allele frequencies only between The Caucasians and Asians. Bsml polymorphism did not appear to contribute to prostate cancer risk in either the overall population (Table 2) or subgroups stratified by ethnicity (Table 3), except that the Bsml B/B genotype was associated with significantly reduced prostate cancer risk in the dominant model in the overall population (B/B + B/b)versus b/b: OR, 0.87; 95% CI 0.77-0.98 by random effects; P = 0.035 for heterogeneity, I² = 46%) (Figure 2). Further analysis by tumor stage did not reveal any significant association between the B/B genotype and risks of local or advanced prostate cancer (Table 4).

Fokl. The eligible studies included 6,736 cases and 7,325 control subjects. Since there was only one Fokl study by Oakley-Girvan et al. with African ethnicity [32], the comparison of fallele frequencies was done between Caucasians and Asians, which did not show any significant difference [Caucasians, 39.7%; 95% CI, 34.1-45.3; Africans, 21.5%; Asians, 47.4%; 95% CI, 44.0-50.9; Figure 1]. There was no evidence that the Fokl polymorphism modified prostate cancer risk in the overall population in homozygote, dominant or recessive models (Figure 2 and Table 2). This null association was also observed in subgroups stratified by tumor stage (Table 4). When stratified by ethnicity, the Fokl f allele tended to be associated with an increased prostate cancer risk in Caucasians in the dominant model (f/f + f/F versus F/F: OR, 1.08; 95% CI 1.00-1.17 by random effects; P =

0.798 for heterogeneity, $I^2 = 0\%$) (**Table 3**)

CDX2. The eligible four studies included 2,058 cases and 2,128 control subjects. The comparison of A allele frequencies among three major ethnicities was not performed, because the study pool consisted of only three Caucasian studies and one other study without clear description of ethnicity information [33]. The data did not support an association between the CDX2 polymorphism and prostate cancer risk in the overall population (Figure 2 and Table 2) or Caucasians in homozygote, dominant or recessive models (Table 3). There was only one study that investigated the association of the CDX2 polymorphism with advanced prostate cancer risk, which, however, did not yield positive findings [34].

Sensitivity analyses

Sensitivity analyses indicated that two independent studies by Maistro *et al* [35] and Tayeb *et al.* [36] were the main origin of heterogeneity for the *Taql* polymorphism in the overall population. The heterogeneity was effectively decreased or removed after exclusion of these two studies (t/t + T/t versus T/T: P = 0.372 for heterogeneity, $I^2 = 7\%$). Although the genotype distribution in the studies by Blazer *et al.* [26] and Watanabe *et al.* [27] did not follow HWE, the corresponding pooled ORs were not substantially altered with or without including these studies (data not shown).

The between-study heterogeneity for the Bsml polymorphism in the dominant model in the overall population mainly resulted from the study by Habuchi et al. [37], exclusion of which slightly elevated the OR (B/B + B/b) versus *b/b*: OR. 0.92: 95% CI 0.84-1.00 by random effects; P = 0.410 for heterogeneity, $I^2 = 4\%$). Exclusion of the five studies, whose genotype distributions deviated from HWE [24, 28-31], abrogated the significant association of the Bsml polymorphism with cancer risks by random effects (B/B + B/b versus b/b: OR,0.89; 95% CI 0.76-1.04), but not by fixed effects (B/B + B/b versus b/b: OR, 0.91; 95% CI 0.83-0.99). No single study influenced the pooled OR qualitatively, as indicated by sensitivity analyses.

Bias Diagnostics

Taql. The magnitude of the summary ORs had

Table 1.	Characteristics	of studies	included in	the meta-analy	ysis
----------	-----------------	------------	-------------	----------------	------

References	Country	Race	Study design	Characteristics of cases and controls		SNPs	Genotyped No.		
				Cases	Controls		Cases	Controls	
Taylor, 1996 (58)	United States	Caucasian, African	Hospital based	Patients under prostatectomy	BPH or impotence patients	Taql	108	170	
Ingles, 1998 (55)	United States	African	Nested in cohort study HLAM	Identified by SEEER and California State cancer registry	Randomly selected from the non-diseased of HLAM Cohort study	Poly A, Bsml	151	174	
Kibel, 1998 (53)	United States	Caucasian, African	Hospital based	Metastatic prostate cancer	Urology patients without prostate cancer	Taql	41	41	
Ma, 1998 (49)	United States	Caucasian	Nested in PHS cohort study	Confirmed by medical records	Selected from the the cohort study without history of prostate cancer	Taql, Bsml	372	589, 591	
Watanabe, 1999 (27)	Japan	Asian	Hospital based	Histologically confirmed	Urology patients without prostate cancer	Taql	100	202	
Correa-Cerro, 1999 (54)	Germany	Caucasian	Hospital based	Histologically confirmed	Free of prostate cancer, confirmed by DRE and PSA	Taql, Fokl	106, 118	95, 89	
Furuya, 1999 (25)	Japan	Asian	Hospital based	Not stated	Urology patients without prostate cancer	Taql	66	60	
Habuchi, 2000 (37)	Japan	Asian	Hospital based	Histologically confirmed	BPH and non-BPH individuals, confirmed by DRE and PSA	Taql, Bsml, Apal	222	337	
Blazer, 2000 (26)	United States	Caucasian, African	Community based	Histologically confirmed	Randomly selected from Piedmont Triad community	Taql	77	183	
Chokkalingam, 2001 (59)	China	Asian	Polulation based	Histologically confirmed	Randomly selected from regional population, confirmed by DRE and PSA	Bsml, Fokl	161, 187	297, 302	
Hamasaki, 2001 (47)	Japan	Asian	Hospital based	Histologically confirmed	No prostate cancer and BPH, confirmed by DRE and PSA	Taql	115	133	
Gsur, 2002 (60)	Austria	Caucasian	Hospital based	Histologically confirmed	Patients with BPH symptoms, confirmed by DRE and PSA	Taql	190	190	
Medeiros, 2002 (61)	Portugal	Caucasian	Hospital based	Histologically confirmed	Confirmed by PSA	Taql	162	206	
Tayeb, 2003 (62)	United Kingdom	Caucasian	Selected from pathology database	Histologically confirmed	BPH	Taql	21	379	
Liu, 2003 (63)	China	Asian	Hospital based	Histologically confirmed	Healthy individuals, free of prostate cancer, confirmed by DRE and PSA	Bsml	103	106	
Nam, 2003 (30)	Canada	Caucasian, African, Asian	Hospital based	Histologically confirmed	Selected from community, confirmed by DRE and PSA	Bsml	483	548	
Bodiwala, 2004 (64)	United Kingdom	Caucasian	Hospital based	Histologically confirmed	BPH	Taql, Fokl, CDX2	368	243	
Cheteri, 2004 (29)	United States	Caucasian	Population-based	Histologically confirmed	Selected from randomly-digit dialing	Poly A, Bsml, Fokl	558, 543, 552	523, 510, 521	
Huang, 2004 (28)	Taiwan	Asian	Hospital based	Histologically confirmed	Healthy individuals, free of prostate cancer, confirmed by DRE and PSA	Taql, Bsml, Apal	160	205	
Maistro, 2004 (35)	Brazil	Caucasian, African	Population based	Histologically confirmed	Selected from community, confirmed by DRE and PSA	Taql, Apal	165	200	
Oakley-Girvan	United States	Caucasian,	Population based	Histologically confirmed	Free of prostate cancer, confirmed by DRE	Taql, Bsml,	345	282	

