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Abstract: The environmental persistence and bioaccumulation of herbicide atrazine may pose a significant threat to 
human health. In this experiment, 4 weeks old female Wister rats were treated by 0, 5, 25 and 125 mg/kg atrazine 
respectively for 28 days, and the oxidative stress responses as well as the activations of Nrf2 signaling pathway in 
kidney tissues induced by atrazine were observed. The results showed that after be treated by atrazine, the Blood 
urea nitrogen (BUN) and creatinine (CREA) levels in serum were increased, the contents of nitric oxide (NO) and 
malondialdehyde (MDA) in the kidney tissue homogenates were increased, the over-expressed Nrf2 transferred into 
the nuclei and played an antioxidant role by up-regulated the expression of II phase detoxifying enzymes such as 
heme oxygenase-1 (HO1) and NAD(P)H quinone oxidoreductase (NQO1) and the expression of antioxidant enzymes 
such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).
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Introduction

Chemical pollution in the environment with pes-
ticides has been increasing due to their exten-
sive usage in agriculture. Atrazine (2-chloro-
4-ethylamine-6-isopropylamines -triazine, ATR) 
is a chlorotriazine herbicide that has been used 
worldwide for the control of broadleaf weeds 
and is applied on crops such as corn, sugar-
cane, and sorghum [1]. In the United States 
alone, ATR’s annual use is approximately 65-80 
million pounds per year [2], and in the European 
countries more than 1.2 million tons per year 
[3]. Atrazine and degradation products are the 
most common contaminants of groundwater 
and surface water, and this contamination has 
spread well beyond areas where it was once 
applied. Furthermore, ATR can persist for sev-
eral years after its application [4]. In China, 
atrazine concentrations exceeding the stan-
dards for drinking-water (3 μg/l) have been 
reported in Guanting reservoir [5] and Taihu 
Lake [6]. In the surface water in East Liaohe 
River Basin of Jinlin province, the average atra-
zine content in waters in regions with glebe or 
without glebe were namely 9.7 μg/l and 8.854 

μg/l, and up to the highest content of 18.93 
μg/l in July [7]. Although the use of atrazine 
has recently been banned in the European 
Union, because of its high water solubility and 
stability, atrazine could be ubiquitous in waters 
for a long time and cause eco-toxicity.

Limited human data [8, 9] and extensive animal 
data indicate that exposure to high levels of ATR 
is detrimental to the nervous systems, repro-
ductive, immune, and endocrine. For example, 
several studies reported that ATR is detrimental 
to the brain [10-12], by interfering with the 
vesicular storage and/or cellular uptake of DA 
[13, 14]. Previous studies have shown that atra-
zine could affect the reproductive system of 
wild animals [15]. Some researchers have dem-
onstrated that excessive ATR exposure has a 
negative impact on the immune system [16, 
17]. Atrazine can act as an endocrine disrupting 
compound (EDC) with effects on the endocrine 
system [18-21].

Recent studies have indicated that oxidative 
stress (OS) has been implicated in ATR toxicity 
through the evaluation of specific biomarkers in 
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tissues such as liver, erythrocytes, testis, and 
epididymis in the rat [22-24]. Bhatti reported 
that after treated by atrazine, a significant 
increase in the malondialdehyde (MDA) levels 
and decrease in the GSH was observed, and 
significant increase in the activities of superox-
ide dismutase (SOD), catalase (CAT), guaiacol 
peroxidase (GPx), and serum glutathione S 
epoxide transferase (GST) were observed in 
atrazine treated group compared to controls 
[25]. Adesiyan reported that atrazine could 
induce toxicity in the liver and reproductive sys-
tem of rats, with the increase of MDA anabo-
lism and the decrease of SOD catabolism in 
liver and Testis [23]. Abarikwu reported atra-
zine induced toxicity by increased Reactive 
Oxygen Species (ROS) and MDA levels and up-
regulated the expression of glutathione peroxi-
dase (GSH-Px), glutathione reductase (GR), 
glutathione-S-transferase (GST) and down-reg-
ulated the expression of superoxide dismutase 
1 (SOD-1) and superoxide dismutase 2 (SOD-2) 
[26].

