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Transforming growth factor-β1 regulates  
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Abstract: Epithelial-mesenchymal transition (EMT) is associated with altered connection and junctions between 
cells and changes in abilities of invasion and migration. In this study, we investigated whether SK-BR-3 breast can-
cer cells induced to undergo EMT exhibit changes in morphological and invasion abilities after Transforming growth 
factor β1 (TGF-β1) treatment. Serum-deprived SK-BR-3 cells were treated with TGF-β1 (0, 10 ng/mL) for 24 h. The 
cells morphological changes were observed and imaged using inverted phase contrast microscope. Scratch experi-
ment and invasion experiment were employed to detect changes of invasion ability, cell-flow experiment was used to 
assess cell cycle, immunohistochemistry technique was used to detect epithelial and mesenchymal markers after 
the crawling cells were fixed. Our research reveal that SK-BR-3 cells become larger and more messy, the elongated 
cells extend pseudopodia, the link of the cells became more loosely and cell gap widened after TGF-β1 treatment. 
SK-BR-3 cells showed faster growing and improved invasion abilities after TGF-β1 treatment, and reduced G1 phase 
cells proportion in the total number of cells after the conversion, in contrast the S phase cells accounted for the 
proportion of the total number of cells increased. These findings indicate that TGF-β1-induced EMT in breast cancer 
cells may be associated with major alterations in morphological and invasion abilities. 
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Introduction

Epithelial-mesenchymal transition (EMT) facili-
tates cancer cell invasion and metastasis for-
mation [1, 2], and has also been linked to the 
acquisition of a stem cell-like phenotype [3], 
anchorage-independent growth and chemore-
sistance in cancer cell lines and clinical sam-
ples [4-11]. The phenotypic changes associat-
ed with Transforming growth factor β1 
(TGF-β1)-induced EMT are well characterized in 
the multiple human cancer cell lines, and 
include changes in cell morphology; increased 
expression of the transcription factor Twist and 
the intermediate filament protein vimentin, and 

reduced E-cadherin expression following TGF-
β1 treatment [12-14].

In this study we assessed whether alterations 
in morphological changes, invasion abilities 
were associated with TGF-β1-induced EMT in 
SK-BR-3 breast cancer cells. 

Materials and methods

Cell culture

SK-BR-3 cells were maintained in Dulbecco’s 
Modified Eagle’s Medium (D6546, Sigma Ald- 
rich) supplemented with penicillin (100 U/mL, 
Invitrogen), streptomycin (100 μg/mL, Invi- 
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trogen), fetal bovine serum (10%, Sigma Aldrich) 
and L-glutamine (4 mM, Invitrogen). To induce 
EMT, SK-BR-3 cells were serum-starved (0.5% 
fetal bovine serum) for 24 h and stimulated 
with TGF-β1 (0, 10 ng/mL, Sigma Aldrich) for 24 
h. These time points were chosen because 
changes in mRNA levels are expected to pre-
cede changes in functional responses. SK-BR-
3 cells were maintained in a humidified incuba-
tor at 37°C with 5% CO2 and routinely tested 
negative for mycoplasma infection (MycoAlert, 
Lonza). 

Migration assay

We scribed five paralleled lines on the bottom 
of six-well plates using a marker pen and seed-
ed cells at a density of 4.0 × 105 cells per well 
in triplicate for 48 h. A perpendicular scratch 
wound was generated by scratching with a 
pipette tip. After rinsing with PBS to remove the 
detached cells, medium containing different 
concentrations of TGF-β1 (0, 10 ng/mL) was 
added. Photographic images were taken from 
each well at 0 h and 24 h. The distance that 
cells migrated through the area created by 
scratching was determined by measuring the 
wound width at the above times and subtract-

Transwell chambers (Corning-Costar) were 
used to examine the ability of cells to invade 
through a Matrigel-coated filter following the 
manufacturer’s instructions. DMEM medium 
was added to the upper chambers and allowed 
to hydrate for 2 h at 37°C with 5% CO2. Next, 5 
× 104 SK-BR-3 cells treated with various con-
centrations of TGF-β1 (0, 10 ng/mL) were 
added to the upper chamber and grown in 
medium containing 2% fetal bovine serum on 
8.0 μm porous polycarbonate membranes, 
which were coated with diluted Matrigel base-
ment membrane matrix. The lower chambers 
were filled with DMEM medium containing 10% 
fetal bovine serum. After 24 h incubation, the 
cells remaining on the upper surface of the fil-
ter were removed using cotton tips, and the 
cells that invaded to the underside of the mem-
brane were fixed with 4% paraform and stained 
with crystal violet. Cells in 10 random fields of 
view at 400 × magnification were counted and 
expressed as the average number of cells/field 
of view.