Vitamin D receptor polymorphisms and prostate cancer

2004 (32)		African				Apal, Fokl		
Tayeb, 2004 (36)	United Kingdom	Caucasian	Hospital based	Histologically confirmed	BPH	Taql, Fokl	28	56
Yang, 2004 (65)	China	Asian	Hospital based	Histologically confirmed	Prostate cancer-free individuals	Fokl	80	96
Hayes, 2005 (15)	Australia	Caucasian	Population based	Histologically confirmed	Randomly selected from the State Electoral Roll	Bsml, Fokl	812	713
Mishra, 2005 (66)	India	Indian	Hospital based	Histologically confirmed	Free of prostate cancer, confirmed by PSA	Fokl	128	147
John, 2005 (34)	United States	Caucasian	Population based	Identified by SEEER cancer registry, advanced stage	Selected from randomly-digit dialing	Taql, Fokl, CDX2	424, 425, 417	436, 437, 435
Chaimuangraj, 2006 (24)	Thailand	Asian	Hospital based	Histologically confirmed	BPH and outpatients without urinary syndromes, confirmed by PSA	Taql, Apal	28	74
Huang, 2006 (67)	Taiwan	Asian	Hospital based	Pathologically confirmed	BPH and non-BPH individuals, confirmed by PSA	Fokl	416	691
Rukin, 2006 (68)	United Kingdom	Caucasian	Community based	Histologically confirmed; clinically malignant+positive bone scan and PSA	ВРН	Fokl	430	320
Andersson, 2006 (69)	Sweden	Caucasian	Hospital based	Histologically confirmed	Randomly selected from DNA bank	Taql	137	176
Li, 2007 (40)	United states	Mixed	Nested in PHS cohort study	Self report, review of medical documents and/or pathological confirmation	Selected from prostate cancer-free indiviuals	Bsml, Fokl	1034, 1010	1566, 1432
Mikhak, 2007 (48)	United states	Mixed	Nested in HPFS cohort study	Self report and review of medical documents	Free of prostate cancer, confirmed by PSA	Bsml, Fokl, CDX2	646, 670, 688	669, 673, 689
Holick, 2007 (14)	United States	Mixed	Population based	Histologically confirmed	Randomly selected from King community. No prostate cancer history and normal DRE	Taql, Bsml, Fokl	586, 590, 583	545, 541, 552
Onen, 2008 (31)	Turkey	Caucasian	Hospital based	Pathologically confirmed	Examined by DRE, PSA and transrectal ultrasound	Taql, Bsml, Apal	133	157
Torkko, 2008 (33)	United States	Mixed	Nested in SABOR cohort study	Histologically confirmed	PSA<2.5 ng/mL, normal DRE	Fokl, CDX2	585	761
Onsory, 2008 (70)	India	Indian	Hospital based	Histologically confirmed	Select from patients for minor treatment	Taql	100	100

Note: DRE, digital rectal examination; PSA, prostate-specific antigen; Li, 2007: mostly Caucasian; Mikhak, 2007: mostly Caucasian; Holick, 2007: Caucasian 95.9% and African American 4.1%; Torkko, 2008: NHW 56% and HW 44%, excluding African Americans.

Figure 1. Minor allele frequencies of *Taql, Apal, Bsml, Fokl* and *CDX2* polymorphisms among control subjects by different ethnicities. Each data point represents an individual study for the indicated association.

been fluctuating around 0.9 in the past years (in random effect model, summary OR for t/t versus T/T: 0.85 at the end of 2002, 0.95 at the end of 2004, 0.91 at the end of 2006, and 0.87 till the end of 2008). In the funnel plot analysis of publication bias (contrast of homozygous genotype plotted against the precision), the shape of the funnel plot seemed asymmetrical, with three studies located in the left corner of the plot (**Figurer 3**). However, an Egger's test did not show any publication bias (P = 0.217).

Apal and CDX2. Data were too limited to apply recursive cumulative meta-analysis. The shape of the funnel plot seemed symmetrical for both Apal and CDX2 (**Figure 3**), which was confirmed by an Egger's test (P = 0.805 for Apal; P = 0.846 for CDX2).

Bsml. The magnitude of the summary ORs had

been stable in the past years (in random effect model, summary OR for *B/B* versus *b/b*: 0.85 at the end of 2002, 0.88 at the end of 2004, 0.88 at the end of 2006, and 0.95 at the end of 2008). In the funnel plot analysis, the shape seemed symmetrical (**Figure 3**), and an Egger's test did not show any publication bias (P = 0.210).

