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Abstract: Severe sepsis is a common, expensive, and fatal condition with as many deaths annually as those from 

acute myocardial infarctions. The average cost per case seems to exceed $22,000. The increased morbidity and 

mortality attributed to sepsis could be due to the lack of our understanding of mediators and factors responsible 

for early cellular alterations and thus could not be intervened which result in progressive deterioration of cell and 

organ function and even death. It has been well documented that hepatocellular dysfunction occurs early in 

sepsis and it contributes to multiple organ failure and ultimately death; however the exact mechanism is poorly 

understood. We and others have shown that cytochrome P-450 (CYP) enzyme system, a superfamily of heme 

proteins responsible for the metabolism of a variety of endogenous and exogenous substances, plays a crucial 

role in the prevention of hepatocellular dysfunction in sepsis. In this review, we describe the alterations of CYP 

enzymes in the experimental model of sepsis and provide the limited information available in septic and severely 

injured patients. We also review the potential mechanism for the alterations of CYP enzymes in sepsis. Finally, we 

highlight the importance of future studies needed to understand the regulation of CYP isoforms to develop 

therapy for hepatocellular dysfunction in sepsis. 
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Introduction  

 

The CYP enzyme system is a superfamily of 

heme proteins responsible for the metabolism 

of a vast array of endogenous and exogenous 

substances. To date, seventeen mammalian 

CYP gene families have been identified [1].  

Within the CYP families, CYP isoforms 1-3 

metabolize more than 90% of known drugs [2]. 

The CYP enzymes are generally found in the 

hepatocyte endoplasmic reticulum and micro-

somes while they exist in varying amounts in 

most extra-hepatic tissues. Environmental 

factors, foods, social habits and disease 

conditions are all known to alter CYP enzymes 

[3]. We [4-6] and others [7] have shown that 

CYP isoforms are significantly downregulated 

in sepsis and this decrease is due to the 

reduction of AhR and Arnt, two critical 

transcription factors involved in the regulation 

of CYP1A2 mRNA. Interestingly, our studies 

further showed that AhR and Arnt expressions 

were inversely correlated with pro-inflamma-

tory cytokines in sepsis and that exposure of 

cells with such cytokines downregulated these 

transcription factors.     

 

Liver dysfunction in sepsis 

 

Sepsis and the ensuing septic shock and 

multiple organ failure continue to be the most 

common causes of death in surgical intensive 

care units [8-12]. Despite advances in the 

management of trauma victims, the incidence 

of sepsis and septic shock has increased 

significantly over the past two decades [11, 

13-15]. It has been estimated that in the 

United States alone more than 750,000 

patients develop sepsis and septic shock each 

year with an overall mortality of 28.6% [16].  

Severe sepsis is a common, expensive, and 

frequently fatal condition, with as many deaths 

annually as those from acute myocardial 

infarction.  The average costs per case were 

$22,100, with annual total costs of more than 

$16 billion nationally [16].  The increased 

morbidity and mortality attributed to sepsis 

could be due to the fact that the mediators or 
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factors responsible for early cellular altera-

tions are not fully understood and conse-

quently not prevented, leading to a progressive 

deterioration of cell and organ function and 

even death.   

 

A number of animal models such as bacte-

remia, endotoxemia, and endotoxic shock 

have been used to study the pathobiology of 

sepsis and such models have provided 

valuable information regarding the 

mechanisms responsible for cell and organ 

dysfunction under those conditions [17-23]. 