While data pertaining to ATR’s toxicity in mam-
mals are increasing, studies of ATR effects on 
oxidative injury in the kidney are still scarce. In 
this study, we investigated the histopathologi-
cal characteristics and antioxidant responses 
in the kidney of Wister rats that received orally 
administration of ATR. These results will enable 
us to further understand the kidney damage 
and antioxidation mechanisms in mammals.

Materials and methods

Experimental animals

Four-week-old pathogen-free female Wister rat 
were purchased from the Experimental Animals 
Center of Norman Bethune Medical College, 
Jilin University (Changchun, China). The rats 
were housed at constant room temperature 
(23±1°C) and relative humidity (50%) under a 
regular light/dark schedule (light on from 7:00 
A.M. to 7:00 P.M.) with free accessing food and 
water. The animal study was conducted follow-
ing internationally recognized guidelines and 
was approved by the Animal Research Co- 
mmittee of Norman Bethune College of Medi- 
cine, Jilin University.

Reagents

Atrazine (99% purity) and SDS, TEMED, Acryl- 
amide, N, N- Dimethyl-bis-acrylamide, DTT and 

PMSF were obtained from Sigma Chemical 
Company (USA). ATR solutions (0.5 mg/ml, 2.5 
mg/ml and 12.5 mg/ml) were prepared by dis-
solving ATR in corn oil. All the solutions were 
kept at 4°C for a maximum of 1 week. NO, MDA, 
SOD, CAT and GSH-Px detection kits were pur-
chased from Nanjing Jiancheng Company. 
Rabbit anti-Nrf2, Keap1, HO1 and NOQ1 
Monoclonal antibody, HRP-labeled anti-rabbit 
IgG secondary antibodies were acquired from 
Protentech Group (USA). Pierce ECL Plus Kit 
were acquired from Thermo Fisher Scientific 
Inc (USA).

Treatment of animals

After 1 week adaption in laboratory, the rats 
were randomly divided into four groups (8 ani-
mals per group) and were treated by a daily 
gavage of 0, 5, 25 and 125 mg/kg atrazine for 
28 consecutive days. The animals were sacri-
ficed by bleed from abdominal aorta under 
anesthesia on day 29. The blood was centri-
fuge with 3000 r/min for 10 min, and serum 
were collected and stored at -20°C until as- 
sayed. The kidneys were removed, partly fixed 
in 10% formalin and partly stored at -80°C.

Assessments of renal function injury

Blood urea nitrogen (BUN) and creatinine 
(CREA) levels were measured using an auto-
mated biochemical analyzer according to the 
manufacturer guides (Mairui, Shenzhen, China).

Detection of contents of NO, MDA and the ac-
tivity of SOD, CAT, GSH-PX

A 10% homogenate of the kidney tissue was 
prepared in 1 ml PBS buffer containing 100 mg 
tissue, and kept in -20°C. Protein content was 
estimated by the method of Bradford [27]. The 
contents of NO, MDA and the activities of SOD, 
CAT, GSH-Px were determined as described in 
the detection kits instruction.

Western blot analysis

Kidney tissues stored at -80°C were homoge-
nized in ice-cold buffer (0.25 M sucrose, 5 mM 
EDTA, 20 mM Tris base, pH 7.4). The tissue 
lysates were then centrifuged for 30 min at 12 
000×g and the protein concentrations were 
determined using the Protein Assay Kit (Bio-
Rad, Hercules, CA). Forty micrograms of protein 
were separated by 12% SDS-PAGE gel and 
transferred onto a PVDF membrane (Millipore, 
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Bedford, MA). The membranes were blocked 
with 5% nonfat milk diluted in buffer (10 mM 
Tris-HCl, 100 mM NaCl and 0.1% Tween 20) for 
1 h at room temperature and probed with anti-
bodies of anti-Nrf2, anti-Keap1, anti-HO1, anti-
NQO1, and anti-β-actin (protentech group, USA) 
overnight at 4°C. Horseradish peroxidase-con-
jugated secondary antibodies (Thermo, Wal- 
tham, MA) at a dilution of 1:2000 were then 
applied for 1 h at room temperature. The pro-
tein bands were then detected using an En- 
hanced Chemiluminescence kit (Pierce Bio- 
technology Ltd., Rockford, IL). The protein lev-
els were quantified by densitometry using 
Quantity One software (Bio-Rad).