Fokl. The magnitude of the summary ORs had been fluctuating around 1.0 in the past years (in random effect model, summary OR for f/f versus F/F: 0.98 at the end of 2004, 0.96 at the end of 2006, and 1.02 at the end of 2008). In the funnel plot analysis, the shape seemed asymmetrical, with three studies located at the left corner (**Figure 3**). An Egger's test proved that there was a significant publication bias in the association between the *Fokl* polymorphism and prostate cancer risk (P = 0.011).

	Studies No.					
Model	(Participants)	Random-effects OR [95% CI] Fixed-effects OR [95% CI]				
Taql (t vs. T allele)						
Homozygote	23 (5,288)	0.87 [0.75-1.02]	0.87 [0.75-1.00]			
Dominant	23 (9,123)	0.91 [0.81-1.03]	0.91 [0.83-1.00]			
Recessive	23 (9,123)	0.88 [0.75-1.03]	0.88[0.78-1.01]			
Apal (a vs. A allele)						
Homozygote	6 (1,309)	0.97 [0.68-1.39]	0.96 [0.76-1.22]			
Dominant	6 (2,319)	0.98 [0.67-1.43]	1.04 [0.86-1.25]			
Recessive	6 (2,319)	1.05 [0.87-1.27]	1.05 [0.87-1.27]			
Bsml (B vs. b allele)						
Homozygote	13 (6,725)	0.95 [0.85-1.07]	0.95 [0.85-1.07]			
Dominant	13 (11,481)	0.87 [0.77-0.98]	0.89 [0.82-0.96]			
Recessive	13 (11,481)	1.01 [0.91-1.12]	1.01 [0.91-1.12]			
Fokl (f vs. F allele)						
Homozygote	16 (7,572)	1.02 [0.91-1.16]	1.03 [0.93-1.14]			
Dominant	16 (14,061)	1.02 [0.94-1.12]	1.03 [0.96-1.11]			
Recessive	16 (14,061)	1.00 [0.92-1.10]	1.00 [0.91-1.09]			
CDX2 (A vs. G allele)						
Homozygote	4 (2,841)	1.07 [0.81-1.41]	1.07 [0.81-1.40]			
Dominant	4 (4,186)	1.04 [0.90-1.20]	1.04 [0.92-1.18]			
Recessive	4 (4,186)	1.05 [0.80-1.38]	1.05 [0.80-1.38]			

Table 2. Summary ORs and 95% Cls for various models in the overall population

Discussion

In the present meta-analysis, we examined five well-characterized SNPs of the VDR gene for their associations with prostate cancer risk. Our study demonstrated that there was significant difference in the minor allele frequencies between Asians and the other two ethnicities (Caucasians and Africans). Different from the conclusions of previous two metaanalyses [16, 17], we provided some new evidence to support an association between VDR polymorphisms and prostate cancer risk. The Tagl t allele and Bsml B allele seemed to be associated with reduced prostate cancer risk in the overall population, whereas the Apal a allele was associated with a reduced prostate cancer risk only in Asian populations. In contrast, the Fokl f allele was associated with a trend of increased prostate cancer risk only in Caucasian populations in the dominant model. We also examined the association between VDR polymorphisms and prostate cancer risk by tumor stage (local or advanced), but we failed to find any significant findings, suggesting that these variants may be indeed associated with risk of developing the disease rather than disease progression.

Prostate cancer is a multifactorial disease that results from complex interactions between genetic and environmental factors [38, 39]. The associations of serum vitamin D and VDR polymorphisms with prostate cancer risks have been explored for decades without conclusive results [40, 41], partly because of small sizes of the published studies. This may be also true that previous two meta-analyses of prostate cancer failed to find any association in the examined VDR polymorphisms, including Tagl, Apal, Bsml, Fokl, and polyA. In the present meta-analysis with a much larger number of subjects included, we observed an association of variant Tagl t, Bsml B and Apal a alleles with reduced prostate cancer risk and the Fokl f allele with increased prostate cancer risk. These findings are partly supported by another recent systemic evaluation of Bsml and Fokl VDR polymorphisms with skin cancer risks [42]. Considering the relative weak association

Vitamin D receptor polymorphisms and prostate cancer

Model	Caucasian	African	Asian
Taql (t vs. T allele)			
No. studies	16	5	6
Homozygote	0.86 [0.74-1.01]	1.30 [0.64-2.62]	0.52 [0.21-1.25]
Dominant	0.93 [0.81-1.06]	1.33 [0.68-2.59]	0.81 [0.63-1.03]
Recessive	0.88 [0.74-1.04]	1.18 [0.61-2.29]	0.51 [0.22-1.22]
Apal (a vs. A allele)			
No. studies	3	2	3
Homozygote	1.32 [0.82-2.11]	0.78 [0.34-1.78]	0.67 [0.47-0.99]
Dominant	1.31 [0.89-1.93]	1.12 [0.73-1.74]	0.61 [0.43-0.87]
Recessive	1.11 [0.80-1.54]	0.72 [0.38-1.38]	1.06 [0.82-1.36]
Bsml (B vs. b allele)			
No. studies	8	3	5
Homozygote	0.98 [0.87-1.10]	0.93 [0.56-1.55]	0.72 [0.38-1.36]
Dominant	0.92 [0.84-1.01]	0.91 [0.66-1.26]	0.69 [0.44-1.08]
Recessive	1.03 [0.93-1.15]	1.04 [0.67-1.63]	0.78 [0.43-1.41]
Fokl (f vs F allele)			
No. studies	11	1	3
Homozygote	1.09 [0.97-1.23]		0.86 [0.66-1.14]
Dominant	1.08 [1.00-1.17]		0.90 [0.73-1.12]
Recessive	1.03 [0.93-1.15]		0.91 [0.72-1.15]
CDX2 (A vs. G allele)			
No. studies	3	N/A	N/A
Homozygote	0.96 [0.69-1.34]		
Dominant	1.05 [0.85-1.30]		
Recessive	0.93 [0.67-1.29]		

 Table 3. Summary ORs and 95% Cls for various models stratified by ethnicity (Random effects)

of *VDR* polymorphisms with prostate cancer risks, different conclusions of current and previous meta-analyses could be due to improved statistical power in the present analysis, because previous analyses did show similar ORs that did not reach a statistical significance.