Other investigators have utilized the model of 

cecal ligation and puncture (CLP) to produce 

polymicrobial sepsis [18, 19, 24-32]. The 

model of CLP mimics many features of clinical 

sepsis-peritonitis.  This model of sepsis is 

associated with an early, hyperdynamic phase 

(i.e., 2-10 h after CLP; characterized by 

increased cardiac output and tissue perfusion, 

decreased vascular resistance, hyperglycemia 

and hyperinsulinemia), which is followed by a 

late, hypodynamic phase (16 h after CLP and 

later; characterized by reduced cardiac output 

and tissue perfusion, increased vascular 

resistance, hypoglycemia and hypo-insulin-

emia) [30, 33-36]. By using the CLP model of 

sepsis in the rat, we have shown that 

hepatocellular dysfunction (as assessed by 

indocyanine green clearance) occurred early 

after sepsis despite hyperdynamic circulation 

including hepatic hyperperfusion [34, 37-40]. 

 

Kupffer cells (KCs) play an important role in 

producing pro-inflammatory cytokines such as 

TNF-α and IL-1β in sepsis [41, 42]. 

Administration of recombinant TNF-α in normal 

animals depressed hepatocellular function 

[43]. The exact mechanism of hepatocellular 

dysfunction during early sepsis is poorly 

understood. We and others have shown that 

cytochrome P450 (CYP) enzyme system, a 

superfamily of heme proteins responsible for 

the metabolism of a variety of endogenous 

and exogenous substances are significantly 

altered in sepsis [4-7]. 

 

Cytochrome P-450 (CYP) superfamily 

 

The CYP enzyme system is a superfamily of 

heme proteins responsible for the metabolism 

of a vast array of endogenous and exogenous 

substances (xenobiotics) [44-47].  Seventeen 

mammalian CYP gene families have been 

identified, encoding approximately 60 distinct 

CYP isoforms [1].  CYP structure has been 

deduced and residues required for substrate 

binding, electron transfer, and heme binding 

have been identified [48, 49].  Within CYP 

families, CYP isoforms 1-4 play important roles 

in metabolizing a variety of xenobiotics [50] 

and endogenous compounds including 

steroids, bile acids, fatty acids, eicosanoids 

and retinoids [51-53].  Nearly all CYPs are 

designated with the root “CYP” followed by an 

Arabic numeral for the gene family (i.e. CYP2), 

a capital letter for subfamily (i.e. CYP2D) and 

another Arabic number for a certain gene (i.e. 

CYP2D6). The enzymes in the same family 

share almost 40% amino acid identity while 

the members of the subfamily shares almost 

55% identity. CYP 1, 2, 3 families are the most 

important ones because CYP1A2, 2C9, 2C19, 

2D6, 2E1 and 3A4 metabolize more than 90% 

of known drugs [2]. CYP3A4 is a major 

member of the P450 superfamily that 

metabolizes much more substrates than any 

other CYP enzymes including a number of 

clinically important drugs [54].  

 

The highest concentrations of CYP isoforms 

are found in hepatocyte endoplasmic 

reticulum and microsomes, although CYP 

isoforms exist in varying amounts in most 

extra-hepatic tissues. The CYP3A family is 

most abundant in human liver [55] whereas, 

CYP1A2 is the predominant isoform in the rat 

liver [56]. CYP1A2 is involved in the 

metabolism of various exogenous agents such 

as theophylline, imipramine, and naproxen 

and can be inhibited by chemicals such as 

cimetidine and fluoroquinolones [56].  

Moreover, CYP1A2 is a major determinant of 

lidocaine metabolism, a commonly used 

hepatic CYP function measure [57].  Another 

member of the CYP1A family is 1A1 and both 

CYP1A1 and 1A2 coexist in the rat liver. 

 

Alterations of hepatic CYP450 in sepsis 

 

Environmental factors which include medica-

tions (e.g., barbiturates, anticonvulsants, 

rifampin), foods (cruciferous vegetables), 

social habits (alcohol consumption, cigarette 

smoking), disease conditions (diabetes, 

inflammation, and infection) are all known to 

alter CYP isoforms [3].  Mediators involved in 

inflammation and sepsis can also alter hepatic 

CYP’s drug metabolizing capabilities [58-60].  