Flow cytometry

SK-BR-3 seeded in six-well plates were treated 
with different concentration (0, 10 ng/mL) TGF-

Figure 1. Morphological changes in SK-BR-3 cells. A. SK-BR-3 cells treated with TGF-β1 (0 ng/ml) for 24 h. B. SK-
BR-3 cells treated with TGF-β1 (10 ng/ml) for 24 h.

Table 1. Scratch wound healing assay of SK-BR-3 cells

TGF-β1 (ng/ml)
Width of wound (μm)

0 h 24 h Rate of healing (%)
0 19.5±2.3 12.4±1.6 36.41±5.21

10 19.7±3.1 9.2±1.3** 42.22±4.63**

SK-BR-3 cells were treated with TGF-β1 for 24 h. **; p<0.01. 

ing it from the wound width at 
the start. The values obtained 
were then expressed as the 
rate of wound healing. The 
experiment was repeated th- 
ree times.

Invasion assay
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monoclonal mouse antihuman N-cadherin anti-
body (ZM0094, Beijing ZSGB Company, China), 
dropwise primary antibody (1:100), 37 incubat-
ed for 2 h; PBS wash 5 min, 3 times; followed by 

Figure 2. Wound healing test of SK-BR-3 cells. A. Wound healing test of SK-BR-3 cells treated with TGF-β1 (0 ng/ml) 
for 24 h. B. Wound healing test of SK-BR-3 cells treated with TGF-β1 (10 ng/ml) for 24 h.

Table 2. Invasion assay of SK-BR-3 cells

TGF-β1 (ng/ml) Number of invading cells (Mean 
± SD)

0 57.12±3.14
10 129.47±5.83**

SK-BR-3 cells were treated with TGF-β1 for 24 h. **; 
p<0.01.

Figure 3. Invasion ability of SK-BR-3 cells. A. Invasion 
ability of SK-BR-3 cells treated with TGF-β1 (0 ng/ml) 
for 24 h. B. Invasion ability of SK-BR-3 cells treated 
with TGF-β1 (10 ng/ml) for 24 h.

β1 for 24 h at a cell density of 1.5 × 105 cells/
mL. Cells were processed using the following 
assay. (1) Cells were resuspended by adding 
500 μL binding buffer, followed by adding 5 μL 
annexin V-FITC and 5 μL propidium iodide (PI) 
dye. After mixing at room temperature in the 
dark for 5-15 min, flow cytometry analysis was 
performed. Annexin V-FITC-positive and 
PI-negative cells were considered as apoptotic 
cells; (2) Cells were resuspended by adding 
100 μL RNase A H2O and incubated in water at 
37°C for 30 min. After adding 400 μL PI and 
mixing at 4°C for 30 min in the dark, flow cytom-
etry analysis was performed. The G0/G1, S and 
G2/M stages were compared. The experiment 
was repeated three times.

IHC studies

SK-BR-3 cells seeded in 6-well plates in the 
coverslip, fixed with cold acetone for 10 min, 
put it aside at room temperature 1 h, closed 
non-specific binding, no cleaning. Immuno- 
histochemistry (IHC) was performed with mono-
clonal mouse antihuman E-cadherin antibody 
(ZM0092, Beijing ZSGB Company, China) and 
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incubation with the anti-mouse IgG at 37°C for 
30 min, washed again with PBS, followed by 
incubation with streptavidin-peroxidase com-
plex for 30 min at 37°C, stained with DAB for 
10 min and counterstained with hematoxylin 
solution for 5 min.

Statistical analysis

The data were analyzed with single factor anal-
ysis of variance and a Student’s t test using 
SPSS 13.0 software. Data were represented as 
mean ± SD. P<0.05 was considered statistical-
ly significant.

come larger and more messy, the elongated 
cells extend pseudopodia, the link of the cells 
became more loosely and cell gap widened 
after TGF-β1 treatment (Figure 1). 

Growing and invasion abilities of SK-BR-3 cells

SK-BR-3 cells showed faster growing and 
improved invasion abilities after TGF-β1 treat-
ment. In wounding healing test, the width of 
wound decreased significantly, while the rate of 
wound healing improved after TGF-β1 treat-
ment (Table 1, Figure 2). The migration ability 
of TGF-β1 treated SK-BR-3 cells also increased 
in the invasion test (Table 2, Figure 3). 

Flow cytometry detection

SK-BR-3 cells treated with TGF-β1 showed 
reduced G1 phase cells proportion in the total 
number of cells after the conversion, in con-
trast the S phase cells accounted for the pro-
portion of the total number of cells increased, 
there was no difference in the number of apop-
totic cells (Table 3, Figure 4).