So far, the influence of *VDR* polymorphisms on VDR protein function and signaling is largely unknown. The polymorphisms for *Taql, Bsml* and *Apal* are probably nonfunctional because they are either located within intron (*Bsml* and *Apal* in intron 8), which will be removed during mRNA post-transcriptional modification, or result in no amino acid sequence change (*Taql* in exon 9). Therefore, their linkage disequilibrium (LD) with other unidentified functional polymorphisms elsewhere in the *VDR* gene is likely to explain the observed associations. Since these three polymorphisms are located in the 3'-UTR of the *VDR* gene, some

investigators suggested that they might alter VDR mRNA levels through regulation of mRNA stability [43]. Although our data indicated that Tagl, Bsml and Apal polymorphisms were individually associated with prostate cancer risk, they could have a synergistic effects, such as haplotypes [44]. In terms of the Fokl polymorphism, the association of Fokl f allele with increased prostate cancer risk was consistent with previous reports, which showed a reduced luciferase activity, compared with the F allele. In this case, the tumor counteracting activity of vitamin D in the f allele carriers may be reduced due to decreased transcription of the VDR-responsive genes [12].

Ethnicity is an important biological factor, which may influence VDR functions through gene-gene interactions. In our analysis, the association of *Apal* and *Fokl* polymorphisms with prostate cancer risk was observed in

A. Taql

	Experime	ental	Contr	ol		Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl		
Andersson, 2006	86	137	109	176	4.7%	1.04 [0.65, 1.64]			
Blazer, 2000	53	77	115	183	3.5%	1.31 [0.74, 2.30]			
Bodiwala 2004	235	368	163	243	6.6%	0.87 [0.62, 1.22]			
Chaimuangraj,2006	6	28	15	74	1.2%	1.07 [0.37, 3.11]			
Correa-Cerro, 1999	58	106	63	95	3.5%	0.61 [0.35, 1.09]			
Furuya, 1999	25	66	19	60	2.3%	1.32 [0.63, 2.75]			
Gsur, 2002	119	190	109	190	5.4%	1.25 [0.83, 1.88]			
Habuchi, 2000	46	222	84	337	5.4%	0.79 [0.52, 1.18]			
Hamasaki, 2001	24	115	42	133	3.4%	0.57 [0.32, 1.02]			
Holick, 2007	348	586	357	545	8.8%	0.77 [0.60, 0.98]			
Huang 2004	14	160	26	205	2.6%	0.66 [0.33, 1.31]			
John, 2005	260	424	283	436	8.0%	0.86 [0.65, 1.13]			
Kibel, 1998	22	41	26	41	1.7%	0.67 [0.28, 1.62]			
Ma, 1999	238	372	385	589	8.1%	0.94 [0.72, 1.23]			
Maistro 2004	105	165	105	200	5.2%	1.58 [1.04, 2.41]			
Medeiros, 2002	110	162	133	206	5.0%	1.16 [0.75, 1.80]	- +-		
Oakley-Girvan 2004	221	345	177	292	7.0%	1.16 [0.84, 1.60]	- +		
Onen, 2008	71	133	100	157	4.5%	0.65 [0.41, 1.05]			
Onsory, 2008	45	100	57	100	3.6%	0.62 [0.35, 1.08]			
Tayeb, 2003	14	21	243	379	1.6%	1.12 [0.44, 2.84]			
Tayeb, 2004	3	28	24	56	0.8%	0.16 [0.04, 0.59]	•		
Taylor, 1996	77	108	116	170	3.9%	1.16 [0.68, 1.96]			
Watanabe, 1999	20	100	42	202	3.2%	0.95 [0.52, 1.73]			
Total (95% CI)		4054		5069	100.0%	0.91 [0.81, 1.03]	•		
Total events	2200		2793						
Heterogeneity: Tau ² = 0	0.03; Chi ² =	= 34.93,	df= 22 (P = 0.0	4); I ≃ = 37°	%		1	
Test for overall effect: Z = 1.43 (P = 0.15) 0.1 0.2 0.5 1 2 5 10									

B. Apal

	Cas	е	Contr	ol		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	М	-H, Rando	<u>m, 95% (</u>	1
Chaimuangraj,2006	23	28	64	75	7.6%	0.79 [0.25, 2.52]	_			
Habuchi, 2000	190	222	301	337	17.4%	0.71 [0.43, 1.18]			-	
Huang 2004	119	160	175	205	17.1%	0.50 [0.29, 0.84]	-			
Maistro 2004	110	165	130	200	19.0%	1.08 [0.70, 1.66]		-		
Oakley-Girvan 2004	232	345	183	292	21.4%	1.22 [0.88, 1.70]		+	-	
Onen, 2008	99	133	94	157	17.5%	1.95 [1.18, 3.23]			-	
Total (95% Cl)		1053		1266	100.0%	0.98 [0.67, 1.43]		-	►	
Total events	773		947							
Heterogeneity: Tau ² = (0.15; Chi ^a	'= 16.9	0, df = 5 ((P = 0.0)	l05); l² = 7	'0%				5 10
Test for overall effect: Z	C = 0.11 (F	P = 0.91	1)				0.1 0.2	0.0 1	2	5 10

Figure 2. A and B. ORs of prostate cancer associated with VDR polymorphisms under dominant model by random effects. Comparison of minor allele vs. common allele.

Asian and Caucasian populations, respectively. Although the underlying mechanisms for the observed ethnical difference in prostate cancer risk need to be elucidated, the more pronounced tumor protecting effect of the *Apal a* allele in Asian populations may be probably because the *a* allele frequency among Asians was significantly higher (66.2%) than that of the other two ethnic groups (Caucasians, 41.6% and Africans, 37.1%). Regarding to the *Fokl* polymorphism, although Asians showed a similar *f* allele frequency to that of Caucasians (Caucasian, 39.7%; Asian, 47.4%), the Asian study sample size (3 studies in Asians *versus* 11 studies in Caucasians) may be too small to capture potential differences.