In animal models of endotoxemia and in 

cultured hepatocytes stimulated by endotoxin, 

CYP isoforms are dramatically decreased [58, 

61-66].  The expression of CYP isoforms were 
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downregulated in cultured hepatocytes 

stimulated by pro-inflammatory cytokines, TNF-

α, IL-1β,  IFN- or IL-6 [67-73].  However, very 

little work has been performed with hepatic 

CYP in animal models of sepsis aside from 

measuring mixed function oxidase [74] and 

comparing CYP3A expression in sepsis with 

endotoxic shock [75].   

 

In this regard, we examined whether the major 

CYP isoform in the rat liver, CYP1A2, is altered 

during the progression of sepsis and if so, 

whether reduction of this enzyme plays any 

role in the inflammatory response. Our results 

show that rat hepatic CYP1A2 mRNA was 

significantly downregulated at 10-20h and its 

proteins decreased at 20h after CLP [4].  Since 

hepatic perfusion is increased at the early 

stage of sepsis (e.g., 10h after CLP [30], the 

observed downregulation in CYP1A2  due to 

the decreased hepatic perfusion generally 

observed in severe sepsis and septic shock.  

Rather, the decreased CYP1A2 can be, in part, 

due to increase in pro-inflammatory cytokines 

such as TNF-α and IL-1β [76] which then 

directly suppress CYP1A2 mRNA [58, 66, 77].   

 

In fact, it has been reported that pro-

inflammatory cytokines released from KCs 

may directly downregulate hepatocyte CYP 

isoforms [78].  We have confirmed this finding 

using a KC and hepatocyte coculture system 

[6].  We have also shown that CYP inhibition by 

1-aminobenzotriazole (ABT) in septic animals 

resulted in a significant increase in serum TNF-

α, IL-1β, IL-6 and lactate, and more severe 

morphological changes in the liver [4]. This 

result is in agreement with the findings by 

Carcillo et al. who used ABT to inhibit CYP in 

the zymosan-induced inflammation which 

resulted in aggregation of neutrophils and 

significantly increased mortality [79].  Thus, 

the CYP enzyme system is essential in sepsis 

and its inhibition disposes the animal to 

exacerbated pro-inflammatory response and 

tissue injury.  

 

Alterations of CYP in septic and severely 

injured patients 

 

Very little has been known of the changes in 

CYP during sepsis or severe injury in humans. 

Shedlofsky et al. [65] reported that adult 

human volunteers given endotoxin showed 

decrease in metabolism of the CYP enzyme 

probe drugs which included antipyrine, 

hexobarbital and theophylline. The degree of 

inhibition of drug metabolism correlated with 

the circulating plasma levels of IL-6 in these 

endotoxin treated volunteers. Antipyrine 

metabolism is considered as a “gold standard” 

measure of mixed CYP450 mediated drug 

metabolism in humans. Carillo et al., [60] 

showed that children with sepsis had a two 

fold reduction in antipyrine clearance and 

those with multiple organ failure had a fourfold 

decrease in antipyrine clearance. Interestingly, 

this antipyrine clearance was inversely 

correlated with circulating levels of IL-6, nitrite 

plus nitrate levels and to number of organ 

failures.  

 

Harbrecht et al., [80] further demonstrated 

that CYP activity is differentially altered in 

severely injured patients. In this study, twenty 

three multiply injured patients admitted to a 

trauma critical care unit were compared with 

healthy volunteers. CYP metabolizing activity 

was measured using the probe drugs 

mephenytoin (CYP-2C19), chlorzoxazone (CYP-

2E1), dapsone (multiple CYP enzymes) and 

flurbiprofen (CYP-2C9). Mephenytoin metabo-

lism was suppressed after injury and 

increased during post-injury recovery, whereas 

chlorozoxane was suppressed to a lesser 

degree. Measures of dapson and flurbiprofen 

metabolism were elevated throughout the 

study. Chlorzoxazone and mephenytoin 

metabolism correlated with multiple organ 

failure. Therefore, the metabolism of selected 

CYP isoforms may have potential for 

evaluating acute hepatic dysfunction in 

critically ill trauma patients.  