IHC studies

TGF-β1 treated SK-BR-3 cells exhibited inc- 
reased N-cadherin expressing, while the ex- 
pression of E-cadherin decreased coordinately 
(Figures 5, 6).

Discussion

Breast cancer is a highly malignant carcinoma, 
and most deaths of breast cancer are caused 
by metastasis [15]. Nevertheless, the mecha-
nism of breast cancer metastasis remains 
unclear [16-19]. The alterations associated 
with EMT may be related to the cancer cell 
metastasis [20, 21]. EMT is a process by which 
an epithelial cell alters its phenotype to that of 
a mesenchymal cell and plays a critical role in 
embryonic development [22, 23], tumor inva-
sion and metastasis and tissue fibrosis [24, 
25]. EMT occurs in organogenesis throughout 
embryonic development and is recapitulated 

Table 3. Flow cytometry detection of SK-BR-3 cells
TGF-β1 (ng/ml) G1 (%) S (%) Apoptosis
0 80.65±7.86 15.48±2.54 26.62±3.81
10 50.38±6.38** 41.88±5.64** 24.67±2.95
SK-BR-3 cells were treated with TGF-β1 for 24 h. **; p<0.01.

Figure 4. Flow cytometry detection of SK-BR-3 cells. 
A. SK-BR-3 cells treated with TGF-β1 (0 ng/ml) for 24 
h. B. SK-BR-3 cells treated with TGF-β1 (10 ng/ml) 
for 24 h.

Results 

Morphological changes in SK-BR-3 
cells

SK-BR-3 breast cancer cells treated 
with TGF-β1 (10 ng/mL) for 24 h be- 
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during epithelial tissue injury and in carcinoma 
progression [26], and is regulated by complex, 
precisely orchestrated cell signaling and gene 
expression networks [27], with the participa-
tion of key developmental pathways [28, 29]. 
Metastasis of tumor cells is associated with 
EMT, which is a process whereby epithelial cells 
lose their polarity and acquire new features of 
mesenchyme [30-32]. 

TGF-β1 is established as a central mediator 
involved in tissue repair and the progression of 
fibrosis as well as inducing EMT in multiple 
organs [33, 34]. Series of studies were con-
ducted to investigate whether TGF-β1 could 
induce changes of, such as cell morphology, 
expression of relative protein markers, and cel-

lular motile and invasive activities [35]. Several 
elegant studies have provided evidence of TGF-
β1-induced EMT in experimental animal fibrosis 
models and human alveolar epithelium [36-
39]. However, its mechanism remains elusive. 

The aim of the present study was to determine 
whether EMT occurs in cultures of human 
breast cancer cells after TGF-β1 exposure. In 
this study, we demonstrate that TGF-β1-induced 
EMT characterized by the transition from a typi-
cally epithelial morphology to a spindle-shaped 
cell, TGF-β1 treated SK-BR-3 cells become larg-
er and more messy, the elongated cells extend 
pseudopodia, the link of the cells became more 
loosely and cell gap widened after TGF-β1 treat-
ment. SK-BR-3 cells showed faster growing and 

Figure 5. Immunohistochemical analysis of E-cadherin. A. SK-BR-3 cells treated with TGF-β1 (0 ng/ml) for 24 h, 
strong cytoplasmic and cytomembrane reactivity to E-cadherin. B. SK-BR-3 cells treated with TGF-β1 (10 ng/ml) for 
24 h, weak cytoplasmic and cytomembrane reactivity to E-cadherin.

Figure 6. Immunohistochemical analysis of N-cadherin. A. SK-BR-3 cells treated with TGF-β1 (0 ng/ml) for 24 h, 
weak cytoplasmic reactivity to N-cadherin. B. SK-BR-3 cells treated with TGF-β1 (10 ng/ml) for 24 h, strong cytoplas-
mic reactivity to N-cadherin.
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improved invasion abilities after TGF-β1 treat-
ment, G1 phase cells proportion in the total 
number of cells were reduced after the conver-
sion, with S phase cells accounted for the pro-
portion of the total number of cells increased. 
This was confirmed at immunohistochemical 
level, we further presented the increased 
expressing mesenchymal markers N-cadherin 
with a coordinate loss of epithelial proteins 
E-cadherin. 

In conclusion, we provide the first evidence that 
Human breast cancer SK-BR-3 cells in culture 
undergo EMT in response to TGF-β1, these find-
ings indicate that TGF-β1-induced EMT in breast 
cancer cells may be associated with major 
alterations in morphological and invasion abili-
ties. Further studies are needed to investigate 
its signal pathways and mechanisms, besides, 
how these changes in epithelial phenotype 
affect the progression of the breast cancer 
metastasis. 
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