Despite the new findings from this analysis, we still cannot exclude the possibility that current significant results may be detected by chance alone, because multiple factors could have influenced our analysis, which might mask or exaggerate the true associations and thus require confirmation from additional analysis with more published studies in the future. First, a large proportion of studies included

Vitamin D receptor polymorphisms and prostate cancer

C. Bsml

	Cas	е	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Cheteri, 2004	336	543	340	510	10.6%	0.81 [0.63, 1.04]	
Chokkalingam, 2001	21	161	38	297	2.2%	1.02 [0.58, 1.81]	
Habuchi, 2000	50	222	128	337	0.0%	0.47 [0.32, 0.70]	
Hayes, 2005	517	812	481	713	14.8%	0.85 [0.68, 1.05]	
Holick, 2007	369	590	364	541	11.3%	0.81 [0.64, 1.04]	
Huang 2004	13	160	32	205	1.5%	0.48 [0.24, 0.94]	
Ingles, 1998	86	151	102	174	3.6%	0.93 [0.60, 1.45]	
Li, 2007	652	1034	991	1566	24.1%	0.99 [0.84, 1.17]	+
Liu, 2003	8	103	6	106	0.6%	1.40 [0.47, 4.20]	
Mikhak, 2007	404	646	420	669	13.4%	0.99 [0.79, 1.24]	-
Nam, 2003	365	478	411	536	8.1%	0.98 [0.73, 1.31]	
Oakley-Girvan 2004	219	345	175	292	6.7%	1.16 [0.84, 1.60]	+
Onen, 2008	80	133	107	157	3.0%	0.71 [0.44, 1.14]	
Total (95% CI)		5378		6103	100.0%	0.92 [0.84, 1.00]	•
Total events	3120		3595				
Heterogeneity: Tau ² = 0).00; Chi [≠]	= 11.40), df = 11	(P = 0.4)	41); I ² = 4	%	
Test for overall effect: Z = 2.03 (P = 0.04) 0.1 0.2 0.5 1 2 5 10							

D. Fokl

			Cond	01		Ouus riduu	Ouus Rauu
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Bodiwala 2004	223	368	135	243	5.5%	1.23 [0.89, 1.71]	+
Cheteri, 2004	348	552	314	521	8.3%	1.12 [0.88, 1.44]	
Chokkalingam, 2001	136	187	215	302	3.8%	1.08 [0.72, 1.62]	
Correa-Cerro, 1999	68	118	51	89	2.2%	1.01 [0.58, 1.77]	
Hayes, 2005	471	811	420	713	10.4%	0.97 [0.79, 1.19]	
Holick, 2007	361	583	330	552	8.6%	1.09 [0.86, 1.39]	
Huang 2004	291	416	502	691	7.4%	0.88 [0.67, 1.15]	
John, 2005	272	425	266	437	7.1%	1.14 [0.87, 1.51]	
Li, 2007	627	1010	860	1432	13.0%	1.09 [0.92, 1.28]	-
Mikhak, 2007	438	670	418	673	9.4%	1.15 [0.92, 1.44]	+
Mishra, 2005	50	128	85	147	2.9%	0.47 [0.29, 0.76]	
Oakley-Girvan 2004	176	345	150	292	5.9%	0.99 [0.72, 1.35]	-+-
Rukin, 2006	369	430	276	320	3.7%	0.96 [0.63, 1.46]	
Tayeb, 2004	12	28	35	56	0.9%	0.45 [0.18, 1.13]	
Torkko, 2008	372	585	472	761	9.4%	1.07 [0.86, 1.34]	-
Yang, 2004	54	80	72	96	1.6%	0.69 [0.36, 1.34]	
Total (95% CI)		6736		7325	100.0%	1.02 [0.94, 1.12]	+
Total events	4268		4601				
Heterogeneity: Tau ² = 0.0 Test for overall effect: 7 =	01; Chi ^z ∘ : 0.50 (P	= 20.65 = 0.62	5, df = 15)	(P = 0.1	15); I² = 2	7%	0.1 0.2 0.5 1 2 5 10

E. CDX2	Case	е	Contr	ol		Odds Ratio		Odds R	atio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M	-H, Randon	n, 95% (CI	_
Bodiwala 2004	148	368	85	243	15.6%	1.25 [0.89, 1.75]		+	-		
John, 2005	149	417	172	435	21.7%	0.85 [0.64, 1.12]					
Mikhak, 2007	282	688	264	689	32.5%	1.12 [0.90, 1.39]		-	-		
Torkko, 2008	205	585	264	761	30.3%	1.02 [0.81, 1.27]		-			
Total (95% CI)		2058		2128	100.0%	1.04 [0.90, 1.20]		•			
Total events	784		785								
Heterogeneity: Tau ² =	0.00; Ch	* = 3.6	6, df = 3 (P = 0.3	0); I ^z = 18	%		0.5 1	-	<u> </u>	
Test for overall effect:	Z = 0.56 ((P = 0.5	57)				0.1 0.2	0.0 1	2	5 10	

Figure 2. C, D and E. ORs of prostate cancer associated with VDR polymorphisms under dominant model by random effects. Comparison of minor allele vs. common allele.