 

In another study, 42 septic patients  divided 

into survivors and non-survivors were 

evaluated for the in vivo activity of CYP using 

the aminopyrine breath test, a clinically well-

established assay of hepatic CYP activity [81] 

prior to surgery and starting at sepsis onset on 

a daily basis. CYP activity was significantly 

decreased during the course of sepsis in both 

survivors and non-survivors group from the 

preoperative levels. Interestingly, CYP activity 

returned to normal levels in the survivor 

patients while they remained low in the non-

survivors during the late phase. This study 

suggests that the aminopyrine breath test is a 

clinically useful tool for predicting outcome in 

the early stages of sepsis and helps when 

early surgical intervention is concerned.     

 

Potential mechanism of CYP450 alterations 
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Transcriptional activation of CYPs involves the 

aryl hydrocarbon receptor (AhR), a ligand-

activated transcription factor as well as its 

nuclear translocator (Arnt) and a chaperone 

protein, heat shock 90 (HSP90) [82, 83]. 

Nuclear receptors such as AhR represent a 

superfamily of ligand modulated transcription 

factors. They mediate a variety of physiological 

responses to steroids, retinoids, thyroid 

hormones, and various xenobiotics [84]. These 

receptors play a key role in development, cell 

differentiation, and organ physiology [85].  

Unlike water-soluble hormones, steroid 

hormones can enter the cell by simple or 

facilitated diffusion and transduce their 

signals to the genome via intracellular 

receptors [86].  After binding to its receptor, 

the hormone-receptor complex moves from the 

cytoplasm to nucleus, undergoing allosteric 

changes that enable the complex to bind to 

high affinity sites in the chromatin and 

modulate gene transcription [87].  More than 

70 distinct members of the nuclear receptor 

superfamily have been identified [88].   

 

Studies have shown that the transcription of 

CYP1A2 gene is mediated through the AhR 

signaling pathway [82, 83, 89].  This is further 

supported by the finding that the human 

hepatoma cell line SK-Hep-1 which expresses 

defective AhR, is associated with the lack of 

CYP1A2 expression [90].  In the absence of 

stimulation, AhR exists as a non-DNA-binding, 

~300 kDa heteromeric complex, associated 

with the molecular chaperone HSP90 in a 1:2 

ratio in the cytosol [91].  Upon stimulation, 

AhR-HSP90 complex enters the nucleus and 

subsequently dissociates, enabling AhR to be 

phosphorylated by tyrosine kinase.  The 

activated AhR then forms a heterodimer 

Figure 1.  Schematic representation of the potential mechanism of CYP1A2 downregulation in sepsis: 

Transcriptional activation of CYPs involves the aryl hydrocarbon receptor (AhR), nuclear translocator (Arnt) 

and a chaperone protein, heat shock 90 (HSP90). In the absence of stimulation, AhR exists as a non-DNA 

binding heterometric complex with HSP90. Upon activation, AhR-HSP90 complex enters the nucleus and 

HSP90 dissociates, enabling AhR to be tyrosine phosphorylated and bind to Arnt. The AhR-Arnt complex then 

binds to dioxin responsive element (DRE) at the promoter region of CYP1A2 gene and initiates the 

transcription. During sepsis, extracellular stimuli (e.g., LPS) upregulate both TNF-α and IL-1β via NFB and/or 

MAPK pathways and get released from Kupffer cells. The cytokines then bind to there respective receptors 

on hepatocytes and by mechanisms which are still unknown, downregulate both Arnt and AhR gene and 

protein thereby, decrease CYP1A2 mRNA expression.    
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complex with its nuclear translocator Arnt [92].  