HE staining and immunohistochemistry assay

Kidney specimens were fixed in 10% formalin, 
embedded in paraffin, and cut into 4 μm-thick 
slides. For HE staining, the slides were dewaxed, 
and then stained routinely with hematoxylin-
eosin for histological assessment.

For immunohistochemistry assays, the endog-
enous peroxidase activity was blocked by treat-
ment with 3% hydrogen peroxide solution in 
methanol for 20 min. Epitope retrieval was per-
formed by treating the slides with 10 mM sodi-

um citrate buffer (pH 6.0) and heating in a 
microwave oven for two times at the high power 
for 6 min each. Non-specific binding was pre-
vented by blocking with normal goat serum 
(1:10) for 10 min. Immunostaining of Nrf2 was 
performed using a rabbit anti-Nrf2 monoclonal 
antibody. Goat anti- rabbit IgG conjugated with 
horseradish peroxidase was used as the sec-
ondary antibody. The staining procedure was 
carried out manually at room temperature, 
using an avidin-biotin-peroxidase complex 
method. After incubation with the primary anti-
body for 60 min, the slides were incubated with 
the biotinylated goat anti-rabbit IgG (H+L) 
(DAKO, Carpinteria, CA) at 37°C for 30 min, fol-
lowed by incubation with a 1:200 streptavidin-
biotin-peroxidase complex (Sigma, St. Louis) for 
30 min. Reactive products were visualized with 
3, 3’-diaminobenzidene (DAB) as the chromo-
gen, and the slides were counterstained with 
hematoxylin and coverslipped. The stained 
slides were analyzed with a microscope, and 
cellular brownish staining was scored as 
positive.

Statistical analysis

Data are presented as the mean±SE and repre-
sent three independent experiments. Statistical 

Figure 1. Subacute exposure of atrazine induce kidney injury of rats. (A) The serum BUN levels in rats treated by 
different dosage of ATR; (B) The serum creatinine (CREA) levels in rats treated by different dosage of ATR; (C-F) The 
renal histological results of the 0 mg/kg (C), 5 mg/kg (D), 25 mg/kg (E) and 125 mg/kg (F) ATR treated groups 
separately. (*p < 0.05, compared with the control group).
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analyses were performed with SPSS17.0, dif-
ference among the groups were compared with 
one-factor analysis of variance (ANOVA). Values 
of P < 0.05 were considered statistically sig- 
nificant.

Results

Changes of renal function in rats treated by 
atrazine

To evaluate the renal function of rats treated by 
ATR, Blood urea nitrogen (BUN) and creatinine 
(CREA) levels were measured using an auto-
mated biochemical analyzer. As showed in 
Figure 1, the levels of BUN and CREA were sig-
nificantly increased in serum in the 125 mg/kg 
group compared with the control group (p < 
0.05). These changes suggest that the kidney 
was less able to eliminate BUN and CREA from 
serum.

Histopathology changes of kidney

To evaluate whether exposure to atrazine would 
elicit changes in the kidney tissue, the sections 
of kidney tissue were stained with hematoxylin-
eosin for histological assessment. As shown in 
Figure 2, the kidney of rats displayed different 
degrees of swelling of epithelial cells of juxta-
medullary renal tubules.

Contents of NO and MDA

In order to clarify whether renal function associ-
ated with oxidative stress, we examined con-

tent of MDA and NO in kidney tissue homoge-
nates. The Data presented in Figure 3 pointed 
that the contents of NO and MDA were signifi-
cantly increased in kidney homogenate in 125 
mg/kg atrazine treated group, which indicated 
that oxidative stress was occurred in the kidney 
tissues (p < 0.05).

Expression of Nrf2 and Keap1

To further explore the effects of oxidant stress 
on Nrf2 pathway in atrazine treated rats, we 
estimated the expression of Nrf2 and Keap1 in 
kidney tissue by western blot. The results 
showed that the expression of Nrf2 was signifi-
cantly increased in a dose-dependent manner 
in 25 mg/kg and 125 mg/kg atrazine treated 
groups (p < 0.05, p < 0.01). The expression of 
Keap1 was increased in 5 mg/kg atrazine treat-
ed rats, while a dose-related decrease of Keap1 
content was presented with the increase of 
atrazine dose. The contents of Keap1 in 125 
mg/kg atrazine treated rats were significantly 
decreased compared with those of the control 
group (p < 0.05) (Figure 4).