BPH as their controls, which is characterized as prostatic stromal and epithelial cell hyperplasia, a risk factor for prostate cancer. The rationale for such an inclusion is based on the assumption that BPH is a benign disease that has a similar probability of developing prostate cancer to that of normal prostate tissues. Furthermore, some epidemiological studies did not support an association of increased BPH risk with *VDR* polymorphisms,

Figure 3. Funnel plot analysis to detect publication bias. Each point represents an individual study for the indicated association.

compared with normal controls [45, 46], although other investigations did observe antiproliferative effect of 1,25-dihydroxyvitamin D_3 on primary culture of human prostatic cells [3] and an increased risk of BPH with *VDR* polymorphisms [37, 47]. In our meta-

		, , , , , , , , , , , , , , , , , , , ,
Models	Local	Advanced
Taql (t vs. T allele)		
No. studies	2	5
homozygote	0.94 [0.43-2.06]	0.89 [0.49-1.63]
Dominant	0.95 [0.49-1.86]	0.89 [0.68-1.16]
Recessive	0.75 [0.37-1.50]	0.90 [0.48-1.66]
Apal (a vs. A allele)		
No. studies	1	1
Bsml (B vs. b allele)		
No. studies	3	3
homozygote	1.03 [0.36-2.91]	0.77 [0.48-1.24]
Dominant	0.80 [0.63-1.03]	0.73 [0.40-1.34]
Recessive	1.10 [0.40-3.03]	0.84 [0.55-1.28]
Fokl (f vs F allele)		
No. studies	3	4
homozygote	1.04 [0.77-1.40]	1.20 [0.93-1.55]
Dominant	1.05 [0.86-1.29]	1.07 [0.89-1.29]
Recessive	1.00 [0.79-1.28]	1.18 [0.93-1.48]
CDX2 (A vs. G allele)		
No. studies	N/A	1

 Table 4. Summary ORs and 95% Cls for various models stratified by tumor stage (Random effect)

analysis, we included BPH patients in the control groups because the data were too limited to reach any meaningful results, if BPH patients were used as an additional comparison group.

Second, it remains unclear how vitamin D may impact prostate cancer risk. It is known that tumor suppressor genes mainly work in the initial stage of tumor development, and multiple mutations in oncogenes will drive tumor growth and progression. If VDR polymorphisms did modify antitumor activity of vitamin D in prostate cancer development, it is more likely to occur in populations with high level of circulating vitamin D and in the very early stage of prostate carcinogenesis. Although our analysis did not support an association of VDR polymorphisms with prostate cancer progression, further analysis based on more detailed tumor information, such as the TNM stage and Gleason scores, may provide more valuable information. In terms of vitamin D status, data from individual studies supported the notion that high plasma 1.25-dihydroxyvitamin D₃ interacted with VDR polymorphisms and thus modified prostate

cancer risks [40, 48, 49]. It has been hypothesized that vitamin D exerts its antitumor activity through its cytoplasm receptor, VDR [50]. However, recent reports have shown various VDR-independent effects of vitamin D, including regulation of calcium [51] and, more importantly, inhibition of cancer cell proliferation [52]. Given these, further mechanistic investigations are necessary to examine the antitummor activity of vitamin D in VDR-knockout prostate cancer cell lines.

Third, single genetic polymorphism described here may have a weak association with prostate cancer risks, which is beyond detection capacity of our current analysis. However, combined analysis of multiple polymorphisms may be more informative than a single-locus analysis to identify individuals at high risk of prostate cancer. Indeed, there was LD among the polymorphisms of *Taql, Apal, Bsml* and *polyA* [26, 53, 54]. The *BL* haplotype (Bsml-polyA) was reported to be associated with increased risk of advanced prostate cancer risk [55] and the four-locus *FBAt* haplotype (Fokl-Bsml-Apal-Taql) had an inverse association with the disease [56]. Without detailed individual genotyping information, we could not examine such haplotypes for their impact on prostate cancer risk.

Although considerable efforts have been made to test possible associations between VDR polymorphisms and prostate cancer risk, there are serious limitations inherited from the published studies. First, different study design and selection criteria for the cases and controls may have significant heterogeneity among studies. In addition, the genotype distributions among control subjects did not meet HWE in several studies of Taql, Apal and Bsml polymorphisms. Second, demographic parameters were not well matched or statistically adjusted in a few studies. Third, although Egger's test and funnel plots are commonly used to detect publication bias in the meta-analyses, the appearance of the funnel plots is influenced dramatically by effect size and the scale on the y-axis, whereas the power of Egger's test to detect bias is low using small numbers of studies. In our analysis, the Egger's test revealed significant publication bias in the Fokl polymorphism, which was mainly caused by small studies, as suggested by the Funnel plot, as well as some unpublished studies, but this publication bias may also be explained by studies of lesser quality, resulting in an exaggerated association effect. To reduce the impact of publication bias, we further performed an adjusted meta-analysis for Fokl polymorphism, using the trim and fill method described by Duval and Tweedie [57]. However, the corresponding pooled ORs were not substantially altered after adjustment of the missing studies on the right of the funnel plot (data not shown). Fourth, in addition to ethnicity and tumor stage, previous studies had examined prostate cancer risk associated with VDR polymorphisms in the presence of multiple environmental or clinicopathological factors, such as age, sun exposure, alcohol consumption, PSA levels and estrogen receptor status. However, we were unable to make a systemic evaluation based on these stratification factors, because definitions of these factors varied considerably across the studies, and the number of reports for individual factors, such as PSA, was small. Fifth, it should be noted that random and fixed effects models test different research questions. A random effects model assumes that each individual study is estimating its own OR, whereas a fixed effects model assumes that every study is estimating the same OR (a single common effect that underlies every study in the meta-analysis). Therefore, our results should be interpreted cautiously.

Overall, our meta-analysis found statistical evidence that supports an association of *VDR* polymorphisms of *Taql, Apal, Bsml* and *Fokl,* but not *CDX2*, with prostate cancer risk. Larger studies of different ethnic populations, especially with detailed information about tumor characteristics, such as tumor stage and Gleason scores, are needed to confirm our findings.

Acknowledgments

This work was supported in part by the National Institutes of Health grants R01 CA 131274 (Q. Wei), R01 ES011740 (Q. Wei) and R01 CA100264 (Q. Wei).

Address correspondence to: Department of Epidemiology, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1365, Houston, TX77030, USA; Phone: 713-792-3020; Fax: 713-563-0999; Email: gwei@mdanderson.org.