Within the nucleus, the AhR-Arnt complex 

recognizes and binds to the specific regulatory 

sequences known as the dioxin responsive 

element (DRE) at the promoter region, and 

initiates the transcription of the CYP1A2 gene 

[93, 94].  HSP90 appears to be critical for 

folding of a ligand-binding conformation in AhR 

and for the ligand’s inducibility [95, 96] (Figure 

1).  

 

We examined the expression of AhR and Arnt 

in both in vitro and in vivo conditions. For in 

vitro experiments, isolated Kupffer cells and 

hepatocytes together, Kupffer cells and 

hepatocytes separated by transwell membrane 

or hepatocytes alone were cultured in the 

presence of 100 ng/ml LPS for 24h. AhR and 

Arnt mRNA expressions were analyzed by 

reverse-transcription-polymerase chain 

reaction (RT-PCR) and protein levels were 

measured by Western blotting. Both AhR and 

Arnt mRNA and protein were significantly 

decreased in the LPS treated co-culture 

whereas; either hepatocytes alone or co-

culture separated by membrane produced no 

changes in AhR or Arnt mRNA and protein. The 

observed downregulation of AhR and Arnt in 

the LPS treated co-culture were correlated with 

CYP1A2 and inversely associated with TNF-α 

and IL-1β [6]. Both AhR and CYP1A2 were 

decreased in hepatoma cells (H-4-II-E ) treated 

with TNF-α or IL-1β for 48h [5]. For the in vivo 

studies, adult male rats were subjected to 

sepsis by cecal ligation and puncture; hepatic 

tissues were harvested at 5, 10, and 20h after 

CLP or sham operation. AhR and Arnt mRNA 

and protein were assessed. AhR mRNA 

decreased at 5h and remained downregulated 

at 10 and 20h after CLP. Hepatic CYP1A2 

expression was also decreased at 10 and 20h 

after CLP [4]. That CYP1A2 and AhR were 

inversely correlated with TNF-α and IL-1β 

suggest increase in pro-inflammatory 

cytokines in sepsis play critical role in 

downregulating the CYP enzymes in sepsis and 

severe injury (Figure 1).  

 

Cytokines induce inducible nitric oxide 

synthetase (iNOS) resulting in nitric oxide (NO) 

production in many cell types [97]. The iNOS 

mRNA level significantly increases 24 h after 

CLP [7, 98].  By the use of the NO inhibitor, it 

was shown that CLP caused decrease in 

CYP1A1, CYP1A2, and CYP2E1 and was 

reversed by the NO inhibitors. This suggests 

NO might contribute to the suppression of CYP 

in sepsis. It has also been postulated that 

since NO binds to the heme center of CYP 

directly and inhibits CYP activity [99], 

decreased CYP activity in sepsis could also be 

due to NO-mediated post-translational 

modification. 

 

Future Studies and Perspectives 

 

The CYP enzymes are crucial in the acquisition 

of metabolic activation and inactivation of 

clinically used drugs and toxins. We and others 

have shown that the CYP enzymes are 

significantly decreased in sepsis and severe 

injury. We further demonstrated that by using 

an experimental model of sepsis, this 

downregulation in sepsis is due to the 

decrease in AhR and Arnt, two critical 

transcription factors involved in the regulation 

of CYP1A2 mRNA. Our studies further showed 

that AhR and Arnt expressions were inversely 

correlated with pro-inflammatory cytokines in 

sepsis and that exposure to cells with such 

cytokines downregulated AhR and Arnt. These 

data collectively suggest that therapies 

directed towards decreasing pro-inflammatory 

cytokine release in sepsis, especially from the 

liver, can prevent the downregulation of the 

AhR signaling pathway and thereby protect 

CYP mRNA transcription. Further studies are 

warranted to examine the regulation of other 

CYP isoforms in sepsis and severe injury and 

delineate the role of post-translational 

modification such as nitrosylation in CYP 

activity. 
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