Translocation of Nrf2 to the nucleus

To investigate whether the up-regulated Nrf2 
can translocate to the nucleus and thus exerts 
its biological function, we used Immunohi- 
stochemistry to determine the effect of atra-
zine on the intercellular localization of Nrf2 in 
rat. As was shown in Figure 4, there was a sig-
nificant increase of positive expression of Nrf2 
in atrazine treated kidney cell nucleus, which 

Figure 2. Subacute exposure of atrazine induce oxidative damage in kidney of rats. A. The NO levels in kidney tissue 
homogenates treated by different dosage of ATR; B. The MDA content in kidney tissue homogenates treated by dif-
ferent dosage of ATR. (*p < 0.05, **p < 0.01, versus control group).
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indicated that Nrf2 was activated and trans-
ferred into nucleus.

Expression of phase II detoxification enzymes

Western blot assays were performed to deter-
mine the effect of Nrf2 activation on the expres-
sion of Phase II Detoxification enzyme, which 
includes HO1 and NQO1. The expression of 
HO1 and NQO1 were significantly up-regulated 
in 5 mg/kg atrazine treated group compared 
with the control group, and then decreased 
with the increase of atrazine dose. The expres-
sion of HO1 and NQO1 was significantly 
decreased in 125 mg/kg atrazine treated rats 
compared with that of the control group (Figure 
5).

Activities of CAT and GSH-PX

To further explore the effect of Nrf2 activation 
on Antioxidant enzymes, the activities of SOD, 

CAT, GSH-PX was determined. As is shown in 
Figure 5, the activities of CAT and GSH-Px of 
125 mg/kg groups were significantly decrea- 
sed compared with those of control group (p < 
0.05) (Figure 5).

Discussion

The biological toxicity of ATR has been widely 
reported, but studies concerning its effects on 
the kidney peroxidation are scarce. The aim of 
this study was to assess the adverse effects of 
a subacute exposure of ATR on rat by renal 
function and histological detection and to 
investigate the possible mechanism by using 
selected oxidative stress parameters. In this 
study, the BUN and Creatinine in serum were 
increased in the ATR treated group compared 
with the control group, indicated that renal inju-
ry occurred in rats. Pathological changes in rat 
are powerful indicators of exposure to environ-
mental stressors. Our histological results 

Figure 3. Subacute exposure of atrazine induce activation of Nrf2. (A) Western blot results of Nrf2 and Keap1; (B) 
Quantified Nrf2 protein level from three rats; (C) Quantified Keap1 protein level from three rats; D-G. Immunohisto-
chemical analysis of Nrf2 location in kidney of 0 mg/kg (D), 5 mg/kg (E), 25 mg/kg (F) and 125 mg/kg (G). (*p < 
0.05, **p < 0.01, versus control group). 
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showed that exposed to ATR caused alterations 
to the kidney structure of the rat, as evidenced 
by the hydropic degeneration and formation of 
vacuoles in the epithelial cells of juxtamedul-
lary renal tubules.

Xenobiotics can generate reactive oxygen spe-
cies which are responsible for cell and tissue 
damage. Lipid peroxidation is the initial step to 

cellular membrane damage caused by pesti-
cides and is considered as a valuable indicator 
of oxidative damage in cellular components 
[28]. The increase in lipid peroxidation following 
ATR exposure may be attributed to the induc-
tion of ROSs, which enhances the oxidation of 
polyunsaturated fatty acids that lead to lipid 
peroxidation [29]. To further investigate the 
mechanism of renal injury induced by ATR, per-

Figure 4. Subacute exposure of atrazine inhibit the activation of antioxidant enzymes. A. The activation of CAT in 
kidney tissue treated by different dosage of ATR; B. The activation of GSH-Px in kidney tissue treated by different 
dosage of ATR. (*p < 0.05, **p < 0.01, versus control group).