References

- Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T and Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71-96.
- [2] Corder EH, Guess HA, Hulka BS, Friedman GD, Sadler M, Vollmer RT, Lobaugh B, Drezner MK, Vogelman JH and Orentreich N. Vitamin D and prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiol Biomarkers Prev 1993; 2: 467-472.
- [3] Peehl DM, Skowronski RJ, Leung GK, Wong ST, Stamey TA and Feldman D. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res 1994; 54: 805-810.
- [4] Skowronski RJ, Peehl DM and Feldman D. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology 1993; 132: 1952-1960.
- [5] Hanchette CL and Schwartz GG. Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer 1992; 70: 2861-2869.
- [6] Miller GJ, Stapleton GE, Ferrara JA, Lucia MS, Pfister S, Hedlund TE and Upadhya P. The human prostatic carcinoma cell line LNCaP expresses biologically active, specific receptors for 1 alpha,25-dihydroxyvitamin D3. Cancer

Res 1992; 52: 515-520.

- [7] Towsend K, Trevino V, Falciani F, Stewart PM, Hewison M and Campbell MJ. Identification of VDR-responsive gene signatures in breast cancer cells. Oncology 2006; 71: 111-123.
- [8] Campbell MJ, Gombart AF, Kwok SH, Park S and Koeffler HP. The anti-proliferative effects of 1alpha,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Oncogene 2000; 19: 5091-5097.
- [9] Miyamoto K, Kesterson RA, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S, Inoue Y, Morita K, Takeda E and Pike JW. Structural organization of the human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol 1997; 11: 1165-1179.
- [10] Crofts LA, Hancock MS, Morrison NA and Eisman JA. Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts. Proc Natl Acad Sci U S A 1998; 95: 10529-10534.
- [11] Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R and Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J Bone Miner Res 1996; 11: 1850-1855.
- [12] Gross C, Krishnan AV, Malloy PJ, Eccleshall TR, Zhao XY and Feldman D. The vitamin D receptor gene start codon polymorphism: a functional analysis of Fokl variants. J Bone Miner Res 1998; 13: 1691-1699.
- [13] Arai H, Miyamoto KI, Yoshida M, Yamamoto H, Taketani Y, Morita K, Kubota M, Yoshida S, Ikeda M, Watabe F, Kanemasa Y and Takeda E. The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J Bone Miner Res 2001; 16: 1256-1264.
- [14] Holick CN, Stanford JL, Kwon EM, Ostrander EA, Nejentsev S and Peters U. Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer Epidemiol Biomarkers Prev 2007; 16: 1990-1999.
- [15] Hayes VM, Severi G, Padilla EJ, Eggleton SA, Southey MC, Sutherland RL, Hopper JL and Giles GG. Genetic variants in the vitamin D receptor gene and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2005; 14: 997-999.
- [16] Ntais C, Polycarpou A and Ioannidis JP. Vitamin D receptor gene polymorphisms and risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2003; 12: 1395-1402.
- [17] Berndt SI, Dodson JL, Huang WY and Nicodemus KK. A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk. J Urol 2006; 175: 1613-1623.

- [18] DerSimonian R and Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-188.
- [19] Lau J, Ioannidis JP and Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med 1997; 127: 820-826.
- [20] Lau J, Antman EM, Jimenez-Silva J, Kupelnick B, Mosteller F and Chalmers TC. Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med 1992; 327: 248-254.
- [21] Egger M, Davey Smith G, Schneider M and Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj 1997; 315: 629-634.
- [22] Luscombe CJ, French ME, Liu S, Saxby MF, Jones PW, Fryer AA and Strange RC. Outcome in prostate cancer associations with skin type and polymorphism in pigmentation-related genes. Carcinogenesis 2001; 22: 1343-1347.
- [23] Suzuki K, Matsui H, Ohtake N, Nakata S, Takei T, Koike H, Nakazato H, Okugi H, Hasumi M, Fukabori Y, Kurokawa K and Yamanaka H. Vitamin D receptor gene polymorphism in familial prostate cancer in a Japanese population. Int J Urol 2003; 10: 261-266.
- [24] Chaimuangraj S, Thammachoti R, Ongphiphadhanakul B and Thammavit W. Lack of association of VDR polymorphisms with Thai prostate cancer as compared with benign prostate hyperplasia and controls. Asian Pac J Cancer Prev 2006; 7: 136-139.
- [25] Furuya Y, Akakura K, Masai M and Ito H. Vitamin D receptor gene polymorphism in Japanese patients with prostate cancer. Endocr J 1999; 46: 467-470.
- [26] Blazer DG, 3rd, Umbach DM, Bostick RM and Taylor JA. Vitamin D receptor polymorphisms and prostate cancer. Mol Carcinog 2000; 27: 18-23.
- [27] Watanabe M, Fukutome K, Murata M, Uemura H, Kubota Y, Kawamura J and Yatani R. Significance of vitamin D receptor gene polymorphism for prostate cancer risk in Japanese. Anticancer Res 1999; 19: 4511-4514.
- [28] Huang SP, Chou YH, Wayne Chang WS, Wu MT, Chen YY, Yu CC, Wu TT, Lee YH, Huang JK, Wu WJ and Huang CH. Association between vitamin D receptor polymorphisms and prostate cancer risk in a Taiwanese population. Cancer Lett 2004; 207: 69-77.
- [29] Cheteri MB, Stanford JL, Friedrichsen DM, Peters MA, Iwasaki L, Langlois MC, Feng Z and Ostrander EA. Vitamin D receptor gene polymorphisms and prostate cancer risk. Prostate 2004; 59: 409-418.
- [30] Nam RK, Zhang WW, Trachtenberg J, Jewett MA, Emami M, Vesprini D, Chu W, Ho M, Sweet J, Evans A, Toi A, Pollak M and Narod SA. Comprehensive assessment of candidate genes and serological markers for the detection of prostate cancer. Cancer Epidemiol

Biomarkers Prev 2003; 12: 1429-1437.

- [31] Onen IH, Ekmekci A, Eroglu M, Konac E, Yesil S and Biri H. Association of genetic polymorphisms in vitamin D receptor gene and susceptibility to sporadic prostate cancer. Exp Biol Med (Maywood) 2008; 233: 1608-1614.
- [32] Oakley-Girvan I, Feldman D, Eccleshall TR, Gallagher RP, Wu AH, Kolonel LN, Halpern J, Balise RR, West DW, Paffenbarger RS, Jr. and Whittemore AS. Risk of early-onset prostate cancer in relation to germ line polymorphisms of the vitamin D receptor. Cancer Epidemiol Biomarkers Prev 2004; 13: 1325-1330.
- [33] Torkko KC, van Bokhoven A, Mai P, Beuten J, Balic I, Byers TE, Hokanson JE, Norris JM, Baron AE, Lucia MS, Thompson IM and Leach RJ. VDR and SRD5A2 polymorphisms combine to increase risk for prostate cancer in both non-Hispanic White and Hispanic White men. Clin Cancer Res 2008; 14: 3223-3229.
- [34] John EM, Schwartz GG, Koo J, Van Den Berg D and Ingles SA. Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Res 2005; 65: 5470-5479.
- [35] Maistro S, Snitcovsky I, Sarkis AS, da Silva IA and Brentani MM. Vitamin D receptor polymorphisms and prostate cancer risk in Brazilian men. Int J Biol Markers 2004; 19: 245-249.
- [36] Tayeb MT, Clark C, Haites NE, Sharp L, Murray GI and McLeod HL. Vitamin D receptor, HER-2 polymorphisms and risk of prostate cancer in men with benign prostate hyperplasia. Saudi Med J 2004; 25: 447-451.
- [37] Habuchi T, Suzuki T, Sasaki R, Wang L, Sato K, Satoh S, Akao T, Tsuchiya N, Shimoda N, Wada Y, Koizumi A, Chihara J, Ogawa O and Kato T. Association of vitamin D receptor gene polymorphism with prostate cancer and benign prostatic hyperplasia in a Japanese population. Cancer Res 2000; 60: 305-308.
- [38] Boyle P, Severi G and Giles GG. The epidemiology of prostate cancer. Urol Clin North Am 2003; 30: 209-217.
- [39] Wolk A. Diet, lifestyle and risk of prostate cancer. Acta Oncol 2005; 44: 277-281.
- [40] Li H, Stampfer MJ, Hollis JB, Mucci LA, Gaziano JM, Hunter D, Giovannucci EL and Ma J. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med 2007; 4: e103.
- [41] Ahn J, Peters U, Albanes D, Purdue MP, Abnet CC, Chatterjee N, Horst RL, Hollis BW, Huang WY, Shikany JM and Hayes RB. Serum vitamin D concentration and prostate cancer risk: a nested case-control study. J Natl Cancer Inst 2008; 100: 796-804.
- [42] Gandini S, Raimondi S, Gnagnarella P, Dore JF, Maisonneuve P and Testori A. Vitamin D and skin cancer: A meta-analysis. Eur J Cancer 2008;

- [43] Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN and Eisman JA. Prediction of bone density from vitamin D receptor alleles. Nature 1994; 367: 284-287.
- [44] Whitfield GK, Remus LS, Jurutka PW, Zitzer H, Oza AK, Dang HT, Haussler CA, Galligan MA, Thatcher ML, Encinas Dominguez C and Haussler MR. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 2001; 177: 145-159.
- [45] Schatzl G, Gsur A, Bernhofer G, Haidinger G, Hinteregger S, Vutuc C, Haitel A, Micksche M, Marberger M and Madersbacher S. Association of vitamin D receptor and 17 hydroxylase gene polymorphisms with benign prostatic hyperplasia and benign prostatic enlargement. Urology 2001; 57: 567-572.
- [46] Bousema JT, Bussemakers MJ, van Houwelingen KP, Debruyne FM, Verbeek AL, de La Rosette JJ and Kiemeney LA. Polymorphisms in the vitamin D receptor gene and the androgen receptor gene and the risk of benign prostatic hyperplasia. Eur Urol 2000; 37: 234-238.
- [47] Hamasaki T, Inatomi H, Katoh T, Ikuyama T and Matsumoto T. Significance of vitamin D receptor gene polymorphism for risk and disease severity of prostate cancer and benign prostatic hyperplasia in Japanese. Urol Int 2002; 68: 226-231.
- [48] Mikhak B, Hunter DJ, Spiegelman D, Platz EA, Hollis BW and Giovannucci E. Vitamin D receptor (VDR) gene polymorphisms and haplotypes, interactions with plasma 25hydroxyvitamin D and 1,25-dihydroxyvitamin D, and prostate cancer risk. Prostate 2007; 67: 911-923.
- [49] Ma J, Stampfer MJ, Gann PH, Hough HL, Giovannucci E, Kelsey KT, Hennekens CH and Hunter DJ. Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians. Cancer Epidemiol Biomarkers Prev 1998; 7: 385-390.
- [50] Davis CD. Vitamin D and cancer: current dilemmas and future research needs. Am J Clin Nutr 2008; 88: 565S-569S.
- [51] Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN and Goltzman D. Inactivation of the 25hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 2004; 279: 16754-16766.
- [52] Valrance ME and Welsh J. Breast cancer cell regulation by high-dose Vitamin D compounds in the absence of nuclear vitamin D receptor. J Steroid Biochem Mol Biol 2004; 89-90: 221-225.
- [53] Kibel AS, Isaacs SD, Isaacs WB and Bova GS. Vitamin D receptor polymorphisms and lethal

prostate cancer. J Urol 1998; 160: 1405-1409.

- [54] Correa-Cerro L, Berthon P, Haussler J, Bochum S, Drelon E, Mangin P, Fournier G, Paiss T, Cussenot O and Vogel W. Vitamin D receptor polymorphisms as markers in prostate cancer. Hum Genet 1999; 105: 281-287.
- [55] Ingles SA, Coetzee GA, Ross RK, Henderson BE, Kolonel LN, Crocitto L, Wang W and Haile RW. Association of prostate cancer with vitamin D receptor haplotypes in African-Americans. Cancer Res 1998; 58: 1620-1623.
- [56] Cicek MS, Liu X, Schumacher FR, Casey G and Witte JS. Vitamin D receptor genotypes/haplotypes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15: 2549-2552.
- [57] Duval S and Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455-463.