Figure 5. Subacute exposure of atrazine change the 
expression of antioxidant enzyme. A. Western blot re-
sults of the expression of NQO1 and HO1; B. Quanti-
fied NQO1 protein level from three rats; C. Quantified 
HO1 protein level from three rats. (*p < 0.05, **p < 
0.01, versus control group). 
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oxidation product level in renal were detected 
in this study. In the high ATR concentration 
treatment group, MDA content, which is a sec-
ondary lipid peroxidation product, and NO, 
which is one of ROS, increased compared to 
the control group, suggesting that a large 
amount of lipid peroxidation has occurred in 
the treated rats. Similar results have also been 
reported in other species [30-32].

Many organisms have unique systems for pro-
tecting themselves against the damaging 
effects of activated ROSs. Oxidative stress as 
intracellular signaling molecules also activates 
several signaling pathways to regulate cell res- 
ponses. Nrf2 is a redox-sensitive transcription 
factor that regulates the expression of phase II 
anti oxidant genes and confers cytoprotection 
against oxidative stress [33]. In unstressed 
cells Nrf2 is sequestered by its inhibitor, Keap1, 
which promotes rapid proteasome-mediated 
degradation [34-37]. However, in response to 
oxidative stress, Nrf2 is stabilized by dissociat-
ing from Keap1, and binds to cis-elements 
called antioxidant response elements (ARE) as 
a heterodimer with other members of the basic 
leucine zipper protein family, such as Maf or 
Jun [38]. Our study estimated the contents of 
Nrf2 and Keap1 in kidney tissues by western 
blot, and found that the expression of Nrf2 was 
significantly increased in atrazine treated 
groups. While the decrease of Keap1 content 
was presented with the increase of atrazine 
dose. Also, 25 mg/kg and 125 mg/kg atrazine 
could promote the translocation of Nrf2 into 
nucleus. These results indicated that Nrf2 
might play an important role in the cytoprotec-
tive mechanism against oxidative damage 
induced by atrazine.

During oxidative stress, Nrf2 undergoes nucle-
ar translocation, binds in heterodimeric combi-
nations with members of the small Maf family 
of nuclear factors, to the 5’-upstream AREs [39, 
40], and detoxify genes, such as Glutathione 
S-transferase (GST), NAD(P)H: quinone oxidore-
ductase l (NQOl), heme oxygenase 1 (HO1), Ca- 
talase (CAT), Superoxide Dismutase(SOD), Sul- 
firedoxin (SRX), Glutathione peroxidase (GSH-
Px) and γ-glutamylcsteine synthetase (γGCS), 
and thus modulates their expressions [41, 42].

HO1, formerly known as phase II detoxifying 
antioxidant enzyme, is the rate-limiting enzyme 
that catalyzes the degradation of heme to pro-

duce biliverdin, iron, and carbon monoxide [43]. 
NQO1 is a flavin protease which catalyzes qui-
none two-electron reduction reaction, thereby 
preventing the oxidation-reduction reaction 
and the generation of ROS [35, 44]. In this 
study, the upregulation of HO1 and NQO1 in 5 
mg/kg atrazine treated group indicated that 
after translocation to the nucleus, Nrf2 com-
bined with ARE and triggered the expression of 
phase II detoxifying enzymes. While with the 
increase of atrazine administration, the accu-
mulation of Pro-oxidant substances consumed 
more phase II detoxifying enzymes simultane-
ously, thus the detectable contents of HO1 and 
NQO1 decreased on the contrary.

Rat can combat the elevated levels of ROSs in 
their systems with protective ROS-scavenging 
enzymes such as SOD, CAT and GSH-Px. In this 
study, GSH-Px and CAT activities in the kidney 
decreased after ATR exposure. Thus, it is pos-
sible that a decrease in the activity of these 
enzymes induced by ATR exposure contributes 
to the elimination of ROSs from the cells.

In summary, atrazine could induce oxidative 
stress response in rat kidney. Nrf2 has an 
important role in the defense against oxidative 
stress by regulating the expression of phase II 
detoxifying and antioxidative enzymes. Conti- 
nued advances on the effect of atrazine expo-
sure to Nrf2 signaling pathway will contribute  
to understanding the mechanism of atrazine-
induced kidney damage.

In conclusion, the present study shows that 
atrazine could induce oxidative stress response 
in rats’ kidney after 28 days administration. 
Nrf2 protects cells from oxidative stress by a 
mechanism that regulates ARE related genes 
including phase II detoxifying and antioxidant 
enzymes.
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